The TikZ-Extensions Package

Manual for version 0.2
https://github.com/Qrrbrbirlbel/tikz-extensions
Qrrbrbirlbel

August 21, 2022

Contents

I Introduction
1 Usage
2 Why do we need it?

3 Should these libraries be part of TikZ?

II TikZ Libraries

4 Calendar
41 Value-keys and nestable if key
4.2 Week numbering (ISO 8601) o o

5 Node Families

6 Arc to a point

https://github.com/Qrrbrbirlbel/tikz-extensions

10

11

12

III

13

Iv

14

15

More Horizontal and Vertical Lines

7.1 Zig-Zag
7.2 Zig-ZIZ . . . e
7.3 Even more Horizontal and Vertical Lines

Extending the Path Timers

8.1 Rectangle e
8.2 Parabola e
8.3 Sine/CoSINe e

Using Images as a Pattern

Positioning Plus

10.1 Useful corner anchors L
10.2 Useful placement keys for vertical and horizontal alignment

Arcs through Three Points

Mirror, Mirror on the Wall

12.1 Using thereflection matrix e
12.2 Using built-in transformations L

13.1 Using thereflection matrix L
13.2 Using built-in transformations L

PGF Libraries

Transformations: Mirroring

Utilities

Calendar: Weeknumbers and more conditionals

14.1 Extensions L e
142 Week numbering ISO 8601) L . e

And a little bit more

151 PGFmath
15.1.1 Postfix operator R L

11
11
13
14

15
15
15
16

17

18
18
19

23

24
24
25

27

28
28
28

30

31
31
31

32
32
32

15.1.2 FUunctions e e s 32

15.1.3 Functions: using coordinates L e 33

152 PGFREYS . . . o o o o 33

15.2.1 Conditionals 33

15.2.2 Handlers o 34

153 PGFIOr . . . o o 35

V Changelog & Index 36
Index 37

Part1
Introduction

1 Usage solve them.

I don’t like reinventing the wheel which is why I've gathered the code of my an-

This package is called tikz-ext, however, one can’t load it via \usepackage. Instead, swers in this package.

this package consists of multiple PGF and TikZ libraries which are loaded by either

\usepgflibrary or \usetikzlibrary. And, yes, I am using them myself, too.

2 Why do we need it? 3 Should these libraries be part of TikZ?

Since I have been answering questions on TeX.sx I've noticed that some questions
come up again and again, every time with a slightly different approach on how to I guess.

Part 11
TikZ Libraries

These libraries only work with TikZ.

4 Calendar

TikZ Library ext.calendar-plus

\usetikzlibrary{ext.calendar-plus} % IATgX and plain TgX
\usetikzlibrary[ext.calendar-plus] % ConTgXt

This library extends the TikZ library calendar.

4.1 Value-keys and nestable if key

The values of following keys are originally stored in some macros that are not acces-
sible by the user. These are now simple value-keys. The @-protected macros are still
available, of course.
/tikz/day xshift (initially 3ex)
/tikz/day yshift (initially 3.5ex)
/tikz/month xshift (initially 9ex)
/tikz/month yshift (initially 9ex)
It is now also possible to nest /tikz/if occurrences.

/tikz/if=({conditions)){code or options)else(else code or options) (no default)

4.2 Week numbering (ISO 8601)

The actual week number algorithm is implemented by the pgfcalendar-ext pack-
age/module in section 14.2.

/tikz/week code=(code)
Works like /tikz/day code or /tikz/month code, only for weeks.

(no default)

/tikz/week text=(text)
Works like /tikz/day text or /tikz/month text, only for weeks.

(no default)

/tikz/every week (style, no value)

Works like /tikz/every day or /tikz/every month, only for weeks.

/tikz/week label left (style, no value)

Places the week label to the left of the first day of the month. (For week list
andmonth list where a week does not start on a Monday;, the position is chosen
“as if” the week had started on a Monday — which is usually exactly what you

want.)
Jill \usetikzlibrary {ext.calendar-plus}
Y \tikz
calendar [week list, month label above
26 123 [

centered,

27 4 5 6 7 8 910
28 11 12 13 14 15 16 17
29 18 19 20 21 22 23 24
30 25 26 27 28 29 30 31

dates=2022-07-01 to 2022-07-31,

week label left,

every week/.append
style={gray!50!black, font=\sffamily}];

5 Node Families

TikZ Library ext.node-families
\usetikzlibrary{ext.node-families} % IATgX and plain TgX
\usetikzlibrary[ext.node-families] % ConTgXt

With this library the user can instruct multiple nodes to have the same width, height, text width, text height or text width. This uses the hook /tikz/execute at end
picture to write the nodes’ measurements to the Aux file.

Unfortunately, this does not work with the external library.!

This library introduces two new shapes called Circle and Rectangle that are basically copies of the original shapes circle and rectangle. However, their dimension will
be set to the same maximum minimum width and minimum height when one of the following (name)s are declared.

/tikz/node family/width=(name) (no default, initially {})
Nodes with the same (name) will have the same /pgf/minimum width . An empty (name) disables the evaluation by the library.
\usetikzlibrary {positioning,ext.node-families}

\tikzexternaldisable % ext.node-families does not work with active externalization
\begin{tikzpicture}[nodes={Rectangle, draw, node family/width=manual}]

\node (a) {Foo};
\node[below=of a] (b) {Foobar};

\end{tikzpicture}

Foo

/tikz/node family/height=(name) (no default, initially {})
Nodes with the same (name) will have the same /pgf/minimum height . An empty (name) disables the evaluation by the library.

/tikz/node family/size=(name) (no default)
Sets both height and width.

While node family/width and node family/height only work for the new shapes Circle and Rectangle, the following keys — when setup, see below — work with every
shape with one single node part. Initially though, only circle, rectangle, Circle and Rectangle are set up that way.

/tikz/node family/text height=(name) (no default, initially {})
Nodes with the same (name) will have the same text height. An empty (name) disables the evaluation by the library.

/tikz/node family/text depth=(name) (no default, initially {})
Nodes with the same (name) will have the same text depth. An empty (name) disables the evaluation by the library.

INot only would the external library not notice the change of the value between compilations runs, it also changes the way \pgfutil@writeout works which suddenly writes to the LoG file instead.

/tikz/node family/text width=(name) (no default, initially {})

Nodes with the same (name) will have the same text width. An empty (name) disables the evaluation by the library.

/tikz/node family/text=(name) (no default)
Sets text height, text depth and text width.

Since the width of the node’s content’s box is setup much earlier, the previous key only extends the width of that box which would make the text seem as if it where aligned
to the left. With text width family align this can changed.

/tikz/node family/text width align=(alignment) (no default, initially center)
(alignment) is one of left, center or right.
\usetikzlibrary {positioning,ext.node-families}

\tikzexternaldisable % ext.node-families does not work with active externalization
\begin{tikzpicture}[nodes={Rectangle, draw, node family={text width=manual, text width align=right}}]

\node (a) {Foo};
\node[below=of a] (b) {Foobar};

\end{tikzpicture}

Foo

/tikz/node family/prefix=(prefix) (no default, initially \pgfpictureid-)

The family names are prefixed with the value of /tikz/node family/prefix.

/tikz/node family/setup shape=(shape) (no default)
This adds instructions to the (shape)’s definition which adjust the text box’s dimensions according to the family.

This should be only used once per shape.

