
The counterz package∗

Christopher McClain†

Released 2023/05/19

Abstract

The counterz package provides additional tools for manipulating counters.
The package facilitates the use of stealth prefixes for counter names in order
to help distinguish between counters from multiple input files. The package
also provides a means to generate random counters and save such counter
values for future typesetting.

Contents

1 Introduction 1
1.1 About . . . . . . . . . . . 1
1.2 License . . . . . . . . . . . 2
1.3 Installation . . . . . . . . 2

2 User Guide 2
2.1 Counter Prefixes . . . . . 2
2.2 Manipulating Counters . . 3
2.3 Conditional Statements . 3

2.4 Displaying Counters . . . 4
2.5 Random Counters . . . . 7

3 Implementation 9
3.1 Counter Prefixes . . . . . 9
3.2 Manipulating Counters . . 10
3.3 Conditional Statements . 10
3.4 Displaying Counters . . . 11
3.5 Random Counters . . . . 13

4 Index 15

1 Introduction

1.1 About

This project emerged from the author’s frequent use of LATEX counters as tradi-
tional integer type variables when generating mathematics documents with ran-
dom elements. While pdfTEX primitives such as \pdfuniformdeviate may be
used to generate random integers, these integer values will be randomized with
every typesetting. The counterz package provides a way to save the values of
counters. Another .tex file is created so that, if desired, it can be inputted upon a
subsequent typesetting in order to initialize the counters with the previously gen-
erated values. A boolean variable and accompanying commands allow an author
to toggle between reusing and rerandomizing counters.

∗This file describes version v1.0.0, last revised 2023/05/19.
†E-mail: christopher.mcclain@mail.wvu.edu

1



One of the consequences of preloading counter values in large projects with mul-
tiple source files is that one must take care to use distinct counter names through-
out all of the different files. If the file Main.tex inputs File1.tex and File2.tex, and
both input files define the counter mycounter, then this could result in typesetting
errors. One way to address this problem is to prefix every counter name with the
file name or some other marker so that the counter names will actually be distinct.
For example, File1mycounter is distinct from File2mycounter. Very long counter
names, however, can make code difficult to read and hinder consistent application
of this practice. The counterz package provides a way to stealthily define and
recall such prefixes so that the shorter non-prefixed names can be used for the
manipulation, recall, and typesetting of counters.

1.2 License

Copyright c© 2023 Christopher McClain. This software may be copied, distributed,
and/or modified under the terms of the LaTeX Project Public License, either
version 1.3c of this license or any later version.

1.3 Installation

This package may be installed by copying the file counterz.sty to your local texmf
directory. The code and documentation may also be generated from counterz.dtx.
Typesetting the documentation requires the package hypdoc which is included in
TEX distributions and at The Comprehensive TeX Archive Network.

2 User Guide

To use this package, include the following line in the preamble of your document:

\usepackage{counterz}

The package counterz loads the packages etoolbox and makecmds, both of which are
included in TEX distributions and at The Comprehensive TeX Archive Network.

2.1 Counter Prefixes

Counter prefixes are stored in an internal macro whose default value is an empty\setcounterprefix

\clearcounterprefix string. The command \setcounterprefix{〈prefix 〉} is used to change this value.
For example, to change the prefix to PurpleMonkey, use

\setcounterprefix{PurpleMonkey}

and to change it from PurpleMonkey to Dishwasher, use

\setcounterprefix{Dishwasher}

The command \clearcounterprefix returns the prefix to its empty default:

\clearcounterprefix

2

https://www.latex-project.org/lppl/
http://www.ctan.org
http://www.ctan.org


2.2 Manipulating Counters

The command \xnewcounter{〈countername〉} creates a counter with a prefixed\xnewcounter

\xprovidecounter

\xsetcounter

\xaddtocounter

\xvalue

name. The command \xsetcounter{〈countername〉}{〈integer〉} assigns the spec-
ified value to the counter with the prefixed name. For example, suppose that the
file BoringFile1.tex contains the following:

\xnewcounter{bestcounterever}

\xsetcounter{bestcounterever}{100}

and suppose that the file BoringFile2.tex contains the following:

\xnewcounter{bestcounterever}

\xsetcounter{bestcounterever}{-29}

and, finally, suppose that the file Main.tex contains (in part) the following:

\setcounterprefix{PurpleMonkey}

\input{BoringFile1}

\setcounterprefix{Dishwasher}

\input{BoringFile2}

Then typesetting Main.tex will create a counter PurpleMonkeybestcounterever with
the value 100 and a counter Dishwasherbestcounterever with the value −29. By
using commands \xnewcounter and \xsetcounter instead of \newcounter and
\setcounter, BoringFile1.tex and BoringFile2.tex may be written independently
without considering any counter name conflicts. The distinction between the coun-
ters is determined by the prefixes defined in the file Main.tex. By changing prefixes,
Main.tex can even input the same file multiple times without conflict.

