
Junicode VF

Peter S. Baker

January 1, 2024

1. Introduction

This package supports Junicode VF, the variable version of Junicode (2.204 or

higher) for LuaLATEX.

A variable font is one with glyphs that can change not only their size, but also

their shape. These changes in shape are defined in one or more axes—for example,

Weight (Light, Bold, etc.) and Width (Condensed, Expanded). A traditional

“static” font family also has axes, but as every stylistic variant of a static family

requires a separate font file, the number of available styles is severely constrained.

A variable font, by contrast, offers a practically limitless number of styles in a single

file: you choose a style by making a selection of number values (usually called

“coordinates”) from the axes, of which Junicode has three:

Weight Possible weights run from Light (300) to ExtraBold (700). By convention,

Regular is 400.

Width Widths run from 75 (Condensed) to 125 (Expanded). Stroke widths remain

the same as the overall width of the character changes, with the result that

Condensed type looks darker than Regular or Expanded.

Enlarge This axis is for reproducing the enlarged minuscules of medieval

manuscripts—that is, letters that are lowercase in shape and intermediate

between upper- and lowercase in size, used to introduce various textual units

(see section 5 below).

1

junicode 2

2. Loading Junicode VF

Load the package in the usual way, with \usepackage{junicodevf}, to set Juni-
code VF as the main font. By default, the main font is not a set of static outlines

whose proportions remain the same though they can be scaled, but rather a set

of variable outlines that become relatively narrower and lighter as the text size

increases. You can see the difference if we scale a line of footnote text and a line of

header text to the same \large size:

Here is some sample text for footnotes (usually about 8pt).
Here is some sample text for headers (18pt or larger).

The letter-shapes are markedly different, but on the page they look pretty much

the same, because the purpose of these changes in shape, in addition to promoting

legibility, is to allow blocks of text in different sizes (headers, main text, block

quotations, footnotes) to coexist on a page without any of them looking too dark

or too light.1 Evenness of texture makes text in different point sizes look the same.

Junicode VF’s package options give you a number of ways to fine-tune the look

of your text:

light The weight of the type for the main text is Light. As with the default

weight, and all weights selectable by options, “Light” is a range of weights

that varies with the size of the type.

medium The weight of the type for the main text is Medium—that is, darker

than Regular but lighter than Semibold.

semibold The weight of bold type is somewhat lighter than the usual bold. This

may be a good choice if you have selected the light option.

weightadjustment Adjusts the weight of the type by adding this number. For

example, if you choose medium for your document (weight averaging

1For example, on a typical LaTeX page a footnote like this, looked at as a block of gray, is

usually a little lighter than the main text. But on this page, the “color” of the footnote matches

that of the main text. The variation in glyph shape responsible for this effect approximates

the way letters in metal type were typically wider and heavier at small sizes.

junicode 3

about 500) and bold (weight around 700), and also include the option

weightadjustment=-25, then the weights of medium and bold text will be

lightened by 25 (475, 675).

condensed The width of the type is narrow—about 85% of the width of the

Regular style. As with the default width, and all widths selectable by options,

”Condensed” is a range of widths that varies with the size of the type.

semicondensed The width of the type is wider than condensed but narrower than

the default.

expanded The width of the type is wide—about 125% of the width of the Regular

style.

semiexpanded The width of the type is wider than Regular but narrower than

Expanded.

widthadjustment Adjusts the width of the type by adding this number. For

example, if you choose semicondensed for your document (width averaging

87.5), and you also include the option widthadjustment=5, then the average

width will be 92.5, between semicondensed and regular.

proportional Numbers in the document will be proportionally spaced. This is

the default.

tabular Numbers will be tabular (monospaced).

oldstyle Numbers will be old-style, harmonizing with lowercase letters. This is

the default.

lining Numbers will be lining, harmonizing with uppercase letters.

3. Customizing the Main Font

If the options listed in the previous section don’t give you the effect you’re looking

for, this package’s more advanced options allow you to choose from an effectively

junicode 4

infinite number of styles. Do this by passing OpenType features for your docu-

ment’s main text or for one or more of the four main styles (Regular, Italic, Bold,

Bold Italic), and also by supplying custom values for the font’s four axes.