\usetikzlibrary {ext.node-families,shapes.geometric}

a b c d e f o h \tikzexternaldisable % ext.node-families does not work with active externalization
Z \begin{tikzpicture}[node family/setup shape=diamond]
\foreach \cnt[count=\Cnt] in {a,..., h}

\node[draw, diamond, node family/text=aTOh] (\cnt)

at (right:\Cnt) {\cnt};

\draw[help lines] (a.south) -- (h.south) (a.north) -- (h.north) (a.base-|a.west) -- (h.base-|h.east);
\end{tikzpicture}

6 Arc to a point

TikZ Library ext.paths.arcto

\usetikzlibrary{ext.paths.arcto} % IAlgX and plain TgX
\usetikzlibrary[ext.paths.arcto] % ConTgXt

This library adds the new path operation arc to that specifies an arc to a point — without the user having to specify any angles.

25

\path ...arc to[{options)]{coordinate or cycle) ...;

e

\usetikzlibrary {ext.paths.arcto}
\begin{tikzpicture}[ultra thick,dot/.style={label={#1}}]
\coordinate[dot=below left:a] (a) at (0,0);
\coordinate[dot=above right:b] (b) at (2,3);
\begin{scope}[
radius=3,
nodes={
shape=circle,
fill=white,
fill opacity=.9,
text opacity=1,
inner sep=+0pt,
sloped,
allow upside down

}
\draw[blue] (a) arc tol]

node[near start] {.25} node {.5} node[near end] {.75} (b);
\draw[red] (a) arc to[clockwise]

node[near start] {.25} node {.5} node[near end] {.75} (b);
\draw[blue!50] (a) arc to[large]

node[near start] {.25} node {.5} node[near end] {.75} (b);
\draw[red!50] (a) arc to[large, clockwise]

node[near start] {.25} node {.5} node[near end] {.75} (b);
\end{scope}

\fill[radius=2pt] (a) circle[] (b) circle[];
\end{tikzpicture}

When this operation is used, the path gets extended by an arc that goes through the current point and {coordinate).

For two points there exist two circles or four arcs that go through or connect these two points. Which one of these is constructed is determined by the following options

that can be used inside of {options).

/tikz/arc to/clockwise

(style, no value)

This constructs an arc that goes clockwise.

/tikz/arc to/counter clockwise
This constructs an arc that goes counter clockwise.
This is the default.

/tikz/arc to/large

This constructs an arc whose angle is larger than 180°.

/tikz/arc to/small

This constructs an arc whose angle is smaller than 180°.

/tikz/arc to/rotate=(degree)

Rotates the arc by (degree). This is only noticeable when x radius and y radius are different.

/tikz/arc to/x radius=(value)

This forwards the (value) to /tikz/x radius . Its {value) is used for the radius of the arc.

/tikz/arc to/y radius=(value)

This forwards the (value) to /tikz/y radius . Its (value) is used for the radius of the arc.

/tikz/arc to/radius=(value)

This forwards the (value) to both /tikz/x radius and /tikz/y radius. Its (value) is used for radius of the arc.

/tikz/every arc to

After /tikz/every arc this will also be applied before any (options) are set.

It should be noted that this uses \pgfpatharcto for which the TikZ manual warns:

(style, no value)

(style, no value)

(style, no value)

(no default)

(no default)

(no default)

(no default)

(style, no value)

The internal computations necessary for this command are numerically very unstable. In particular, the arc will not always really end at the (target coordinate), but
may be off by up to several points. A more precise positioning is currently infeasible due to TgX’s numerical weaknesses. The only case it works quite nicely is when the

resulting angle is a multiple of 90°.

The arc to path operation will also work only in the canvas coordinate system. The lengths of the vectors (1,0) and (0, 1) will be used for the calculation of the radii but

no further consideration is done.

10

7 More Horizontal and Vertical Lines

TikZ Library ext.paths.ortho

\usetikzlibrary{ext.paths.ortho} % IATgX and plain TgX
\usetikzlibrary[ext.paths.ortho] % ConTgXt

This library adds new path specifications |- |, - | - as well as r-ud, r-du, r-1r and r-rl.

7.1 Zig-Zag
Similar to the path operations | - and - | this library adds the path operations |- | and - | -.

\path ... |- | [{options)]1{coordinate or cycle) ...;

This operation means “first vertical, then horizontal and then vertical again”.

\path ... - |- [{options)]{coordinate or cycle) ...;

This operation means “first horizontal, then vertical and then horizontal again”.

/tikz/hvvh/ratio=(ratio)

This sets the ratio for the middle part of the Zig-Zag connection.

For values (ratio) < 0 and (ratio) > 1 the Zig-Zag lines will look more like Zig-Zig lines.
\usetikzlibrary {paths.ortho}

\begin{tikzpicture}[very thick, rounded corners]
\draw[help lines] (-.25, -1.25) grid (2.25, 1.25);

_ \draw (0, 0) -|- (2, 1) ==
(2, 0) -|-[ratio=.25] (0,-1) -- cycle;
\end{tikzpicture}

/tikz/hvvh/distance=(distance)

This sets the distance between the start point and the middle part of the Zig-Zag connection.

For values (distance) < 0 the distance will be used for the target coordinate.

11

(no default, initially 0.5)

(no default)

\draw[help lines,-] (-.25,
\draw (0, 0) -|-[distance=
\draw (0, 2) -|-[distance=-

\tikzset{xshift=3cm}

Y

\draw (2, 1) -|-[distance=
\draw (2, 3) -|-[distance=-
- \end{tikzpicture}

/tikz/hvvh/from center=(true or false)

\usetikzlibrary {ext.paths.ortho}
\begin{tikzpicture}[very thick,-latex]

-.25) grid (5.25, 3.25);
.5cm] ++(2, 1);
.5cm] ++(2, 1);

.5cm] ++(-2, -1);
.5cm] ++(-2, -1);

(default true)

When nodes get connected the placement of the middle part of the Zig-Zag and the Zig-Zig (see below) connections will be calculated from the border of these nodes. The
middle part of the connections can be calculated from the nodes’ center if this key is set to true.

New timers are setup for both the Zig-Zag and the Zig-Zig connections, these can be configured through the following keys.

\usetikzlibrary {paths.ortho}
0.7/5—*0
\tikz \draw (0,0) -|- (2,3)

foreach \p in {0.0, 0.25,
node [pos=\p] {\p}};

06—9025

/tikz/hvvh/spacing=(number)

Unless (number) = 0 is set

« pos = 0 will be at the start,
« pos = 1 will be at the end,
e pos = — L ill be at the first kink,

(number)
(number)—1
(number)

e pos = will be at the second kink and

« pos = .5 will be in the middle of the middle part of the connection.

0.5, 0.75, 1.0}{

12

(no default, initially 4)

If (number) = 0 then

« pos = -1will be at the start,

« pos = 2 will be at the end,

« pos = 0 will be at the first kink,

« pos = 1 will be at the second kink and

« pos = .5 will still be in the middle of the middle part of the connection.

/tikz/hvvh/middle 0 to 1

This is an alias for spacing = 0.

7.2 Zig-Zig
\path ... r-ud[{options)]{coordinate or cycle) ...;
This operation means “first up, then horizontal and then down”.
/tikz/udlr/ud distance=(length)
This sets the distance between the start and the horizontal line to (length).
\path ... r-du[{options)]{coordinate or cycle) ...;
This operation means “first down, then horizontal and then up”.
/tikz/udlr/du distance=(length)
This sets the distance between the start and the horizontal line to (length).
\path ... r-1r[{options)]{coordinate or cycle) ...;
This operation means “left down, then vertical and then right”.
/tikz/udlr/lr distance=(length)
This sets the distance between the start and the vertical line to (length).
\path ... r-rl[{options)]{coordinate or cycle) ...;
This operation means “first right, then vertical and then down”.
/tikz/udlr/rl distance=(length)

This sets the distance between the start and the vertical line to {length).

All distances can be set with on key.

13

(no value)

(no default, initially .

(no default, initially .

(no default, initially .