The commands \xprovidecounter, \xaddtocounter, and \xvalue are like-
wise prefix versions of commands \providecounter, \addtocounter, and \value,
respectively. When the prefix is empty, the commands expand like their standard
counterparts. (Note: \providecounter defines a counter if it has not already
been defined. See the documentation for the package makecmds for details.)

2.3 Conditional Statements

The command \ifctrequal{〈counter1 〉}{〈counter2 〉}{〈foo〉}{〈bar〉} uses the\ifctrequal

\ifctrless

\ifctrmore

command \xvalue to compare the values of the (prefixed) counters and then ex-
ecutes 〈foo〉 if the values are equal and otherwise executes 〈bar〉. The commands
\ifctrless and \ifctrmore work analogously, based on whether the value of
prefixed 〈counter1 〉 is less than that of of prefixed 〈counter2 〉 or more than that
of prefixed 〈counter2 〉, respectively. Consider the example code

\setcounterprefix{TigerTiger}

\xnewcounter{Small}

\xsetcounter{Small}{7}

\xnewcounter{Large}

\xsetcounter{Large}{11}

\ifctrequal{Small}{Large}{January}{February}

\ifctrless{Small}{Large}{March}{April}

\ifctrmore{Small}{Large}{May}{June}

3



which produces the output

February March June

because the value of the counter TigerTigerSmall is 7 which is less than 11, the
value of the counter TigerTigerLarge.

The command \ifctrzero{〈counter〉}{〈foo〉}{〈bar〉} executes 〈foo〉 if the\ifctrzero

\ifctrneg

\ifctrpos

value of the (prefixed) counter is zero and otherwise executes 〈bar〉. The com-
mands \ifctrneg and \ifctrpos work analogously based on whether the value
is negative or positive, respectively. The example code

\setcounterprefix{TigerTiger}

\xprovidecounter{Small}

\xsetcounter{Small}{7}

\ifctrzero{Small}{January}{February}

\ifctrneg{Small}{March}{April}

\ifctrpos{Small}{May}{June}

produces the output

February April May

because the value of the counter TigerTigerSmall is 7 which is positive (and thus
nonzero, as well).

2.4 Displaying Counters

The command \xarabic{〈counter〉} is simply a prefix version of the standard\xarabic

\xroman

\xRoman

\xalph

\xAlph

\xfnsymbol

display command \arabic. The commands \xroman, \xRoman, \xalph, \xAlph,
and \xfnsymbol are likewise prefix versions of the standard display commands
\roman, \Roman, \alph, \Alph, and \fnsymbol, inheriting the restrictions of their
parent commands. Note that the code

\setcounterprefix{Sneaky}

\xprovidecounter{Pete}

\xsetcounter{Pete}{42}

\arabic{Pete}

produces an error because the counter Pete is not defined, but the code

\setcounterprefix{Sneaky}

\xprovidecounter{Pete}

\xsetcounter{Pete}{42}

\xarabic{Pete}

produces the output

42

4



which is the value of the counter SneakyPete. The code

\setcounterprefix{Sneaky}

\xprovidecounter{Pete}

\xsetcounter{Pete}{42}

\clearcounterprefix

\xarabic{Pete}

also generates error because the final line is trying to use the undefined counter
Pete after the prefix was returned to its default value.

In addition to prefix versions of the standard display commands, the pack-
age counterz defines some variants of \xarabic that are useful in the display of
mathematical expressions. For example, consider the following code:

\xprovidecounter{a}

\xsetcounter{a}{5}

\xprovidecounter{b}

\xsetcounter{b}{0}

\xprovidecounter{c}

\xsetcounter{c}{-7}

$\xarabic{a}+\xarabic{b}+\xarabic{c}$

which produces

5 + 0 +−7

Using \arabicx causes the expression to contain the consecutive pair +−. The
command \xsigned{〈counter〉} is like \xarabic except that nonnegative values\xsigned

are preceded by a plus sign “+”. The code

$\xarabic{a}\xsigned{b}\xsigned{c}$

produces

5 + 0− 7

If we wish to suppress the 0, we can instead use the command \xsignednz{〈counter〉}\xsignednz

\xarabicnz which is a nonzero version of \xsigned and, if desired or necessary, the command
\xarabicnz{〈counter〉} which is a nonzero version of \xarabic. The code

$\xarabicnz{a}\xsignednz{b}\xsignednz{c}$

produces

5− 7

The package also contains variants of these commands for displaying the nega-\xnegof

\xnegofnz

\xnegsigned

\xnegsignednz

tives of counters, as demonstrated by the following code:

