
The latex-lab-prototype package
Prototype document functions

The LATEX Project∗

Released 2022-03-09

Contents
1 What is a document? 2

2 Object types 3

3 Templates 3

4 Instances 4

5 Document interface 5

6 Showing template information 6

7 Open questions and comparison with xtemplate 6
7.1 Module name . 6
7.2 Design-level names . 6
7.3 Objects . 6
7.4 Efficiency and repetition of key setting 6
7.5 Key ordering . 6
7.6 Setting defaults . 7
7.7 The need for templates and instances 7
7.8 Assignment of key values . 7
7.9 Values from other keys . 7
7.10 The nature of debugging data . 7
7.11 Collections . 7

∗E-mail: latex-team@latex-project.org

1

mailto:latex-team@latex-project.org

8 latex-lab-prototype Implementation 8
8.1 File declaration . 8
8.2 \keys_precompile:nnN . 8
8.3 Setup . 10
8.4 Data structures . 10
8.5 Creating objects . 10
8.6 Templates and instances . 11
8.7 Showing information . 13
8.8 Messages . 13

There are three broad “layers” between putting down ideas into a source file and
ending up with a typeset document. These layers of document writing are

1. authoring of the text with mark-up;

2. document layout design;

3. implementation (with TEX programming) of the design.

We write the text as an author, and we see the visual output of the design after the
document is generated; the TEX implementation in the middle is the glue between the
two.

LATEX’s greatest success has been to standardise a system of mark-up that balances
the trade-off between ease of reading and ease of writing to suit almost all forms of
technical writing. It’s other original strength was a good background in typographical
design; while the standard LATEX 2ε classes look somewhat dated now in terms of their
visual design, their typography is generally sound. (Barring the occasional minor faults.)

However, LATEX 2ε has always lacked a standard approach to customising the visual
design of a document. Changing the looks of the standard classes involved either:

• Creating a new version of the implementation code of the class and editing it.

• Loading one of the many packages to customise certain elements of the standard
classes.

• Loading a completely different document class, such as KOMA-Script or memoir,
that allows easy customisation.

All three of these approaches have their drawbacks and learning curves.
The idea behind this module is to cleanly separate the three layers introduced at the

beginning of this section, so that document authors who are not programmers can easily
change the design of their documents. The approach here also makes it easier for LATEX
programmers to provide their own customisations on top of a pre-existing class.

1 What is a document?
Besides the textual content of the words themselves, the source file of a document contains
mark-up elements that add structure to the document. These elements include sectional
divisions, figure/table captions, lists of various sorts, theorems/proofs, and so on. The
list will be different for every document that can be written.

Each element can be represented logically without worrying about the formatting,
with mark-up such as \section, \caption, \begin{enumerate} and so on. The output

2

of each one of these document elements will be a typeset representation of the information
marked up, and the visual arrangement and design of these elements can vary widely in
producing a variety of desired outcomes.

For each type of document element, there may be design variations that contain
the same sort of information but present it in slightly different ways. For example, the
difference between a numbered and an unnumbered section, \section and \section*,
or the difference between an itemised list or an enumerated list.

There are three distinct layers in the definition of “a document” at this level

1. semantic elements such as the ideas of sections and lists;

2. a set of design solutions for representing these elements visually;

3. specific variations for these designs that represent the elements in the document.

In the parlance of the template system, these are called object types, templates, and
instances, and they are discussed below in sections 2, 3, and 4, respectively.

By formally declaring documents to be composed of mark-up elements grouped into
objects, which are interpreted and typeset with a set of templates, each of which has one
or more instances with which to compose each and every semantic unit of the text, we
can cleanly separate the components of document construction.

2 Object types
An object type (sometimes just “object”) is an abstract idea of a document element that
takes a fixed number of arguments corresponding to the information from the document
author that it is representing. A sectioning object, for example, might take three inputs:
“title”, “short title”, and “label”.

Any given document class will define which object types are to be used in the doc-
ument, and any template of a given object type can be used to generate an instance for
the object. (Of course, different templates will produce different typeset representations,
but the underlying content will be the same.)