(no default, initially .

5cm)

5cm)

5cm)

5cm)

/tikz/udlr/distance=(length) (no default)

Sets all distances in the /tikz/udlr namespace.

/tikz/udlr/from center=(true or false) (no default, initially false, default true)

This is an alias for /tikz/hvvh/from center.

7.3 Even more Horizontal and Vertical Lines

The following keys can be used to access vertical and horizontal line path operations.

/tikz/horizontal vertical (style, no value)
This installs to path = -| (\tikztotarget) \tikztonodes that can be used with the path operations to or edge.

/tikz/vertical horizontal (style, no value)
This installs to path = |- (\tikztotarget) \tikztonodes that can be used with the path operations to or edge.

/tikz/horizontal vertical horizontal (style, no value)
This installs to path = -|- (\tikztotarget) \tikztonodes that can be used with the path operations to or edge.

/tikz/vertical horizontal vertical (style, no value)
This installs to path = |-| (\tikztotarget) \tikztonodes that can be used with the path operations to or edge.

When connecting rectangular nodes, these keys could be useful as well. They all need to be given to a to or edge path operation.
/tikz/only vertical second=(length) (style, default 0pt)
This draws a vertical line from the start point to the target point so that it connects to the target point in the center (or at its border in case it is a node).

The optional (length) can be used to shift the line orthogonally to its direction.

/tikz/only horizontal second=(length) (style, default 0pt)
This draws a horizontal line from the start point to the target point so that it connects to the target point in the center (or at its border in case it is a node).
The optional (length) can be used to shift the line orthogonally to its direction.

/tikz/only vertical first=(length) (style, default 0pt)
This draws a vertical line from the start point to the target point so that it connects to the start point in the center (or at its border in case it is a node).
The optional (length) can be used to shift the line orthogonally to its direction.

/tikz/only horizontal first=(length) (style, default 0pt)
This draws a horizontal line from the start point to the target point so that it connects to the start point in the center (or at its border in case it is a node).

The optional (length) can be used to shift the line orthogonally to its direction.

14

8 Extending the Path Timers

TikZ Library ext.paths.timer

\usetikzlibrary{ext.paths.timer} % IATgX and plain TgX
\usetikzlibrary[ext.paths.timer] % ConTgXt

This library adds timers to the path specifications rectangle, parabola, sin and cos.

In TikZ, the path specification rectangle, parabola, sin and cos do not provide their own timer, i.e. a node placing algorithm that is dependent on the actual path. For
rectangle the timer of the straight line between the rectangle’s corners is used, for the other paths, nodes, coordinates, pics, etc. are placed on the last coordinate.

This library allows this.

8.1 Rectangle

For the rectangle path operator, the timer starts with pos = 0 (= at start) from the starting coordinate in a counter-clockwise direction along the rectangle. The corners will

be at positions 0.0, 0.25, 0.5, 0.75 and 1.0.

near start —

pos=.375 —»

midway —

8.2 Parabola

For the parabola path operator the timer is similar to the ..

very near start

!

Start

Targét /

pos=.625

The position 0.5 will lie at the bend.

at start

<~— atend

<— very near end

<— near end

controls

\usetikzlibrary {ext.paths.timer}
\begin{tikzpicture}[scale=2, every pin edge/.style={latex-, gray}]
\coordinate [label=above right:Target] (A) at (0,0);
\coordinate [label=below left:Start] (B) at (1,2);
\draw[->, help lines] ([shift=(560:.3 and .75)] .5,1)

arc[start angle=50, delta angle=3460, x radius=.3, y radius=.75];
\draw (B) rectangle (A)

foreach \pos/\ang in {at start/60, very near start/90, near start/180, pos=.375/180,
midway/180, pos=.625/270, near end/0, very near end/0, at end/0}{

node[pin=\ang:\pos, style/.expanded=\pos]|{}};
\end{tikzpicture}

. operator.

15

\ \usetikzlibrary {ext.paths.timer}
A \begin{tikzpicture}
A \draw[help lines] (-2.25, -1.25) grid (2.25, 3.25);
I \draw (2,-1) parabola bend (0,0) (-1,3);
o! \draw[ultra thick] (-2,-1) parabola bend (0,0) (1,3)
foreach \pos in {1,...,4,6,7,...,9}{
/ node|
~ pos=.|pos, sloped, fill=white, font=\small, inner sep=+0pt
/ 1 {\pos}
P };
%"_4__, \end{tikzpicture}
ol
7
yN

If no bend is specified half the positions will collapse into one end of the curve.

\usetikzlibrary {ext.paths.timer}
\begin{tikzpicture}[every pin edge/.style={latex-, shorten <=I1pt, gray}]

\draw (-2,-2) parabola (1,0)

foreach \pos in {0, 1, ..., 10} {
node [pos=\pos/10, pin={[anchor=-18*\pos+90]-18*\pos+270:\pos}1{}
i
\end{tikzpicture}

8.3 Sine/Cosine
The sin and cos path operators also allow placing of nodes along their paths.

\usetikzlibrary {ext.paths.timer}

%9
X 1/% /9 \begin{tikzpicture}[mark nodes on line/.style={insert path={
/ff/ P foreach \pos in {1, ..., 9} {node[
o it S A sloped, fill=white, font=\small, inner sep=+0pt, pos=\pos/10] {\pos}}}}]
o 5ol \draw[help lines] (-2.1,-2.1) grid (2.1,0.1);
«(/ o 4 \draw (-2,-2) sin (1,0) [mark nodes on line];
X’JL/“ \draw[shift=(0:1)]1(-2,-2) cos (1,0) [mark nodes on line];
\end{tikzpicture}

16

9 Using Images as a Pattern

TikZ Library ext.patterns.images

\usetikzlibrary{ext.patterns.images} % IATgX and plain TgX
\usetikzlibrary[ext.patterns.images] % ConTpXt

This library allows to use an image to be used as a repeating pattern for a path.

With this library arbitrary images (or indeed PDF documents) can be used as a repeating pattern for the background of a path.
This is a two-step process:

1. Declaring an image as an “image-pattern”.
2. Using the “image-pattern”.
\pgfsetupimageaspattern[{options)]{(name)}{(image)}
/tikz/image as pattern=(options) (default {})
\usetikzlibrary {ext.patterns.images}
\pgfsetupimageaspattern[width=.5cm]{grid}{example-image-1x1}

\tikz \node[star, minimum size=3cm, draw,
image as pattern={name=grid,options={left, bottom, y=-.5cm, rotate=45}}1 {};

/tikz/image as pattern/name=(name) (no default)

Specifies the name of the “image-pattern” to be used.

/tikz/image as pattern/option (style, no value)

Options that’s be used by the internal \pgftext, only keys from /pgf/text should be used.

/tikz/image as pattern/options=(style) (style, no default)
Appends style /tikz/image as pattern/option.

17

10 Positioning Plus

TikZ Library ext.positioning-plus
\usetikzlibrary{ext.positioning-plus} % IATgX and plain TgX
\usetikzlibrary[ext.positioning-plus] % ConTgXt

With the help of the positioning and the fit library this extends the placement of nodes.

10.1 Useful corner anchors

The anchors corner north east, corner north west, corner south west and corner south east are defined as “generic anchors”, i. e. they are defined for all shapes. This is
mostly useful for the placement of circular shapes.

/tikz/corner above left=(specification) (style, default 0pt)

Similar as /tikz/above left of the TikZ library positioning but uses the corner north west anchor.

/tikz/corner below left=(specification) (style, default Opt)

Similar as /tikz/below left of the TikZ library positioning but uses the corner south west anchor.

/tikz/corner above right=(specification) (style, default 0pt)
Similar as /tikz/above right of the TikZ library positioning but uses the corner north east anchor.