5



\xprovidecounter{d}

\xsetcounter{d}{-2}

$\xarabic{a}\xsigned{b}\xsigned{c}=\xarabic{d}$\\

$\xnegof{d}=\xnegof{a}\xnegsigned{b}\xnegsigned{c}$\\

$\xnegofnz{d}=\xnegofnz{a}\xnegsignednz{b}\xnegsignednz{c}$

which produces

5 + 0− 7 = −2
2 = −5− 0 + 7
2 = −5 + 7

The preceding commands for displaying values related to counters were created
by using some other commands that we make available in case they prove useful.
The command \xabsof{〈counter〉} prints the absolute value of 〈counter〉. The\xabsof

\xsignof

\xnegsignof

command \xsignof{〈counter〉} prints a minus sign “-” if 〈counter〉 is negative
and otherwise prints a plus sign “+”. (Note that the latter case includes the value
zero.) The command \xnegsignof{〈counter〉} prints a plus sign “+” if 〈counter〉
is negative and otherwise prints a minus sign “-”. (Note that the former case
includes the value zero.)

Additional variants of these commands suppress certain output, as is con-
ventional when using integers as coefficients in algebraic expressions. The com-\xabsofcoef

\xsignofcoef

\xnegsignofcoef

mand \xabsofcoef{〈counter〉} prints the absolute value of 〈counter〉 except that
it suppresses the values of 1 and 0. The command \xsignofcoef{〈counter〉}
prints the sign of 〈counter〉 if the value of 〈counter〉 is nonzero. The command
\xnegsignofcoef{〈counter〉} prints the opposite sign of 〈counter〉 if the value of
〈counter〉 is nonzero. These commands are used to build versions of \xarabic

and \xsigned specific to typesetting coefficients, as we now illustrate.
Consider the following code

\xprovidecounter{a0}

\xsetcounter{a0}{-10}

\xprovidecounter{a1}

\xsetcounter{a1}{1}

\xprovidecounter{a2}

\xsetcounter{a2}{-5}

\xprovidecounter{a3}

\xsetcounter{a3}{-1}

\xprovidecounter{a4}

\xsetcounter{a4}{0}

\xprovidecounter{a5}

\xsetcounter{a5}{11}

$\xarabic{a5}x^5 + \xarabic{a4}x^4 + \xarabic{a3}x^3 + \xarabic{a2}x^2

+ \xarabic{a1}x + \xarabic{a0} = 42$

and its output

11x5 + 0x4 +−1x3 +−5x2 + 1x +−10 = 42

6



We seek a better way to handle the coefficients, especially 1 and −1. The command\xcoef

\xsignedcoef \xcoef{〈counter〉} prints the value of 〈counter〉 except that it suppresses the val-
ues of 1, 0, and -1, printing a minus sign “-” in the latter case. The command
\xsignedcoef{〈counter〉} is like \xcoef except that positive values are preceded
by a plus sign “+”. We use these to write the code

$\xarabic{a5}x^5 + \xarabic{a4}x^4 + \xarabic{a3}x^3 + \xarabic{a2}x^2

+ \xarabic{a1}x + \xarabic{a0} = 42$\\

$\xcoef{a5}\ifctrzero{a5}{}{x^5} \xsignedcoef{a4}\ifctrzero{a4}{}{x^4}

\xsignedcoef{a3}\ifctrzero{a3}{}{x^3} \xsignedcoef{a2}\ifctrzero{a2}{}{x^2}

\xsignedcoef{a1}\ifctrzero{a1}{}{x} \xsignednz{a0} = 42$

whose output is

11x5 + 0x4 +−1x3 +−5x2 + 1x +−10 = 42
11x5 − x3 − 5x2 + x− 10 = 42

The command \xnegcoef{〈counter〉} prints the negative of the value of 〈counter〉\xnegcoef

\xnegsignedcoef except that it suppresses the values of 1, 0, and -1, printing a “-” in the latter
case. The command \xnegsignedcoef{〈counter〉} is like \xnegcoef except that
positive values are preceded by a plus sign “+”. We use these to write the code

$\xcoef{a5}\ifctrzero{a5}{}{x^5} \xsignedcoef{a4}\ifctrzero{a4}{}{x^4}

\xsignedcoef{a3}\ifctrzero{a3}{}{x^3} \xsignedcoef{a2}\ifctrzero{a2}{}{x^2}

\xsignedcoef{a1}\ifctrzero{a1}{}{x} \xsignednz{a0} = 42$\\

$\xcoef{a5}\ifctrzero{a5}{}{x^5} \xsignedcoef{a4}\ifctrzero{a4}{}{x^4}

\xsignedcoef{a2}\ifctrzero{a2}{}{x^2} \xsignednz{a0}

= \xnegcoef{a3}\ifctrzero{a3}{}{x^3} \xnegsignedcoef{a1}\ifctrzero{a1}{}{x}

+42$

whose output is

11x5 − x3 − 5x2 + x− 10 = 42
11x5 − 5x2 − 10 = x3 − x + 42

As the reader has probably already observed in the code above, these display
commands appear to be less efficient than a manual adjustment of signs and num-
bers. For fixed, known values of counters, this assessment is correct. The real
utility of these commands is not apparent until they are combined with randomly
generated counter values.