\prototype_declare_object:nn {⟨object type⟩} {⟨no. of args⟩}\prototype_declare_object:nn

This function defines an ⟨object type⟩ taking ⟨no. of arguments⟩, where the ⟨object type⟩
is an abstraction as discussed above. For example,

\prototype_declare_object:nn { sectioning } { 3 }

creates an object type “sectioning”, where each use of that object type will need three
arguments.

While not formally verified the semantics of all arguments are part of the object
declaration and need to be carefully documented in order to make the use of different
templates for the same object type meaningful.

3 Templates
A template is a generalised design solution for representing the information of a specified
object type. Templates that do the same thing, but in different ways, are grouped
together by their object type and given separate names. There are two important parts
to a template:

3

• the parameters it takes to vary the design it is producing;

• the implementation of the design.

\prototype_declare_template:nnnn
{⟨object type⟩} {⟨template⟩}
{⟨key definitions⟩} {⟨code⟩}

\prototype_declare_template:nnnn

A ⟨template⟩ interface is declared for a particular ⟨object type⟩. The interface itself
is defined by the ⟨key definitions⟩, which is itself a key–value list using the same in-
terface as \keys_define:nn. (The keys created here are managed l3keys in the tree
prototype/⟨object⟩/⟨template⟩). As described below, the keys should be defined such
that they can be set multiple times: first to a default value, then to a specific value for
an instance and finally to a per-use override.

The ⟨code⟩ argument of \template_declare_template:nnnn is used as the replace-
ment text for the template when it is used, either directly or as an instance. This may
therefore accept arguments #1, #2, etc. as detailed by the ⟨number of arguments⟩ taken
by the object type. The template and instance key values (see below) are assigned before
the ⟨code⟩ is inserted.

\prototype_declare_template:nnnn
{⟨object type⟩} {⟨template⟩} {⟨defaults⟩}

\prototype_declare_defaults:nnn

Sets the default values for each ⟨key⟩ in a ⟨template⟩. When a template is used, these val-
ues are applied first before those set by \prototype_use_template:nnn or \prototype_-
declare_instance:nnnn. If not default is given, the prevailing state when the template
is used will apply.

4 Instances
After a template is defined it still needs to be put to use. The parameters that it expects
need to be defined before it can be used in a document. Every time a template has
parameters given to it, an instance is created, and this is the code that ends up in the
document to perform the typesetting of whatever pieces of information are input into it.

For example, a template might say “here is a section with or without a number that
might be centred or left aligned and print its contents in a certain font of a certain size,
with a bit of a gap before and after it” whereas an instance declares “this is a section
with a number, which is centred and set in 12 pt italic with a 10 pt skip before and a 12 pt
skip after it”. Therefore, an instance is just a frozen version of a template with specific
settings as chosen by the designer.

4

\prototype_declare_instance:nnnn
{⟨object type⟩} {⟨template⟩} {⟨instance⟩} {⟨parameters⟩}

\prototype_declare_instance:nnnn

This function uses a ⟨template⟩ for an ⟨object type⟩ to create an ⟨instance⟩. The ⟨instance⟩
will be set up using the ⟨parameters⟩, which will set some of the ⟨keys⟩ in the ⟨template⟩.

As a practical example, consider an object type for document sections (which might
include chapters, parts, sections, etc.), which is called sectioning. One possible template
for this object type might be called basic, and one instance of this template would be a
numbered section. The instance declaration might read:

\prototype_declare_instance:nnnn { sectioning } { basic } { section-num }
{

numbered = true ,
justification = center ,
font = \normalsize\itshape ,
before-skip = 10pt ,
after-skip = 12pt ,

}

Of course, the key names here are entirely imaginary, but illustrate the general idea of
fixing some settings.

5 Document interface
After the instances have been chosen, document commands must be declared to use those
instances in the document. \prototype_use_instance:nn calls instances directly, and
this command should be used internally in document-level mark-up.