/tikz/corner below right=(specification) (style, default Opt)

Similar as /tikz/below right of the TikZ library positioning but uses the corner south east anchor.

18

(s.corner north west)

(s.north)

(s.north west)

(s.west)

(s.base west)

(s.sou

(s.corner south west)

th west)

(s.130)

X
X

(s.center)

X

(s.mid)

(s.mid west) X

(s.text) x X

(s.base)

(s.north

(s.mid east)

(s.south

(s.south)

(s.corner north east)

east)

(s.10)

(s.east)

(s.base east)

east)

(s.corner south east)

10.2 Useful placement keys for vertical and horizontal alignment

/tikz/north left=(specification)

Like /tikz/left but aligns the nodes at their north border.

This is basically the same as left=of reference.north west, anchor=north east.

19

\usetikzlibrary {ext.positioning-plus}
\Huge
\begin{tikzpicture}
\node[name=s, shape=circle,shape example]
{Circle\vrule width 1pt height 2cm};
\foreach \anchor/\placement in {
north west/above left, north/above, north east/above right,
west/left, center/above, east/right,
mid west/right, mid/above, mid east/left,
base west/left, base/below, base east/right,
south west/below left, south/below, south east/below right,
text/left, 10/right, 130/above}
\draw[shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\draw (s.corner north west) rectangle (s.corner south east);
\foreach \anchor/\placement in {
corner north west/above left, corner north east/above right,
corner south west/below left, corner south east/below right}
\draw[red,shift=(s.\anchor)] plot[mark=x] coordinates{(0,0)}
node[\placement] {\scriptsize\texttt{(s.\anchor)}};
\end{tikzpicture}

(style, default 0pt)

\usetikzlibrary {ext.positioning-plus}
\begin{tikzpicture}[nodes=draw]
\node[minimum height=2cm] (a) {};

\end{tikzpicture}

/tikz/north right=(specification)
Like /tikz/right but aligns the nodes at their north border.
This is basically the same as left=of reference.north east,

/tikz/south left=(specification)
Like /tikz/left but aligns the nodes at their south border.

This is basically the same as left=of reference.south west,

/tikz/south right=(specification)
Like /tikz/right but aligns the nodes at their south border.
This is basically the same as left=of reference.south east,

/tikz/west above=(specification)
Like /tikz/above but aligns the nodes at their west border.

This is basically the same as left=of reference.north west,

/tikz/west below=(specification)
Like /tikz/below but aligns the nodes at their west border.
This is basically the same as left=of reference.south west,

/tikz/east above=(specification)
Like /tikz/above but aligns the nodes at their east border.

This is basically the same as left=of reference.north east,

/tikz/east below=(specification)
Like /tikz/below but aligns the nodes at their east border.
This is basically the same as left=of reference.south east,

\node[minimum height=3cm, north right=of al {};

anchor=north

anchor=south

anchor=south

anchor=south

anchor=north

anchor=south

anchor=north

west.

east.

west.

west.

west.

east.

east.

20

(style, default 0pt)

(style, default 0pt)

(style, default 0pt)

(style, default 0pt)

(style, default 0pt)

(style, default 0pt)

(style, default 0pt)

The same exist for the recently introduces corner anchors, too.

/tikz/corner north left=(specification) (style, default 0pt)

The same as /tikz/north left but uses the new corner anchors.

/tikz/corner north right=(specification) (style, default 0pt)

The same as /tikz/north right but uses the new corner anchors.

/tikz/corner south left=(specification) (style, default 0pt)

The same as /tikz/south left but uses the new corner anchors.

/tikz/corner south right=(specification) (style, default 0pt)

The same as /tikz/south right but uses the new corner anchors.

/tikz/corner west above=(specification) (style, default 0pt)

The same as /tikz/west above but uses the new corner anchors.

/tikz/corner west below=(specification) (style, default 0pt)

The same as /tikz/west below but uses the new corner anchors.

/tikz/corner east above=(specification) (style, default 0pt)

The same as /tikz/east above but uses the new corner anchors.

/tikz/corner east below=(specification) (style, default 0pt)

The same as /tikz/east below but uses the new corner anchors.

While the (specification) of all these keys still accept the same form as with TikZ, the ext.positioning-plus library extends this even more.

The specification after of can contain a list of coordinates (like the fit key of the fit library). This means that the new node will be placed in relation to a rectangular
bounding box that fits around all this nodes in the list.

If this list is prefixed with |, - or +, the new node will also have the same height (|), the same width (-) or both as this bounding box.

\usetikzlibrary {ext.positioning-plus}
\begin{tikzpicture}[nodes=draw]

\node (A) {A};

\node[below=0f Al (BCD) {BCD};

\node[right=of |(A)(BCD)] (c) {};

BCD \node[below=.5:0f -(A)(BCD)] (d) {};

\draw[help lines] (BCD.south west) -- (c.south east)
(BCD.north east) -- (d.south east);

\end{tikzpicture}

This functionality is also available without the placement:

21

/tikz/fit bounding box=(list of coordinates) (style, no default)

Creates a rectangular node with the name fit bounding box that encompasses the (list of coordinates).

/tikz/span vertical=(list of coordinates) (style, no default)
Creates a rectangular node with the name fit bounding box that encompasses the (list of coordinates) and sets the /pgfminimum height to the height of this bounding
box.

/tikz/span horizontal=(list of coordinates) (style, no default)

Creates a rectangular node with the name fit bounding box that encompasses the {list of coordinates) and sets the /pgfminimum width to the width of this bounding box.

/tikz/span=(list of coordinates) (style, no default)

Is a combination of /tikz/span vertical and /tikz/span horizontal.

As you maybe noticed in the example above, the (specification) also allows a prefix delimited by : which the node distance will be multiplied to with for the placement.?

*This is probably more useful when /tikz/on grid is used.

22

11 Arcs through Three Points

TikZ Library ext.topaths.arcthrough

\usetikzlibrary{ext.topaths.arcthrough} % IATgX and plain TgX
\usetikzlibrary[ext.topaths.arcthrough] % ConTgXt

This library allows to use an arc defined by three points.

This can only by used for circles in the canvas coordinate system.

/tikz/arc through/through=(coordinate) (no default, initially (0,0))
The coordinate on the circle that defines — together with the starting and target
point — a circle.

/tikz/arc through/center suffix=(suffix) (no default, initially)
The arc through will define a coordinate named arc through center(suffix)
so that it can be referenced later.

/tikz/arc through/clockwise (no value)

The resulting arc will go clockwise from the starting point to the target point.

23

\usetikzlibrary {ext.topaths.arcthrough}

\begin{tikzpicture}
\coordinate[label=above right:A] (A) at (3, 1);
A \coordinate[label=above:B] (B) at (1, 2);

\coordinate[label=below left:C] (C) at (-2,-2);

\draw[ultra thick, draw=green, fill=green!50]
(B) tol[arc through={clockwise, (A)}] (C)

- (arc through center) -- cycle;
\draw[ultra thick, draw=blue, fill=blue!50]
(B) to[arc through=(A)] (C)

- (arc through center) -- cycle;

\foreach \p in {A,B,C, arc through center} \fill[red] (\p) circle[radius=2pt];
\end{tikzpicture}

This will not necessarily go through the through point.

/tikz/arc through/counter clockwise (no value)

The resulting arc will go counter clockwise from the starting point to the target
point. This will not necessarily go through the through point.

/tikz/arc through=(key-value) (no default)

This key should be used with to or edge. A parameter other than center suffix,
clockwise or counter clockwise will be assumed to be the through coordinate.