2.5 Random Counters

We first define random versions of \xsetcounter and \xaddtocounter. The\xrandsetcounter

\xrandaddtocounter command \xrandsetcounter{〈counter〉}{〈min〉}{〈max 〉} assigns to the prefixed
〈counter〉 a random integer value between 〈min〉 and 〈max 〉. Analogously, the
command \xrandaddtocounter{〈counter〉}{〈min〉}{〈max 〉} adds to the prefixed
〈counter〉 a random integer value between 〈min〉 and 〈max 〉. The following code

7



may be used to produce an expression in the form ax + b, where a and b are
random integers between −10 and 10:

\xprovidecounter{a}

\xprovidecounter{b}

\xrandsetcounter{a}{-10}{10}

\xrandsetcounter{b}{-10}{10}

$\xcoef{a}\ifctrzero{a}{\xarabic{b}}{x \xsignednz{b}}$

Organized in the following table are sixty instances of output that are randomly
generated by the typesetting of this document:

−7x− 3 6x 6x− 4 −x + 5 7 4x− 6
2x− 10 8x + 2 −6x− 7 2x + 5 −2x + 1 −8x
9x + 8 9x + 7 0 −3x + 1 −2x + 4 x− 2
−4x− 4 x + 6 −8x− 10 3x− 6 6x + 8 x− 9
x− 10 −9x− 2 7x 3x + 3 9x− 6 4x + 1
−6x− 3 −3x− 1 9x + 3 2x + 2 −8x− 8 −4x + 9

7x− 7 −8x + 2 2x− 6 3x + 1 −2x + 3 8x− 5
−8x− 8 −2x− 9 9x− 10 3x− 10 8x + 7 −4x− 4
−3x− 1 3x + 7 −10x + 10 8x− 2 −x− 4 −10x− 4
−2x− 10 4x + 7 6x− 5 −9x− 4 8x + 3 −4x− 6

If our document contains randomly generated counters, but we wish to type-
set the document again without changing those values, then we need a way to
save those values. The counterz package offers the following solution: a file
〈jobname〉.counters.tex may be created during the typesetting process to store the
necessary information. For example, if the document is named Yellowdog.tex, then
the previously generated counters and their assigned values will be stored the file
Yellowdog.counters.tex. The command \opencountersfile creates and opens the\opencountersfile

write stream to this file. The author only has to include this command once, prior
to any commands used to save the counter values.

The command \xsavecounter{〈counter〉} “saves” the value of counter by\xsavecounter

writing to the file 〈jobname〉.counters.tex the relevant \providecounter and
\setcounter commands. The commands written to the file explicitly include
the necessary counter prefixes, and consequently an author can, if necessary, man-
ually find in the file the specific assignment for any counter. The counters file may
then be inputted near the beginning of a subsequent typesetting to preassign all
of the values.

In order to effectively manage the options of randomizing counter values or\randomizectr

\norandomizectr

\ifrandomizectr

reusing counter values, the counterz package offers the commands \randomizectr
and \norandomizectr that toggle an internal boolean variable, and a conditional
\ifrandomizectr{〈foo〉}{〈bar〉} that executes 〈foo〉 when the boolean is true and
otherwise executes 〈bar〉. For example, a document named Yellowdog.tex might
include the code

\ifrandomizectr{}{input{Yellowdog.counters}}

8



to determine whether to preload previously stored counter values.
The command \xrandprovidecounter{〈counter〉}{〈min〉}{〈max 〉} combines\xrandprovidecounter

\xrandprovidecounternz the four commands \xprovidecounter, \ifrandomizectr, \xrandsetcounter,
and \xsavecounter to define a command that creates 〈counter〉 if it has not al-
ready been defined and, if the document is randomized, assigns to 〈counter〉 a
random integer value between 〈min〉 and 〈max 〉 and saves this value to the coun-
ters file. The command \xrandprovidecounternz is like \xrandprovidecounter

except that the generated value is nonzero. Suppose that Neverending.tex contains
the code

\randomizectr

\ifrandomizectr{\opencountersfile}{}

\setcounterprefix{Southern}

\xrandprovidecounternz{Oracle}{-10}{10}

\xcoef{Oracle}x+42

After typesetting once, the resulting document might display an expression such
as −9x + 42 and print to Neverending.counters.tex the line

\providecounter {SouthernOracle} \setcounter {SouthernOracle}{-9}

After typesetting a second time, the resulting document might display 4x+42 and
print to Neverending.counters.tex the line

\providecounter {SouthernOracle} \setcounter {SouthernOracle}{4}

If, however, the command \randomizectr is replaced by \norandomizectr, then
a third typesetting will leave both the displayed text and the counters file un-
changed. (Tip: Users who are concerned about accidental randomization might
create a terminal prompt with the commands \typeout and \typein to input the
randomization preference, as an added layer of security.)