\prototype_use_instance:nn
{⟨object type⟩} {⟨instance⟩} ⟨arguments⟩

\prototype_use_instance:nnn
{⟨object type⟩} {⟨instance⟩} {⟨overrides⟩} ⟨arguments⟩

\prototype_use_instance:nn
\prototype_use_instance:nnn

Uses an ⟨instance⟩ of the ⟨object type⟩, which will require ⟨arguments⟩ as determined by
the number specified for the ⟨object type⟩. The ⟨instance⟩ must have been declared before
it can be used, otherwise an error is raised. The nnn version allows for local overrides of
the instance settings using the additional keyval argument.

\prototype_use_template:nnnn {⟨object type⟩} {⟨template⟩}
{⟨settings⟩} ⟨arguments⟩

\prototype_use_template:nnnn

Uses the ⟨template⟩ of the specified ⟨object type⟩, applying the ⟨settings⟩ and absorb-
ing ⟨arguments⟩ as detailed by the ⟨object type⟩ declaration. This in effect is the same
as creating an instance using \template_declare_instance:nnnn and immediately us-
ing it with \template_use_instance:nnn, but without the instance having any further
existence. It is therefore useful where a template needs to be used once.

5

6 Showing template information

\prototype_show_template_code:nn {⟨object type⟩} {⟨template⟩}
\prototype_show_template_defaults:nn {⟨object type⟩} {⟨template⟩}
\prototype_show_instance_values:nn {⟨object type⟩} {⟨instance⟩}

\prototype_show_template_code:nn
\prototype_show_template_defaults:nn
\prototype_show_instance_values:nn

Show information about a declare template or instance for debugging purposes.

7 Open questions and comparison with xtemplate
The approach here is modelled on that from xtemplate, but since it uses l3keys rather
than dedicated key handling, there are some differences. There is also a simplification in
that collections are not supported (because we now think that they provided the wrong
kind of abstraction).

The various open questions, including those linked to xtemplate concepts, are col-
lected here.

7.1 Module name
This is currently open for ideas: traditionally template has been used. This may link to
the need for both templates and instances (vide infra).

7.2 Design-level names
These are currently not provided. That allows both this code and xtemplate to be loaded
in the same document. We will likely want to decide on these names: they could for ex-
ample include Prototype or Design, or could use the existing xtemplate if a compatibility
approach can be designed.

7.3 Objects
Is this name clear? A possible alternative is ‘element’.

7.4 Efficiency and repetition of key setting
In the xtemplate implementation, keys values are stored in property lists before being
applied. This means that when creating an instance, the template defaults can be re-
placed entirely by any instance values. In contrast, the approach here simply precompiles
all of the template defaults, then appends the precompiled list from the instance. Some
variables are therefore set twice. More importantly, this means that arbitrary code could
be executed twice: authors need to be aware of this.

7.5 Key ordering
Linked to the previous idea, in xtemplate keys are set in the order they are declared in
the setup. In contrast, using l3keys they are set in the order the keys are given in the
input. Is this OK?

6

7.6 Setting defaults
The current approach requires setting the defaults separately from the key creation. That
means listing keys twice. However, it also avoids further overloading of the keyval setup.
Is this reasonable?

7.7 The need for templates and instances
In xtemplate, storing keys in a prop means that there is a real efficiency when creating
an instance. In contrast, using precompiled keys here, creating a template and creating
an instance are almost identical. Could we drop the distinction? That would then work
well if we allowed instances to be derived from others: effectively the same as instances
from templates, but with a ‘flatter’ approach.

7.8 Assignment of key values
The xtemplate approach uses \AssignTemplateKeys to specify when keys are assigned.
In contrast, here key assignment is automatic. If you look over TEX Live, the only places
that \AssignTemplateKeys is not the first thing in the code are in limited use cases
in enotez and xgalley. In both packages, that’s because they want to limit the scope of
assignment. In enotez the key setting is placed inside a group, whereas in xgalley there
is a save-and-restore approach as a group is not possible. Both of those use-cases could
be covered in other ways: it’s a question of setting up the template keys so they assign
to an intermediate variable, then assigning those as necessary to the live ones for these
cases.

The main reason for not using \AssignTemplateKeys is that the common case
doesn’t need it. We could of course stick to an explicit-assignment approach, or have
two variants or template-creation, etc., where assignment is manual in one of them.