12 Mirror, Mirror on the Wall

TikZ Library ext.transformations.mirror

\usetikzlibrary{ext.transformations.mirror} % IATgX and plain TgX
\usetikzlibrary[ext.transformations.mirror] % ConTgXt

This library adds more transformations to TikZ.

As explained in section 13, there are two approaches to setting a mirror transformation. As with the commands in PGF, we’ll be using a lowercase m for the reflection matrix

and an uppercase M for the built-in approach.

12.1 Using the reflection matrix

\usetikzlibrary {shapes.geometric,ext.transformations.mirror}
\begin{tikzpicture}[line join=round, thick, reg poly/.style={
shape=regular polygon, regular polygon sides={#1}}]
\node[reg poly=5, minimum size=+2cm, draw, very thick] (a) {};
\foreach \i[evaluate={\col=(\i-1)/.04}] in {1,...,5}
\node [mirror=(a.corner \i)--(a.side \i), transform shape,
reg poly=5, minimum size=+2cm, draw=red!\col!/blue] {};
\end{tikzpicture}

/tikz/xmirror=(value or coordinate)

Sets up a transformation that mirrors along a horizontal line that goes through point ({value),0) or {coordinate).

\usetikzlibrary {ext.transformations.mirror}
\begin{tikzpicture}

\draw[help lines] (-0.25, -.25) grid (3.25, 1.25);
\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (1.5, -.25) coordinate (m) -- (1.5, 1.25);

\draw[xmirror=(m),-latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}

24

(no default)

/tikz/ymirror=(value or coordinate) (no default)

Sets up a transformation that mirrors along a vertical line that goes through point (0, {value)) or {coordinate).

/tikz/mirror x=(coordinate) (no default)

Similar to /tikz/xmirror, this however uses the xyz coordinate system instead of the canvas system.

\usetikzlibrary {ext.transformations.mirror}
\begin{tikzpicture}[x=.5cm, y=(45:1cm)]

\draw|[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (1.5, -.25) coordinate (m) -- (1.5, 1.25);

\draw[xmirror=(m), -latex, red, dotted] (0,0) .. controls (.5,1) .. (1,1);
\draw[mirror x=(m), -latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}
/tikz/mirror y=(coordinate) (no default)

Similar to /tikz/ymirror, this however uses the xyz coordinate system instead of the canvas system.

/tikz/mirror=(point A)--(point B) (no default)
Sets up a transformation that mirrors along a line that goes through (point A) and (point B).
When only (point A) is given that line goes through (point A) and the origin.

12.2 Using built-in transformations

\usetikzlibrary {shapes.geometric,ext.transformations.mirror}
\begin{tikzpicture}[line join=round, thick, reg poly/.style={
shape=regular polygon, regular polygon sides={#1}}]
\node[reg poly=5, minimum size=+2cm, draw, very thick] (a) {};
\foreach \i[evaluate={\col=(\1i-1)/.04}] in {1,...,5}
\node [Mirror=(a.corner \i)--(a.side \i), transform shape,
reg poly=5, minimum size=+2cm, draw=red!\col!/blue] {};
\end{tikzpicture}

25

/tikz/xMirror=(value or coordinate)

Sets up a transformation that mirrors along a horizontal line that goes through point ((value),0) or {coordinate).

\usetikzlibrary {ext.transformations.mirror}
\begin{tikzpicture}

\draw[help lines] (-0.25, -.25) grid (3.25, 1.25);
\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (1.5, -.25) coordinate (m) -- (1.5, 1.25);
\draw[xMirror=(m),-latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}

/tikz/yMirror=(value or coordinate)

Sets up a transformation that mirrors along a vertical line that goes through point (0, {value)) or {coordinate).

/tikz/Mirror x=(coordinate)

Similar to /tikz/xMirror, this however uses the xyz coordinate system instead of the canvas system.

\usetikzlibrary {ext.transformations.mirror}
\begin{tikzpicture}[x=.5cm, y=(45:1cm)]

\draw|[-latex] (0,0) .. controls (.5,1) .. (1,1);

\draw[dashed] (1.5, -.25) coordinate (m) -- (1.5, 1.25);

\draw[xMirror=(m), -latex, red, dotted] (0,0) .. controls (.5,1) .. (1,1);
\draw[Mirror x=(m), -latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}

/tikz/Mirror y=(coordinate)

Similar to /tikz/yMirror, this however uses the xyz coordinate system instead of the canvas system.

/tikz/Mirror=(point A)--(point B)
Sets up a transformation that mirrors along a line that goes through {point A) and (point B).
When only (point A) is given that line goes through (point A) and the origin.

26

(no default)

(no default)

(no default)

(no default)

(no default)

Part III
PGF Libraries

These libraries (should) work with both PGF and TikZ.

PN 27T \usetikzlibrary {graphs,graphdrawing,ext.misc} \usegdlibrary {force}
K N I .
R i tikzset
i Ny /4 n’p6) oy \ {
5 7 3 4 / M mynode/.style={
K ¢ S M 3
“"'\ / i Neo o) circle, minimum size=10mm, draw, densely dashdotted, thick,
AT) A decide color/.expand once=#1},
\
Npg)

{/utils/TeX/ifnum={#2<5}{bluelight}{bluedark}}

/ - decide color/.style 2 args={
S /utils/TeX/if=c#1
\Y

{/utils/TeX/ifnum={#2<8}{light}{dark}}},

i n : -

"\, © /l e ",\,-" A light/.style={fill=gray!20}, bluelight/.style={fill=blue!16},

N "‘\ i Mp1 Il dark/.style ={fill=gray!60}, bluedark/.style ={fill=blue!30}}
Y \tikz\graph[

/ p i 2 / spring electrical layout, vertical=c2 to pl3,

‘L\!, » node dlstance=1.5.cm, typeset=$n {\tikzgraphnodetext}$,
N, i 0 Y nodes={mynode=\tikzgraphnodetext}] {

s, - n
i Sy I_ e _l % outer ring
!\ npg ,l). ./\!,--\,\ €2 -- {pl, pll, p6};
St | Mg \l pl -- {p8, c6, pll};
\ \ /j p8 -- {p3, plO, c6};
P " /*- p3 -- {p13, pl5, ple};

pl3 -- {pl5, c7};

i Np2 i \ % ¢
\ P /'\l Nps5 '\i' nplO\i c7 -- {c3, c4, pl5};
/7

- R4 \ “ 1 1
o / Seo” L % c3 -- {pl4, c4};

X - —— pl4 -- {p7, c4};

= N p7 -- {p9, P2, c4};

o ‘_./\ N I’ My3 ‘, p9 -- {c5, pl2, p2};
R L a N /\-\

oo ; Y c5 -- {cl, p4, pl2};

g ! ‘ \ bt 1 -- {p6, pa};

i Ny ——4pl5) c SRt

N J 9 ’ p6 -- {pll, p4};
e -~\/ et — % inner ring
[Mp1g) o pll -- {c6, pl2, p4};
X Nemnd i”,n 13\". p5 -- {c6 -- {pl@, pl2}, pl@ -- pl5, pl5 -- c4, c4 -- p2, p2 -- pl2, pl2 -- p4};

== - F \ P13 };
e > § ney]/_“\'_.— 4
i Ne3 | _I’/I

27

13 Transformations: Mirroring

PGF Library ext.transformations.mirror
% IATEX and plain TpX
% ConTpXt

\usepgflibrary{ext.transformations.mirror}
\usepgflibrary[ext.transformations.mirror]

This library adds mirror transformations to PGF.

Two approaches to mirror transformation exist:

1. Using the reflection matrix (see left column).

This depends on \pgfpointnormalised which involves the sine and the cosine functions of PGFmath.

2. Using built-in transformations (see right column).

This depends on \pgfmathanglebetween which involves the arctangent (atan2) function of PGFmath.