3 Implementation

The counterz package loads the two packages etoolbox and makecmds for the use
of conditional tests (boolean and numerical) and the macro \providecounter.

1 〈*package〉
2 \ProvidesPackage{counterz}[2023/05/19 v1.0.0 Additional tools for counters]

3 \RequirePackage{etoolbox,makecmds}

3.1 Counter Prefixes

\@counterz@counterprefix

\setcounterprefix

\clearcounterprefix

The default expansion of \@counterz@counterprefix is null, but it can be
changed with the commands \setcounterprefix and \clearcounterprefix.

4 \newcommand{\@counterz@counterprefix}{}

5 \newcommand{\setcounterprefix}[1]{\renewcommand{\@counterz@counterprefix}{#1}}

6 \newcommand{\clearcounterprefix}{\setcounterprefix{}}

9



3.2 Manipulating Counters

\xnewcounter

\xprovidecounter

\xsetcounter

\xaddtocounter

\xvalue

These commands are prefix versions of commands \newcounter, \providecounter,
\setcounter, \addtocounter, and \value, respectively. The creation, modifica-
tion, or use of the counters is carried out on a prefixed version of the specified
counter name. When \@counterz@counterprefix is null, the commands expand
like their standard counterparts.

7 \newcommand{\xnewcounter}[1]{\newcounter{\@counterz@counterprefix #1}}

8 \newcommand{\xprovidecounter}[1]{\providecounter{\@counterz@counterprefix #1}}

9 \newcommand{\xsetcounter}[2]{\setcounter{\@counterz@counterprefix #1}{#2}}

10 \newcommand{\xaddtocounter}[2]{\addtocounter{\@counterz@counterprefix #1}{#2}}

11 \newcommand{\xvalue}[1]{\value{\@counterz@counterprefix #1}}

3.3 Conditional Statements

The following commands provide if-then-else constructs analogous to those in the
package etoolbox. The notable difference is that the arguments are counter names.
The command \xvalue is used to determine the values of the counters, so that
the stored prefix is applied to the specified counter names before execution.

\ifctrequal \ifctrequal{〈counter1 〉}{〈counter2 〉}{〈foo〉}{〈bar〉} executes 〈foo〉 if the value
of 〈counter1 〉 is equal to the value of 〈counter2 〉 and otherwise executes 〈bar〉.
12 \newcommand{\ifctrequal}[4]{\ifnumequal{\xvalue{#1}}{\xvalue{#2}}{#3}{#4}}

\ifctrless \ifctrless{〈counter1 〉}{〈counter2 〉}{〈foo〉}{〈bar〉} executes 〈foo〉 if the value of
〈counter1 〉 is less than the value of 〈counter2 〉 and otherwise executes 〈bar〉.
13 \newcommand{\ifctrless}[4]{\ifnumless{\xvalue{#1}}{\xvalue{#2}}{#3}{#4}}

\ifctrmore \ifctrmore{〈counter1 〉}{〈counter2 〉}{〈foo〉}{〈bar〉} executes 〈foo〉 if the value of
〈counter1 〉 is more than the value of 〈counter2 〉 and otherwise executes 〈bar〉.
14 \newcommand{\ifctrmore}[4]{\ifnumless{\xvalue{#2}}{\xvalue{#1}}{#3}{#4}}

\ifctrzero \ifctrzero{〈counter〉}{〈foo〉}{〈bar〉} executes 〈foo〉 if the value of 〈counter〉 is
zero and otherwise executes 〈bar〉.
15 \newcommand{\ifctrzero}[3]{\ifnumequal{\xvalue{#1}}{0}{#2}{#3}}

\ifctrneg \ifctrneg{〈counter〉}{〈foo〉}{〈bar〉} executes 〈foo〉 if the value of 〈counter〉 is
negative and otherwise executes 〈bar〉.
16 \newcommand{\ifctrneg}[3]{\ifnumless{\xvalue{#1}}{0}{#2}{#3}}

\ifctrpos \ifctrpos{〈counter〉}{〈foo〉}{〈bar〉} executes 〈foo〉 if the value of 〈counter〉 is
positive and otherwise executes 〈bar〉.
17 \newcommand{\ifctrpos}[3]{\ifnumless{\xvalue{#1}}{1}{#3}{#2}}

10



3.4 Displaying Counters

\xarabic

\xroman

\xRoman

\xalph

\xAlph

\xfnsymbol

These commands include prefix versions of the standard display commands.