7.9 Values from other keys
The xtemplate approach offers \KeyValue to pass the value of one key as the default for
another. That relies on the fact that key setting is ordered (vide supra). It also means
that there is some code to check for this as part of key setting: it’s non-trivial to support.
The current l3keys-based code doesn’t offer this. Instead one could use for example meta
keys. That is a different interface and might occasionally be awkward. We can add
some .store-value:n property to allow a \keys_value:nn approach, but without key
ordering it might still not work in the same way.

7.10 The nature of debugging data
Due to the differences in data storage, the xtemplate method offers a richer ability to
debug template internals than the one here. We can look at e.g. tracking all keys for a
template to make this easier. It is worth noting that much of this data is really something
that should be part of the documentation anyway. Also, it would be trivial to save the
raw defaults and do the ‘hard’ processing only if asked to show the values (i.e. using code
similar to that in xtemplate).

7.11 Collections
These are not implemented at all: we likely want a new approach to contexts.

7

8 latex-lab-prototype Implementation
8.1 File declaration

1 ⟨∗package⟩
2 \ProvidesFile{latex-lab-prototype.sty}
3 [2022-03-09 v0.1b Experimental prototype document functions]
4 ⟨/package⟩

5 ⟨∗2ekernel⟩
6 \ExplSyntaxOn

8.2 \keys_precompile:nnN
7 ⟨@@=keys⟩

This may not yet be available in expl3 so we ensure it is set up here: all temporary.
We just redefine those internals that need it.

8 \tl_if_exist:NF \l__keys_precompile_tl
9 {

10 \bool_new:N \l__keys_precompile_bool
11 \tl_new:N \l__keys_precompile_tl
12 }
13 \cs_gset_protected:Npn __keys_precompile:n #1
14 {
15 \bool_if:NTF \l__keys_precompile_bool
16 { \tl_put_right:Nn \l__keys_precompile_tl }
17 { \use:n }
18 {#1}
19 }
20 \cs_gset_protected:Npn __keys_bool_set:Nnnn #1#2#3#4
21 {
22 \bool_if_exist:NF #1 { \bool_new:N #1 }
23 __keys_choice_make:
24 __keys_cmd_set:nx { \l_keys_path_str / true }
25 { \exp_not:c { bool_ #2 set_ #3 :N } \exp_not:N #1 }
26 __keys_cmd_set:nx { \l_keys_path_str / false }
27 { \exp_not:c { bool_ #2 set_ #4 :N } \exp_not:N #1 }
28 __keys_cmd_set_direct:nn { \l_keys_path_str / unknown }
29 {
30 \msg_error:nnx { keys } { boolean-values-only }
31 \l_keys_key_str
32 }
33 __keys_default_set:n { true }
34 }
35 \cs_gset_protected:Npn __keys_choice_make_aux:N #1
36 {
37 \cs_set_nopar:cpn { \c__keys_type_root_str \l_keys_path_str }
38 { choice }
39 __keys_cmd_set_direct:nn \l_keys_path_str { #1 {##1} }
40 __keys_cmd_set_direct:nn { \l_keys_path_str / unknown }
41 {
42 \msg_error:nnxx { keys } { choice-unknown }
43 \l_keys_path_str {##1}
44 }
45 }