Which one is better? I don’t know. Choose one you’re comfortable with.

13.1 Using the reflection matrix

The following commands use the reflection matrix that sets the transformation matrix

following
1 [B-8 a2,
N Tz[oll, -]
I vy oy

\pgftransformxmirror{{value)}

Sets up a transformation that mirrors along a vertical line that goes through
point ({value), 0).

\usepgflibrary {transformations.mirror}
\begin{tikzpicture}

\draw[help lines] (-0.25, -

.25) grid (3.25, 1.25);

\draw|[-latex] (0,0) .. controls (.5,1) .. (1,1);
\draw[dashed] (1.5, -.25) -- (1.5, 1.25);
\pgftransformxmirror{1.5}

\draw[-latex] (0,0) .. controls (.5,1) .. (1,1);

\end{tikzpicture}

28

13.2 Using built-in transformations

The following commands use a combination of shifting, rotating, —1 scaling, rotating
back and shifting back to reach the mirror transformation.

The commands are named the same as on the left side, only the m in mirror is
capitalized.

\pgftransformxMirro r{(value)}

Sets up a transformation that mirrors along a vertical line that goes through
point ({value), 0).

\usepgflibrary {transformations.mirror}
\begin{tikzpicture}

\draw[help lines] (-0.25, -

.25) grid (3.25, 1.25);

\draw|[-latex] (0,0) .. controls (.5,1) .. (1,1);
\draw[dashed] (1.5, -.25) -- (1.5, 1.25);
\pgftransformxMirror{1.5}

\draw[-latex] (0,0) .. controls (.5,1) .. (1,1)

\end{tikzpicture}

\pgftransformymirror{(value)} \pgftransformyMirror{(value)}

Sets up a transformation that mirrors along a horizontal line that goes through
point (0, (value)).

Sets up a transformation that mirrors along a horizontal line that goes through
point (0, (value)).

\pgftransformMirror{(point A)}{{point B)}

Sets up a transformation that mirrors along the line that goes through (point A)

\pgftransformmirror{(point A)}{({point B)}

Sets up a transformation that mirrors along the line that goes through (point A)

and (point B). and (point B).
\usepgflibrary {transformations.mirror} \usepgflibrary {transformations.mirror}
\begin{tikzpicture} \begin{tikzpicture}
\draw[help lines] (-.25, -2.25) grid (2.5, 1.25); \draw[help lines] (-.25, -2.25) grid (2.5, 1.25);
\draw|[-latex] (0,0) .. controls (.5,1) .. (1,1); \draw[-latex] (0,0) .. controls (.5,1) .. (1,1);
_ - \draw[dashed] (0, -1) -- (2, 0); _ \draw[dashed] (0, -1) -- (2, 0)
-7 \pgftransformmirror{\pgfpointxy{0}{-1}} -7 \pgftransformMirror{\pgfpointxy{0}{-1}}
{\pgfpointxy{2}{ 0}} {\pgfpointxy{2}{ 0}}
T T
\draw[-latex] (0,0) .. controls (.5,1) .. (1,1); \draw[-latex] (0,0) .. controls (.5,1) .. (1,1)
\end{tikzpicture} \end{tikzpicture}

\pgfqtransformmirror{{point A)}

Sets up a transformation that mirrors along the line that goes through the origin

\pgfqtransformMirror{(point A)}

Sets up a transformation that mirrors along the line that goes through the origin

and (point A). and (point A).
\usepgflibrary {transformations.mirror} \usepgflibrary {transformations.mirror}
\begin{tikzpicture} \begin{tikzpicture}
7 \draw[help lines] (-.25, -.25) grid (2.25, 1.25); _ \draw[help lines] (-.25, -.25) grid (2.25, 1.25);
e A \draw|[-latex] (0,0) .. controls (.5,1) .. (1,1); -7 \draw|[-latex] (0,0) .. controls (.5,1) .. (1,1)

\draw[dashed] (0, 0) -- (2, 1);
\pgfqtransformmirror{\pgfpointxy{2}{1}}

\draw|[-latex] (0,0) .. controls (.5,1) .. (1,1);
\end{tikzpicture}

29

\draw[dashed] (0, 0) -- (2, 1);
\pgfqtransformMirror{\pgfpointxy{2}{1}}

\draw[-latex] (0,0) .. controls (.5,1) .. (1,1)
\end{tikzpicture}

Part IV
Utilities

{QHL,

\usetikzlibrary {ext.misc}
\begin{tikzpicture}[
declare function={bigR(\n)=smallR+.05*\n;},
declare constant={smallR=1; segments=20;},
full arc=segments]
\foreach \iN[evaluate={\endRadius=bigR(\iN+1);}, use int=0 to segments-1]
\filldraw[fill=gray!50] (\iN R:\endRadius)
arc [radius=|endRadius, start angle=|\iN R, delta angle=+IR] -- (\iN R+1R:smallR)
arc [radius=smallR, end angle=\iN R, delta angle=-1R] -- cycle;

\node {$\phi~2s$};
\node at (north west:{sqrt 2 * bigR(segments/2)}) {$\{\Omega\} {i=1}"n$};
\node[rotate=-.5R, right] at (-.5R: bigR segments) {$\partial \varphis$};

\tikzset{yshift=-5cm, declare constant={segments=25;}, full arc=segments}
\filldraw[fill=gray!50] (right:smallR)
\foreach \iN[evaluate={\endRadius=bigR(\iN+1);}, use int=0 to segments-1] {
-- (\iN R:\endRadius) arc[radius=\endRadius, start angle=|iN R, delta angle=IR]}
-- (right:smallR) arc[radius=smallR, start angle=0, delta angle=-360]

\node {$\phi~2$};

\node at (north west:{sqrt 2 * bigR(segments/2)}) {$\{\Omega\} {i=1}"n$};
\node[rotate=-.5R, right] at (-.5R: bigR segments) {$\partial \varphi$};
\end{tikzpicture}

30

14 Calendar: Weeknumbers and more conditionals

\usepackage{calendar-ext} % IATEX
\input calendar-ext.tex % plain TgX
\usemodule[calendar-ext] % ConTgXt

This package adds week numbers and more conditionals to the PGF package pgfcalendar. (Despite the code example above, this package is not set up to work with ConTgXt.)

14.1 Extensions - week=(num) This test passes when the current week of the year equals {{(num)}.

The following tests are added. The shorthands for d- and m- are slightly changed so that they are expandable.
. Jan This test is passed by all dates that are in the month of January. This makes it poss%ble to use these shorthands inside of PGFmath. The shorthands for
the week (see section 14.2) are added. These are

- Feb as above. . .
« n- (shortest numerical representation),

« Mar as above.
« n= (shortest but added horizontal space) and

« Apr as above.
« n0 (leading zero when below 10).
« May as above.

« Jun as above. 14.2 Week numbering (ISO 8601)

. Jul as above. \pgfcalendarjulianyeartoweek{(Julian day)}{{year)}{{week counter)}

This command calculates the week for the (Julian day) of (year). The (week

» Aug as above. counter) must be a TgX counter.

« Sep as above. The calculation follows the rule of ISO 8601 where the first week has that year’s

first Thursday in it.
« Oct as above.

Inside of \pgfcalendar the command \pgfcalendarcurrentweek will be avail-
able.

- Nov as above.

« Dec as above.
\pgfcalendarcurrentweek

« leap year=(year) This test checks whether the given year is a leap year. If

This command returns the current week number (always two digits — use short-
(year) is omitted, it checks the year of the current date.

hand n. to strip the leading zero).

» and={(tests)} This test passes when all (tests) pass. Inside of \ifdate the command \pgfcalendarifdateweek will be available.