18 \newcommand{\xarabic}[1]{\arabic{\@counterz@counterprefix #1}}

19 \newcommand{\xroman}[1]{\roman{\@counterz@counterprefix #1}}

20 \newcommand{\xRoman}[1]{\Roman{\@counterz@counterprefix #1}}

21 \newcommand{\xalph}[1]{\alph{\@counterz@counterprefix #1}}

22 \newcommand{\xAlph}[1]{\Alph{\@counterz@counterprefix #1}}

23 \newcommand{\xfnsymbol}[1]{\fnsymbol{\@counterz@counterprefix #1}}

The following commands likewise apply the stored prefix to the counter name.
These commands are designed to aid in the typesetting of counter values within
algebraic expressions while observing particular conventions about the display of
numbers and their and their signs.

\xabsof \xabsof{〈counter〉} prints the absolute value of 〈counter〉.
24 \newcommand{\xabsof}[1]{%

25 \ifctrneg{#1}{%

26 \the \numexpr 0 - \xvalue{#1} \relax%

27 }{%

28 \xarabic{#1}%

29 }%

30 }

\xsignof \xsignof{〈counter〉} prints a minus sign “-” if 〈counter〉 is negative and otherwise
prints a plus sign “+”. Note that the latter case includes the value zero.

31 \newcommand{\xsignof}[1]{\ifctrneg{#1}{-}{+}}

\xnegsignof \xnegsignof{〈counter〉} prints a plus sign “+” if 〈counter〉 is negative and oth-
erwise prints a minus sign “-”. Note that the latter case includes the value zero.

32 \newcommand{\xnegsignof}[1]{\ifctrneg{#1}{+}{-}}

\xsigned \xsigned{〈counter〉} prints the absolute value of 〈counter〉, preceded by a plus
sign “+” or a minus sign “-” as defined by \xsignof.

33 \newcommand{\xsigned}[1]{\xsignof{#1} \xabsof{#1}}

\xsignednz \xsignednz{〈counter〉} is like \xsigned but suppresses the number zero.

34 \newcommand{\xsignednz}[1]{\ifctrzero{#1}{}{\xsigned{#1}}}

\xarabicnz \xarabicnz{〈counter〉} is like \xarabic but suppresses the number zero.

35 \newcommand{\xarabicnz}[1]{\ifctrzero{#1}{}{\xarabic{#1}}}

\xnegsigned \xnegsigned{〈counter〉} prints the absolute value of 〈counter〉, preceded by a
plus sign “+” or a minus sign “-” as defined by \xnegsignof.

36 \newcommand{\xnegsigned}[1]{\xnegsignof{#1} \xabsof{#1}}

11



\xnegsignednz \xnegsignednz{〈counter〉} is like \xnegsigned but suppresses the number zero.

37 \newcommand{\xnegsignednz}[1]{\ifctrzero{#1}{}{\xnegsigned{#1}}}

\xnegof \xnegof{〈counter〉} prints the negative of the value of 〈counter〉.
38 \newcommand{\xnegof}[1]{\ifctrpos{#1}{-}{}\xabsof{#1}}

\xnegofnz \xnegofnz{〈counter〉} is like \xnegof but suppresses the number zero.

39 \newcommand{\xnegofnz}[1]{\ifctrzero{#1}{}{\xnegof{#1}}}

\xcoef \xcoef{〈counter〉} prints the value of 〈counter〉 except that it suppresses the
values of 1, 0, and -1, printing a “-” in the latter case.

40 \newcommand{\xcoef}[1]{%

41 \ifboolexpr{test {\ifnumless{\xvalue{#1}}{-1}}%

42 or test {\ifnumgreater{\xvalue{#1}}{1}}}{%

43 \xarabic{#1}%

44 }{%

45 }%

46 \ifnumequal{\xvalue{#1}}{-1}{-}{}%

47 }

\xnegcoef \xnegcoef{〈counter〉} prints the value of 〈counter〉 except that it suppresses the
values of 1, 0, and -1, printing a “-” in the former case.

48 \newcommand{\xnegcoef}[1]{%

49 \ifboolexpr{test {\ifnumless{\xvalue{#1}}{-1}}%

50 or test {\ifnumgreater{\xvalue{#1}}{1}}}{%

51 \xnegof{#1}%

52 }{%

53 }%

54 \ifnumequal{\xvalue{#1}}{1}{-}{}%

55 }

\xabsofcoef \xabsofcoef{〈counter〉} prints the absolute value of 〈counter〉 except that it sup-
presses the values of 1 and 0.