For example, if you want your document to use the conventions observed by

early English typesetters for the distribution of s and ſ, load the package this way:

\usepackage[MainFeatures={
Language=English,
StylisticSet=8

}]{junicodevf}

If you want to use these conventions only for italic text, useMainItalicFeatures

instead ofMainFeatures. All of the features you pass via these options must be

valid for fontspec: in fact, they are passed straight through to fontspec.
If you want to customize the four basic styles of the main text, use Main-

RegularSizeFeatures,MainItalicSizeFeatures, and so on. Each of these defines a

list of associative arrays, in which each array in the list prescribes axis coordinates

for a range of sizes. For example, here are the SizeFeatures for the Junicode Manual:

\usepackage[
MainRegularSizeFeatures={

{size=8.6,wght=550,wdth=120},
{size=10.99,wght=475,wdth=115},
{size=21.59,wght=400,wdth=112.5},
{size=21.59,wght=351,wdth=100}

},
MainItalicSizeFeatures={

{size=8.6,wght=550,wdth=118},
{size=10.99,wght=475,wdth=114},
{size=21.59,wght=450,wdth=111},
{size=21.59,wght=372,wdth=98}

},
MainBoldSizeFeatures={

{size=8.6,wght=700,wdth=120},
{size=10.99,wght=700,wdth=115},
{size=21.59,wght=650,wdth=112.5},
{size=21.59,wght=600,wdth=100}

},
MainBoldItalicSizeFeatures={

junicode 5

{size=8.6,wght=700,wdth=118},
{size=10.99,wght=700,wdth=114},
{size=21.59,wght=650,wdth=111},
{size=21.59,wght=600,wdth=98}

}
]{junicodevf}

For each array, a size key is mandatory: any array without one is ignored. The

arrays should be in order of point size. The first array prescribes axis coordinates

for all sizes up to size, the last array for all sizes greater than size, and any

intermediate items a range from the previous to the current size.2 So the ranges

covered in each list above are -8.6, 8.6-10.99, 10.99-21.59, and 21.59-.3

The keys other than size are the four-letter tags for the font’s axes: wght
(Weight), wdth (Width), and ENLA (Enlarge).4 When a key is omitted, the default

value for that axis is used. It is up to the user to make sure the values given for

each axis are valid—the package does no checking (but fontspec will do a good bit

of checking for you). When SizeFeatures are given in this way, they override any

other options that set or change axis coordinates (e.g. weightadjustment).

4. Selecting Alternate Styles

In addition to the document’smain font, you can choose from fifty predefined styles.

These match the thirty-eight styles supplied by the static version of Junicode, plus

twelve more. The commands for shifting to these styles are as follows (of the italic

styles, only the base “jItalic” is listed; append “Italic” to any of the others, except

“jRegular”):

2If you want only one size array, make size improbably low (e.g. 5) and place a comma

after the closing brace of the array.
3Any modification of the default text size (e.g. in the \documentclass command) can affect

the size definitions in these arrays, with the result that (for example) 10 no longer means

exactly “ten points.” You may have to experiment to get these numbers right.
4By convention, tags for axes defined in the OpenType standard are lowercase; custom

axes are uppercase. Junicode’s ENLA is a custom axis.

junicode 6

\jRegular

\jItalic

\jCond

\jSmCond

\jSmExp

\jExp

\jLight

\jCondLight

\jSmCondLight

\jSmExpLight

\jExpLight

\jMedium

\jCondMedium

\jSmCondMedium

\jSmExpMedium

\jExpMedium

\jSmbold

\jCondSmbold

\jSmCondSmbold

\jSmExpSmbold

\jExpSmbold

\jBold

\jCondBold

\jSmCondBold

\jSmExpBold

\jExpBold

These commands will be self-explanatory if you bear in mind Junicode’s abbrevi-

ations for style names: Cond=Condensed, Exp=Expanded, Sm=Semi.5 Use them

to shift temporarily to a style other than that of the main text. For example, to

shift to the Condensed Light style for a short phrase, use this code:

{\jCondLight a short phrase}.

The result: a short phrase.

To add features to any of these styles, use the style name (without the prefixed

“j” and with Features appended) as a package option. To change the size features

for the style, do the same, but with SizeFeatures instead of Features appended:

\usepackage[
CondLightFeatures={

Language=English,
StylisticSet=2

},
CondLightSizeFeatures={{size=5,wght=325,wdth=80},}

]{junicodevf}

This will shift text in the Condensed Light style from default to insular letter-

shapes and slightly increase the weight and width of all glyphs in that style. Here

the SizeFeatures section is very simple (as in the package file itself), but you can

have as many size ranges as you want, just as you can for the main font.

5The purpose of these abbreviations is to keep font names under the character-limit imposed

by some systems.

junicode 7

5. The Enlarge Axis

Junicode’s Enlarge axis is for a special purpose: to represent the enlarged minuscule

letters that often begin sentences and other textual units in medieval manuscripts.

Thus it should normally be applied only to single letters, not to runs of text.

This package defines four different styles for the Enlarge axis, in four sizes:

Not Enlarged abc abc

\EnlargedOne abc abc

\EnlargedTwo abc abc

\EnlargedThree abc abc

\EnlargedFour abc abc

You can produce an italic version of the enlarged minuscule by appending “Italic”

to the style name. You can also customize these styles with SizeFeatures:

\usepackage[
ENLAThreeSizeFeatures={{size=5,ENLA=85},}

]{junicodevf}

This example will set all axes except for ENLA to their default coordinates. You can,

of course, define other axes, and, as with Junicode’s other SizeFeatures options, as

many size arrays as you like. Features options are not available for the Enlarged

styles.