8

46 \cs_gset_protected:Npn __keys_cmd_set:nn #1#2
47 { __keys_cmd_set_direct:nn {#1} { __keys_precompile:n {#2} } }
48 \cs_gset_protected:Npn __keys_cmd_set_direct:nn #1#2
49 { \cs_set_protected:cpn { \c__keys_code_root_str #1 } ##1 {#2} }
50 \cs_gset_protected:Npn __keys_cs_set:NNpn #1#2#3#
51 {
52 \cs_set_protected:cpx { \c__keys_code_root_str \l_keys_path_str } ##1
53 {
54 __keys_precompile:n
55 { #1 \exp_not:N #2 \exp_not:n {#3} {##1} }
56 }
57 \use_none:n
58 }
59 \cs_gset_protected:Npn __keys_meta_make:n #1
60 {
61 \exp_args:NVo __keys_cmd_set_direct:nn \l_keys_path_str
62 {
63 \exp_after:wN \keys_set:nn \exp_after:wN
64 { \l__keys_module_str } {#1}
65 }
66 }
67 \cs_gset_protected:Npn __keys_meta_make:nn #1#2
68 {
69 \exp_args:NV __keys_cmd_set_direct:nn
70 \l_keys_path_str { \keys_set:nn {#1} {#2} }
71 }
72 \cs_gset_protected:Npn \keys_precompile:nnN #1#2#3
73 {
74 \bool_set_true:N \l__keys_precompile_bool
75 \tl_clear:N \l__keys_precompile_tl
76 \keys_set:nn {#1} {#2}
77 \bool_set_false:N \l__keys_precompile_bool
78 \tl_set_eq:NN #3 \l__keys_precompile_tl
79 }
80 \cs_gset_protected:Npn __keys_show:Nnn #1#2#3
81 {
82 #1 { keys } { show-key }
83 { __keys_trim_spaces:n { #2 / #3 } }
84 {
85 \keys_if_exist:nnT {#2} {#3}
86 {
87 \exp_args:Nnf \msg_show_item_unbraced:nn { code }
88 {
89 \exp_args:Ne __keys_show:n
90 {
91 \exp_args:Nc \cs_replacement_spec:N
92 {
93 \c__keys_code_root_str
94 __keys_trim_spaces:n { #2 / #3 }
95 }
96 }
97 }
98 }
99 }

9

100 { } { }
101 }
102 \cs_gset:Npx __keys_show:n #1
103 {
104 \exp_not:N __keys_show:w
105 #1
106 \tl_to_str:n { __keys_precompile:n }
107 #1
108 \tl_to_str:n { __keys_precompile:n }
109 \exp_not:N \s__keys_stop
110 }
111 \use:x
112 {
113 \cs_gset:Npn \exp_not:N __keys_show:w
114 ##1 \tl_to_str:n { __keys_precompile:n }
115 ##2 \tl_to_str:n { __keys_precompile:n }
116 ##3 \exp_not:N \s__keys_stop
117 }
118 {
119 \tl_if_blank:nTF {#2}
120 {#1}
121 { __keys_show:Nw #2 \s__keys_stop }
122 }
123 \use:x
124 {
125 \cs_gset:Npn \exp_not:N __keys_show:Nw ##1##2
126 \c_right_brace_str \exp_not:N \s__keys_stop
127 }
128 {#2}

8.3 Setup
129 ⟨@@=prototype⟩

\l__prototype_tmp_tl

130 \tl_new:N \l__prototype_tmp_tl

(End definition for \l__prototype_tmp_tl.)

8.4 Data structures
\l__prototype_object_prop

131 \prop_new:N \l__prototype_object_prop

(End definition for \l__prototype_object_prop.)

8.5 Creating objects
\prototype_declare_object:nn

__prototype_declare_object:nn
Although the object type is the “top level” of the template system, it is actually very easy
to implement. All that happens is that the number of arguments required is recorded,
indexed by the name of the object type.
132 \cs_new_protected:Npn \prototype_declare_object:nn #1#2
133 {
134 \exp_args:Nx __prototype_declare_object:nn { \int_eval:n {#2} } {#1}
135 }

10

136 \cs_new_protected:Npn __prototype_declare_object:nn #1#2
137 {
138 \int_compare:nTF { 0 <= #1 <= 9 }
139 {
140 \msg_info:nnnn { prototype } { declare-object-type } {#2} {#1}
141 \prop_put:Nnn \l__prototype_object_prop {#2} {#1}
142 }
143 { \msg_error:nnxx { prototype } { bad-number-of-arguments } {#2} {#1} }
144 }

(End definition for \prototype_declare_object:nn and __prototype_declare_object:nn. This func-
tion is documented on page 3.)

8.6 Templates and instances
\l__prototype_assignments_tl Used to insert the set keys.

145 \tl_new:N \l__prototype_assignments_tl

(End definition for \l__prototype_assignments_tl.)