56 \newcommand{\xabsofcoef}[1]{%

57 \ifboolexpr{test {\ifnumless{\xvalue{#1}}{-1}}%

58 or test {\ifnumgreater{\xvalue{#1}}{1}}}{%

59 \xabsof{#1}%

60 }{%

61 }

62 }

\xsignofcoef \xsignofcoef{〈counter〉} prints the sign of 〈counter〉 if 〈counter〉 is nonzero.

63 \newcommand{\xsignofcoef}[1]{\ifctrzero{#1}{}{\xsignof{#1}}}

\xnegsignofcoef \xnegsignofcoef{〈counter〉} prints the opposite sign of 〈counter〉 if 〈counter〉 is
nonzero.

64 \newcommand{\xnegsignofcoef}[1]{\ifctrzero{#1}{}{\xnegsignof{#1}}}

12



\xsignedcoef \xsignedcoef{〈counter〉} is like \xcoef except that positive values are preceded
by a plus sign “+”.

65 \newcommand{\xsignedcoef}[1]{\xsignofcoef{#1} \xabsofcoef{#1}}

\xnegsignedcoef \xnegsignedcoef{〈counter〉} is like \xsignedcoef except using the opposite sign.

66 \newcommand{\xnegsignedcoef}[1]{\xnegsignofcoef{#1} \xabsofcoef{#1}}

3.5 Random Counters

The commands \xrandsetcounter and \xrandaddtocounter use the pdfTEX
primitive \pdfuniformdeviate to provide random versions of \xsetcounter and
\xaddtocounter.

\xrandsetcounter \xrandsetcounter{〈counter〉}{〈min〉}{〈max 〉} assigns to (the prefixed) 〈counter〉
a random integer value between 〈min〉 and 〈max 〉.
67 \newcommand{\xrandsetcounter}[3]{%

68 \xsetcounter{#1}{%

69 \the \numexpr #2+\pdfuniformdeviate \numexpr #3-#2+1 \relax

70 }

71 }

\xrandaddtocounter \xrandaddtocounter{〈counter〉}{〈min〉}{〈max 〉} adds to (the prefixed) 〈counter〉
a random integer value between 〈min〉 and 〈max 〉.
72 \newcommand{\xrandaddtocounter}[3]{%

73 \xaddtocounter{#1}{%

74 \the \numexpr #2+\pdfuniformdeviate \numexpr #3-#2+1 \relax

75 }

76 }

The following commands are designed to provide a means by which authors can
generate random values for counters but also preserve those values for future
typesettings. This is accomplished by storing counters and their values in an
external file and then inputting the file before a subsequent typesetting.

\opencountersfile The command \opencountersfile creates and opens the write stream to the file
〈jobname〉.counters.tex, referenced by the macro \countersfile.

77 \newcommand{\opencountersfile}{%

78 \newwrite\countersfile

79 \immediate\openout\countersfile=\jobname.counters.tex

80 }

\@counterz@openbrace

\@counterz@closebrace

The commands \@counterz@openbrace and \@counterz@closebrace facilitate
the writing of the brace delimiters to \countersfile.

81 \begingroup

82 \catcode‘<=1 \catcode‘>=2

83 \catcode‘{=12 \catcode‘}=12

84 \gdef\@counterz@openbrace<{>

85 \gdef\@counterz@closebrace<}>

86 \endgroup

13



\xsavecounter \xsavecounter{〈counter〉} writes \providecounter and \setcounter commands
to the file 〈jobname〉.counters.tex so that they may be inputted as part of a future
typesetting.

87 \newcommand{\xsavecounter}[1]{%

88 \immediate\write\countersfile{%

89 \unexpanded{\providecounter}\@counterz@openbrace%

90 \@counterz@counterprefix #1\@counterz@closebrace%

91 \unexpanded{ \setcounter}\@counterz@openbrace%

92 \@counterz@counterprefix #1\@counterz@closebrace%

93 \@counterz@openbrace%

94 \arabic{\@counterz@counterprefix #1}\@counterz@closebrace%

95 }%

96 }%

\randomizectr

\norandomizectr

In order to assign a random value to a counter during one typesetting and avoid
overwriting this value with a random assignment during another typesetting,
the boolean @counterz@random is used to distinguish between the two type-
settings. The value of @counterz@random may be changed by the commands
\randomizectr and \norandomizectr.