« not={(tests)} This test passes when (tests) do not pass. \pgfcalendarifdateweek

. yesterday={(tests)} This test passes when the previous day passes (Zests). This command returns the week number (always two digits).

31

15 And a little bit more

TikZ Library ext.misc

\usetikzlibrary{ext.misc} % IATgX and plain TgX
\usetikzlibrary[ext.misc] % ConTgXt

This library adds miscellaneous utilities to PGFmath, PGF or TikZ.

15.1 PGFmath

15.1.1 Postfix operator R

Similar to \segments[<num>] in PSTricks, the postfix operator R allows the user to
use an arbitrary number of segments of a circle to be used instead of an angle.

/tikz/full arc=(num) (default)

The number (num) of segments will be set up. Using full arc with an empty
value disables the segmentation and 1R equals 1°.

The given value (num) is evaluated when the key is used and doesn’t change
when (num) contains variables that change.

The R operator can then be used.
xR (postfix operator; uses the fullarc function)
360

Multiplies x with Ty

15.1.2 Functions

strrepeat("Text", x)
\pgfmathstrrepeat{" Text"}{x}

Returns a string with Text repeated x times.

foofoofoofoofoo \pgfmathparse{strrepeat("foo", 5)}
\pgfmathresult

isInString("String", "Text")
\pgfmathisInString{"String"}{" Text"}

Returns 1 (true) if Text contains String, otherwise 0 (false).

0and 1 \pgfmathparse{isInString("foo", "bar")}
\pgfmathresult \ and\
\pgfmathparse{isInString("foo", "foobar")}
\pgfmathresult

strcat("Text A", "TextB", ..)
\pgfmathstrcat{" Text A"}{" Text B"}{..}

Returns the concatenation of all given parameters.

blue!21!gree11 \pgfmathparse{strcat("blue!", int(7*3), "!green")}
\pgfmathresult

isEmpty (" Text")
\pgfmathisEmpty{" Text"}

Returns 1 (true) if Text is empty, otherwise 0 (false).

Oand1and1 \pgfmathparse{isEmpty("foo")} \pgfmathresult\ and\
\pgfmathparse{isEmpty("")} \pgfmathresult\ and\
\def\emptyText{}
\pgfmathparse{isEmpty("\emptyText")} \pgfmathresult

atanXY(x,y)
\pgfmathatanXY{x}{y}

Arctangent of y + x in degrees. This also takes into account the quadrant. This
is just a argument-swapped version of atan2 which makes it easier to use the \p
commands of the calc library.

53.13011 \pgfmathparse{atanXY(3,4)} \pgfmathresult

32

atanYX(y,x) Return the angle between the centers of the nodes p1 and p2.

\pgfmathatanYX{y}{x}
ganglebetween("p")

Arctangent of y + x in degrees. This also takes into account the quadrant. \pgfmathganglebetween{"p"}

53.13011 \pgfmathparse{atan¥x(4,3)} \pgfmathresult Return the angle between the origin and the center of the node p.

distancebetween("p1", "p2")
\pgfmathdistancebetween{"p1"}{"p2"}
15.1.3 Functions: using coordinates - P P
))])) Return the distance (in pt) between the centers of the nodes p1 and p2.
The following functions can only be used with PGF and/or TikZ. Since the arguments

are usually plain text (and not numbers) one has to wrap them in ". qdistancebetween("p")

fmathqdistancebetween{"p"
anglebetween("pI", "p2") \pg q {"p"}

\pgfmathanglebetween{"p1"}{"p2"} Return the distance (in pt) between the origin and the center of the node p.

\usetikzlibrary {calc,ext.misc,through}

\begin{tikzpicture}

\path (0,0) coordinate (A) + (0:4) coordinate (B) +(75:4) coordinate (C);

\draw (A) -- (B) -- (C) -- cycle;

\foreach \cnt in {1,...,4}{
\pgfmathsetmacro\triA{distancebetween("B","C")}
\pgfmathsetmacro\triB{distancebetween("C",6"A")}
\pgfmathsetmacro\triC{distancebetween("A","B")}

\path (barycentric cs:A=\triA,B=\triB,C=\triC) coordinate (M)
node [draw, circle through=($(A)!(M)!(C)$)] (M) {};
\draw ($(C)-(A)$) coordinate (vecB)
(M.75-90) coordinate (@)
(intersection of @--[shift=(vecB)]@ and B--C) coordinate (C) --
(intersection of @--[shift=(vecB)]@ and B--A) coordinate (A);}

\end{tikzpicture}
15.2 PGFkeys
15.2.1 Conditionals ally optional.
/utils/if=(cond)(true)(false) (no default) The following keys use TgX’ macros \if, \1fx, \ifnum and \ifdim for faster exe-
This key checks the conditional (cond) and applies the styles (true) if {cond) is cutions.
true, otherwise (false). (cond) can be anything that PGFmath understands.
As a side effect on how PGFkeys parses argument, the (false) argument is actu- /utils/TeX/if=(token A){token B)(true){false) (no default)

33

This key checks via \if if (token A) matches (foken B) and applies the styles
(true) if it does, otherwise (false).
As a side effect on how PGFkeys parses argument, the (false) argument is actu-

ally optional.

/utils/TeX/ifx=(token A){token B){true)(false) (no default)

As above.
/utils/TeX/ifnum=(num cond){true)
opt(false) (no default)

This key checks \ifnum{num cond) and applies the styles (true) if true, otherwise
(false). A delimiting \relax will be inserted after (num cond).
As a side effect on how PGFkeys parses argument, the (false) argument is actu-
ally optional.
/utils/TexX/ifdim=(dim cond){true)(false) (no default)
As above.

/utils/TeX/ifempty=(Text){true)(false) (no default)

This checks whether {Text) is empty and applies styles {true) if true, otherwise
(false).
15.2.2 Handlers

While already a lot of values given to keys are evaluated by PGFmath at some point,
not all of them are.

34

Key handler (key)/.pgfmath=(eval)
This handler evaluates (eval) before it is handed to the key.

Key handler (key)/.pgfmath int=(eval)

As above but truncates the result.

Key handler (key)/.pgfmath strcat=(eval)

As above but uses the strcat function.

In the example below, one could have used the /pgf/foreach/evaluate key from
\foreach.

\usetikzlibrary {misc}
\tikz\foreach \i in {0,10,..., 100}
\draw|
line width=+.2cm,
color/.pgfmath strcat={"red!",sqrt(\1i)*10,"!blue"}
1
(0,\1/50) --

+(right:3);

Key handler (key)/.List=({el), {e2), ..., (en))

This handler evaluates the given list with \ foreach and concatenates the element
and the result is then given to the used key.

r T \usetikzlibrary {fit,ext.misc}

| } ® \begin{tikzpicture}[nodes={draw, dashed, inner sep=+10pt}]

: ! \foreach \point [count=\cnt] in {(0,0), (0,2), (2,0), (2,2), (3,3), (-1,-1)}

| : ””””””” I \fill \point circle[radius=.1] coordinate (point-\cnt);

| ; L o \node[gray, fit/.List={(point-1), (point-...),(point-4)}1 {};

I | : \node[red, fit/.List={(point-1), (point-...),(point-5)}] {};

| | : \node[blue, fit/.List={(point-1),(point-...),(point-6)}1 {};

: I : \end{tikzpicture}

|

| } l

l e °

| L e e e e e -~ __ _ _

1 l

e |
15.3 PGFfor
Instead of \foreach \var in {start, start + delta, ..., end} one can use \foreach \var[use int=start to end step deltal.
/pgf/foreach/use int=(start)to{end)step(delta) (no default)

The values (start), {end) and {delta) are evaluates by PGFmath at initialization. The part step (delta) is optional ((delta) = 1).