\prototype_declare_template:nnnn
\prototype_declare_defaults:nnn

Creating a template means defining the keys, storing the defaults and creating the func-
tion. The defaults are done separately from the other parts as that fits the l3keys pattern
but also makes it easy to alter that aspect without changing the core implementation.
146 \cs_new_protected:Npn \prototype_declare_template:nnnn #1#2#3#4
147 {
148 \prop_get:NnNTF \l__prototype_object_prop {#1} \l__prototype_tmp_tl
149 {
150 \keys_define:nn { prototype / #1 / #2 } {#3}
151 \tl_clear_new:c { l__prototype_defaults_ #1 _ #2 _tl }
152 \cs_generate_from_arg_count:cNnn
153 { __prototype_template_ #1 _ #2 :w }
154 \cs_set_protected:Npn
155 { \l__prototype_tmp_tl }
156 {
157 \tl_use:N \l__prototype_assignments_tl
158 #4
159 }
160 }
161 { \msg_error:nnn { prototype } { unknown-object-type } {#1} }
162 }
163 \cs_new_protected:Npn \prototype_declare_defaults:nnn #1#2#3
164 {
165 \cs_if_exist:cTF { __prototype_template_ #1 _ #2 :w }
166 { \tl_set:cn { l__prototype_defaults_ #1 _ #2 _tl } {#3} }
167 { \msg_error:nnn { prototype } { unknown-template } {#1} {#2} }
168 }

(End definition for \prototype_declare_template:nnnn and \prototype_declare_defaults:nnn. These
functions are documented on page 4.)

169 \cs_generate_variant:Nn \keys_precompile:nnN { v , nv }

\prototype_use_template:nnn
\prototype_declare_instance:nnnn

__prototype_declare_aux:nnnn

Using a template and creating an instance are the same thing other than the final step:
using the template or storing the key settings. We do not attempt to maximise efficiency

11

in setting, rather we have a clear approach in which the final assignments may have
multiple entries.
170 \cs_new_protected:Npn \prototype_use_template:nnn #1#2#3
171 {
172 __prototype_declare_aux:nnnn {#1} {#2} {#3}
173 { \use:c { __prototype_template_ #1 _ #2 :w } }
174 }
175 \cs_new_protected:Npn \prototype_declare_instance:nnnn #1#2#3#4
176 {
177 __prototype_declare_aux:nnnn {#1} {#2} {#4}
178 {
179 \tl_clear_new:c { l__prototype_instance_ #1 _ #3 _pars_tl }
180 \tl_set_eq:cN { l__prototype_instance_ #1 _ #3 _pars_tl }
181 \l__prototype_assignments_tl
182 \tl_clear_new:c { l__prototype_instance_ #1 _ #3 _template_tl }
183 \tl_set:cn { l__prototype_instance_ #1 _ #3 _template_tl } {#2}
184 }
185 }
186 \cs_new_protected:Npn __prototype_declare_aux:nnnn #1#2#3#4
187 {
188 \cs_if_exist:cTF { __prototype_template_ #1 _ #2 :w }
189 {
190 \keys_precompile:nvN
191 { prototype / #1 / #2 }
192 { l__prototype_defaults_ #1 _ #2 _tl }
193 \l__prototype_assignments_tl
194 \keys_precompile:nnN { prototype / #1 / #2 } {#3} \l__prototype_tmp_tl
195 \tl_put_right:NV \l__prototype_assignments_tl \l__prototype_tmp_tl
196 #4
197 }
198 { \msg_error:nnn { prototype } { unknown-template } {#1} {#2} }
199 }

(End definition for \prototype_use_template:nnn , \prototype_declare_instance:nnnn , and __-
prototype_declare_aux:nnnn. These functions are documented on page ??.)

\prototype_use_instance:nn
\prototype_use_instance:nnn

Recover the values and insert the code.
200 \cs_new_protected:Npn \prototype_use_instance:nn #1#2
201 { \prototype_use_instance:nnn {#1} {#2} { } }
202 \cs_new_protected:Npn \prototype_use_instance:nnn #1#2#3
203 {
204 \tl_if_exist:cTF { l__prototype_instance_ #1 _ #2 _template_tl }
205 {
206 \tl_set_eq:Nc \l__prototype_assignments_tl
207 { l__prototype_instance_ #1 _ #2 _pars_tl }
208 \tl_if_blank:nF {#3}
209 {
210 \keys_precompile:vnN
211 {
212 prototype / #1 /
213 \tl_use:c { l__prototype_instance_ #1 _ #2 _template_tl }
214 }
215 {#3}
216 \l__prototype_tmp_tl