97 \newbool{@counterz@random}

98 \newcommand{\randomizectr}{\booltrue{@counterz@random}}

99 \newcommand{\norandomizectr}{\boolfalse{@counterz@random}}

\ifrandomizectr \ifrandomizectr{〈foo〉}{〈bar〉} executes 〈foo〉 if the boolean @counterz@random
is true and otherwise executes 〈bar〉.
100 \newcommand{\ifrandomizectr}[2]{%

101 \ifbool{@counterz@random}{#1}{#2}

102 }%

\xrandprovidecounter \xrandprovidecounter{〈counter〉}{〈min〉}{〈max 〉} creates 〈counter〉 if it does
not already exist, and if the boolean @counterz@random is true then 〈counter〉 is
assigned a random integer value between 〈min〉 and 〈max 〉 and then saved.

103 \newcommand{\xrandprovidecounter}[3]{%

104 \xprovidecounter{#1}

105 \ifrandomizectr{%

106 \xrandsetcounter{#1}{#2}{#3}

107 \xsavecounter{#1}

108 }{%

109 }

110 }

\xrandprovidecounternz \xrandprovidecounternz{〈counter〉}{〈min〉}{〈max 〉} does the same job as the
command \xrandprovidecounter except that the value of 〈counter〉 is random-
ized until it is nonzero.

111 \newcommand{\xrandprovidecounternz}[3]{%

112 \xprovidecounter{#1}

113 \ifrandomizectr{%

14



114 \xsetcounter{#1}{0}

115 \whileboolexpr{ test {\ifnumequal{\xvalue{#1}}{0}}}{%

116 \xrandsetcounter{#1}{#2}{#3}

117 }

118 \xsavecounter{#1}

119 }{%

120 }

121 }

122 〈/package〉

4 Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols

\@counterz@closebrace

. . . . 81, 90, 92, 94

\@counterz@counterprefix

. . . . . . . . . . 4,
7, 8, 9, 10, 11,
18, 19, 20, 21,
22, 23, 90, 92, 94

\@counterz@openbrace

. . . . 81, 89, 91, 93

C

\clearcounterprefix

. . . . . . . . . . . 2, 4

\countersfile 78, 79, 88

I

\ifctrequal . . . . . . 3, 12

\ifctrless . . . . . . 3, 13

\ifctrmore . . . . . . 3, 14

\ifctrneg 4, 16, 25, 31, 32

\ifctrpos . . . . 4, 17, 38

\ifctrzero 4, 15, 34,
35, 37, 39, 63, 64

\ifrandomizectr . . .
. . 8, 100, 105, 113

N
\norandomizectr . . 8, 97

O
\opencountersfile 8, 77

R
\randomizectr . . . . 8, 97

S
\setcounterprefix 2, 4

X
\xabsof . . . . . . . . 6,

24, 33, 36, 38, 59
\xabsofcoef 6, 56, 65, 66
\xaddtocounter . 3, 7, 73
\xAlph . . . . . . . . . . 4, 18
\xalph . . . . . . . . . . 4, 18
\xarabic 4, 18, 28, 35, 43
\xarabicnz . . . . . . 5, 35
\xcoef . . . . . . . . . . 7, 40
\xfnsymbol . . . . . . 4, 18
\xnegcoef . . . . . . . 7, 48
\xnegof . . . 5, 38, 39, 51
\xnegofnz . . . . . . . 5, 39
\xnegsigned . . . 5, 36, 37
\xnegsignedcoef . . 7, 66

\xnegsignednz . . . . 5, 37
\xnegsignof 6, 32, 36, 64
\xnegsignofcoef 6, 64, 66
\xnewcounter . . . . . 3, 7
\xprovidecounter . .

. . . . 3, 7, 104, 112
\xrandaddtocounter 7, 72
\xrandprovidecounter

. . . . . . . . . 9, 103
\xrandprovidecounternz

. . . . . . . . . 9, 111
\xrandsetcounter . .

. . . 7, 67, 106, 116
\xRoman . . . . . . . . . 4, 18
\xroman . . . . . . . . . 4, 18
\xsavecounter . . . . .

. . . 8, 87, 107, 118
\xsetcounter 3, 7, 68, 114
\xsigned . . . . . 5, 33, 34
\xsignedcoef . . . . . 7, 65
\xsignednz . . . . . . 5, 34
\xsignof . . 6, 31, 33, 63
\xsignofcoef . . 6, 63, 65
\xvalue 3, 7, 12, 13, 14,

15, 16, 17, 26,
41, 42, 46, 49,
50, 54, 57, 58, 115

15


	Contents
	1 Introduction
	1.1 About
	1.2 License
	1.3 Installation

	2 User Guide
	2.1 Counter Prefixes
	2.2 Manipulating Counters
	2.3 Conditional Statements
	2.4 Displaying Counters
	2.5 Random Counters

	3 Implementation
	3.1 Counter Prefixes
	3.2 Manipulating Counters
	3.3 Conditional Statements
	3.4 Displaying Counters
	3.5 Random Counters

	4 Index
	Symbols
	C
	I
	N
	O
	R
	S
	X