6. Other Commands

This package’s other commands (listed in Table 1) are offered as conveniences, being

shorter and more mnemonic than the fontspec commands they invoke (though

of course all fontspec commands remain available). Each of these commands

also has a corresponding “text” command that works like \textit{}—that is,

it takes as its sole argument the text to which the command will be applied.

Each “text” command consists of the main command with “text” prefixed—for

example, \textInsularLetterForms{} corresponding to \InsularLetterForms.

junicode 8

\AltThornEth Applies ss01, Alternate thorn and eth.

\InsularLetterForms Applies ss02, Insular letter-forms.

\IPAAlternates Applies ss03, IPA alternates.

\HighOverline Applies ss04, High Overline.

\MediumHighOverline Applies ss05, Medium-high Overline.

\EnlargedMinuscules Applies ss06, Enlarged minuscules.

\Underdotted Applies ss07, Underdotted.

\ContextualLongS Applies ss08, Contextual long s.

\AlternateFigures Applies ss09, Alternate Figures.

\EntitiesAndTags Applies ss10, Entities and Tags.

\EarlyEnglishFuthorc Applies ss12, Early English Futhorc.

\ElderFuthark Applies ss13, Elder Futhark.

\YoungerFuthark Applies ss14, Younger Futhark.

\LongBranchToShortTwig Applies ss15, Long Branch to Short Twig.

\ContextualRRotunda Applies ss16, Contextual r rotunda.

\RareDigraphs Applies ss17, Rare Digraphs.

\OldStylePunctuation Applies ss18, Old-style Punctuation.

\LatinToGothic Applies ss19, Latin to Gothic.

\LowDiacritics Applies ss20, Low Diacritics.

\jcv, \textcv Applies any Character Variant feature (see

below).

Table 1: Stylistic Set and Character Variant Commands

For a fuller account of the OpenType features applied by these commands, see

Chapter 4 of the Junicode Manual, “Feature Reference.”

The syntax of \jcv is \jcv[num]{num}, where the second (required) argument is

the number of the Character Variant feature, and the first (optional) argument is

an index into the variants provided by that feature (starting with zero, the default).

\textcv takes an additional required argument (\textcv[num]{num}{text}—the

text to which the feature should be applied.

Character Variant features can also be selected with mnemonics, listed below.

For example, a feature for lowercase a can be expressed as \textcv[2]{\jcva}{a},
yielding a.

junicode 9

\jcvA

\jcva

\jcvB

\jcvb

\jcvC

\jcvc

\jcvD

\jcvd

\jcvE

\jcve

\jcvF

\jcvf

\jcvG

\jcvg

\jcvH

\jcvh

\jcvI

\jcvi

\jcvJ

\jcvj

\jcvK

\jcvk

\jcvL

\jcvl

\jcvM

\jcvm

\jcvN

\jcvn

\jcvO

\jcvo

\jcvP

\jcvp

\jcvQ

\jcvq

\jcvR

\jcvr

\jcvS

\jcvs

\jcvT

\jcvt

\jcvU

\jcvu

\jcvV

\jcvv

\jcvW

\jcvw

\jcvX

\jcvx

\jcvY

\jcvy

\jcvZ

\jcvz

\jcvaa

\jcvAE

\jcvae

\jcvAO

\jcvao

\jcvAogonek

\jcvaogonek

\jcvASCIItilde

\jcvasterisk

\jcvav

\jcvbrevebelow

\jcvcombiningdieresis

\jcvcombiningdoublemacron

\jcvcombininginsulard

\jcvcombiningopena

\jcvcombiningoverline

\jcvcombiningrrotunda

\jcvcombiningzigzag

\jcvcomma

\jcvcurrency

\jcvdbar

\jcvdcroat

\jcvEng

\jcvEogonek

\jcvetabbrev

\jcvexclam

\jcvflorin

\jcvGermanpenny

\jcvglottal

\jcvlb

\jcvlhighstroke

\jcvmacron

\jcvmiddot

\jcvoPolish

\jcvounce

\jcvperiod

\jcvpunctuselevatus

\jcvquestion

\jcvrum

\jcvsemicolon

\jcvslash

\jcvspacingusabbrev

\jcvspacingzigzag

\jcvsterling

\jcvthorncrossed

\jcvTironianEt

\jcvYogh

junicode 10

This document is set in 12-point Junicode VF with Weight 435 and Width 107.5.

The font for code is Fira Mono,

and the sans serif font is Fira Sans.