12

217 \tl_put_right:NV \l__prototype_assignments_tl
218 \l__prototype_tmp_tl
219 }
220 \use:c
221 {
222 __prototype_template_ #1 _
223 \tl_use:c { l__prototype_instance_ #1 _ #2 _template_tl }
224 :w
225 }
226 }
227 { \msg_error:nnn { prototype } { unknown-instance } {#1} {#2} }
228 }

(End definition for \prototype_use_instance:nn and \prototype_use_instance:nnn. These functions
are documented on page 5.)

8.7 Showing information
\prototype_show_template_code:nn

\prototype_show_template_defaults:nn
\prototype_show_instance_values:nn

229 \cs_new_protected:Npn \prototype_show_template_code:nn #1#2
230 {
231 \prop_if_in:NnTF \l__prototype_object_prop {#1}
232 { \cs_show:c { __prototype_template_ #1 _ #2 :w } }
233 { \msg_error:nnn { prototype } { unknown-object-type } {#1} }
234 }
235 \cs_new_protected:Npn \prototype_show_template_defaults:nn #1#2
236 {
237 \cs_if_exist:cTF { __prototype_template_ #1 _ #2 :w }
238 { \tl_show:c { l__prototype_defaults_ #1 _ #2 _tl } }
239 { \msg_error:nnn { prototype } { unknown-template } {#1} {#2} }
240 }
241 \cs_new_protected:Npn \prototype_show_instance_values:nn #1#2
242 {
243 \tl_if_exist:cTF { l__prototype_instance_ #1 _ #2 _template_tl }
244 { \tl_show:c { l__prototype_instance_ #1 _ #2 _pars_tl } }
245 { \msg_error:nnn { prototype } { unknown-instance } {#1} {#2} }
246 }

(End definition for \prototype_show_template_code:nn , \prototype_show_template_defaults:nn , and
\prototype_show_instance_values:nn. These functions are documented on page 6.)

8.8 Messages
247 \msg_new:nnnn { prototype } { bad-number-of-arguments }
248 { Bad~number~of~arguments~for~object~type~’#1’. }
249 {
250 An~object~may~accept~between~0~and~9~arguments.\\
251 You~asked~to~use~#2~arguments:~this~is~not~supported.
252 }
253 \msg_new:nnnn { prototype } { unknown-instance }
254 { The~instance~’#2’~of~type~’#1’~is~unknown. }
255 {
256 You~have~asked~to~use~an~instance~’#2’,~
257 but~this~has~not~been~created.

13

258 }
259 \msg_new:nnnn { prototype } { unknown-object-type }
260 { The~object~type~’#1’~is~unknown. }
261 { An~object~type~needs~to~be~declared~prior~to~using~it. }
262 \msg_new:nnnn { prototype } { unknown-template }
263 { The~template~’#2’~of~type~’#1’~is~unknown. }
264 {
265 No~interface~has~been~declared~for~a~template~
266 ’#2’~of~object~type~’#1’.
267 }

268 \msg_new:nnn { prototype } { declare-object-type }
269 { Declaring~object~type~’#1’~taking~#2~argument(s). }

270 \ExplSyntaxOff

271 ⟨/2ekernel⟩

14

	Contents
	1 What is a document?
	2 Object types
	3 Templates
	4 Instances
	5 Document interface
	6 Showing template information
	7 Open questions and comparison with xtemplate
	7.1 Module name
	7.2 Design-level names
	7.3 Objects
	7.4 Efficiency and repetition of key setting
	7.5 Key ordering
	7.6 Setting defaults
	7.7 The need for templates and instances
	7.8 Assignment of key values
	7.9 Values from other keys
	7.10 The nature of debugging data
	7.11 Collections

	8 latex-lab-prototype Implementation
	8.1 File declaration
	8.2 \keys_precompile:nnN
	8.3 Setup
	8.4 Data structures
	8.5 Creating objects
	8.6 Templates and instances
	8.7 Showing information
	8.8 Messages