/pgf/foreach/use float=(start)to{end)step{delta) (no default)

Same as above, however the results are not truncated.

35

Part V
Changelog &

Changelog

Version 0.2

+ Added TikZ library ext.
+ Added TikZ library ext.

Version 0.1

+ Added TikZ library ext.
+ Added TikZ library ext.
+ Added TikZ library ext.

Index

positioning-plus.

node-families.

calendar-plus.
misc.

paths.arcto.

36

Added TikZ library ext.paths.ortho.

Added TikZ library ext.paths.timer.

Added TikZ library ext.patterns.images.

Added TikZ library ext.topaths.arcthrough.
Added TikZ library ext.transformations.mirror.

Added PGF library ext.transformations.mirror.

Index

This index contains automatically generated entries as well as references to original functionalities of PGF/TikZ.

| - | path operation, 11
- | - path operation, 11
- | path operation, 11
| - path operation, 11

above key, 20

above left key, 18
above right key, 18
and date test, 31

anglebetween math function, 33

Apr date test, 31

arc through key, 23

arc to path operation, 9
atan2 math function, 28, 32
atanXY math function, 32
atanYX math function, 33
Aug date test, 31

below key, 20
below left key, 18
below right key, 18

calc library, 32

calendar library, 6
calendar-ext package, 31
center suffix key, 23
circle shape, 7

clockwise key, 9, 23

corner above left key, 18
corner above right key, 18
corner below left key, 18
corner below right key, 18
corner east above key, 21
corner east below key, 21
corner north left key, 21
corner north right key, 21

37

corner south left key, 21
corner south right key, 21
corner west above key, 21
corner west below key, 21
cos math function, 28

cos path operation, 16
counter clockwise key, 10, 23

Date tests

and, 31

Apr, 31

Aug, 31

Dec, 31

Feb, 31

Jan, 31

Jul, 31

Jun, 31

leap year, 31

Mar, 31

May, 31

not, 31

Nov, 31

Oct, 31

Sep, 31

week, 31

yesterday, 31
day code key, 6
day text key, 6
day xshift key, 6
day yshift key, 6
Dec date test, 31
distance key, 11, 14
distancebetween math function, 33
du distance key, 13

east above key, 20

east below key, 20

edge path operation, 23

every arc to key, 10

every day key, 6

every month key, 6

every week key, 6

execute at end picture key, 7
ext.calendar-plus library, 6
ext.misc library, 32
ext.node-families library, 7
ext.paths.arcto library, 9
ext.paths.ortho library, 11
ext.paths.timer library, 15
ext.patterns.images library, 17
ext.positioning-plus library, 18
ext.topaths.arcthrough library, 23
ext.transformations.mirror library, 24, 28
external library, 7

Feb date test, 31

fit library, 18

fit bounding box key, 22
from center key, 12, 14
full arc key, 32

height key, 7
horizontal vertical key, 14
horizontal vertical horizontal key, 14

if key, 6, 33

\ifdate, 31

ifdim key, 34

ifempty key, 34

ifnum key, 34

ifx key, 34

image as patternkey, 17
isEmpty math function, 32
isInString math function, 32

Jan date test, 31
Jul date test, 31
Jun date test, 31

38

Key handlers
.List, 34
.pgfmath, 34
.pgfmath int, 34
.pgfmath strcat, 34

large key, 10

leap year date test, 31

left key, 19, 20

Libraries
calc, 32
calendar, 6
ext.calendar-plus, 6
ext.misc, 32
ext.node-families, 7
ext.paths.arcto, 9
ext.paths.ortho, 11
ext.paths.timer, 15
ext.patterns.images, 17
ext.positioning-plus, 18
ext.topaths.arcthrough, 23
ext.transformations.mirror, 24, 28
external, 7
fit, 18
positioning, 18

.List handler, 34

1r distance key, 13

Mar date test, 31

Math functions
anglebetween, 33
atan2, 28, 32
atanXy, 32
atanYX, 33
cos, 28
distancebetween, 33
isEmpty, 32
isInString, 32
ganglebetween, 33
gdistancebetween, 33
sin, 28

strcat, 32

strrepeat, 32
Math operators

R, 32
May date test, 31
middle 0 to 1key, 13
minimum height key, 7
minimum width key, 7
Mirror key, 26
mirror key, 25
Mirror x key, 26
mirror x key, 25
Mirror vy key, 26
mirror y key, 25
month code key, 6
month text key, 6
month xshift key, 6
month yshift key, 6

name key, 17

north left key, 19
north right key, 20
not date test, 31
Nov date test, 31

Oct date test, 31
on grid key, 22

only horizontal first key, 14
only horizontal second key, 14
only vertical first key, 14
only vertical second key, 14

option key, 17
options key, 17

Packages and files
calendar-ext, 31

parabola path operation, 15

Path operations
[-1,11
-1-,11
1,11

39

[-, 11

arc to, 9

cos, 16

edge, 23

parabola, 15

r-du, 13

r-ir, 13

r-ri, 13

r-ud, 13

rectangle, 15

sin, 16

to, 23
/pgf/

foreach/

use float, 35
use int, 35

minimum height, 7

minimum width, 7

text, 17
\pgfcalendar, 31
\pgfcalendarcurrentweek, 31
\pgfcalendarifdateweek, 31
\pgfcalendarjulianyeartoweek, 31
.pgfmath handler, 34
.pgfmath int handler, 34
.pgfmath strcat handler, 34
\pgfmathanglebetween, 33
\pgfmathanglebetween, 28
\pgfmathatanXy, 32
\pgfmathatanYX, 33
\pgfmathdistancebetween, 33
\pgfmathisEmpty, 32
\pgfmathisInString, 32
\pgfmathganglebetween, 33
\pgfmathqgdistancebetween, 33
\pgfmathstrcat, 32
\pgfmathstrrepeat, 32
pgfminimum height, 22
pgfminimum height key, 22
pgfminimum width, 22
pgfminimum width key, 22

\pgfpatharcto, 10
\pgfpointnormalised, 28
\pgfgtransformMirror, 29
\pgfqtransformmirror, 29
\pgfsetupimageaspattern, 17
\pgftext, 17
\pgftransformMirror, 29
\pgftransformmirror, 29
\pgftransformxMirror, 28
\pgftransformxmirror, 28
\pgftransformyMirror, 29
\pgftransformymirror, 29
pos key, 12, 15
positioning library, 18
prefix key, 8

ganglebetween math function, 33
gdistancebetween math function, 33

R postfix math operator, 32
r-du path operation, 13
r-1r path operation, 13
r-rl path operation, 13
r-ud path operation, 13
radius key, 10

ratio key, 11
rectangle path operation, 15
rectangle shape, 7

right key, 20

rt distance key, 13
rotate key, 10

Sep date test, 31
setup shape key, 8
Shapes
circle, 7
rectangle, 7
sin math function, 28
sin path operation, 16
size key, 7
small key, 10

40

south left key, 20
south right key, 20
spacing key, 12
span key, 22

span horizontal key, 22
span vertical key, 22

strcat math function, 32
strrepeat math function, 32

text key, 17
text key, 8
text depthkey, 7
text height key, 7
text width key, 8

text width align key, 8

through key, 23
/tikz/
above, 20
above left, 18
above right, 18
arc through/

center suffix, 23

clockwise, 23

counter clockwise, 23

through, 23
arc through, 23
arc to/

clockwise, 9

counter clockwise, 10

large, 10
radius, 10
rotate, 10
small, 10
X radius, 10
y radius, 10
below, 20
below left, 18
below right, 18

corner above left, 18
corner above right, 18
corner below left, 18

corner below right, 18 Mirror vy, 26

corner east above, 21 mirror vy, 25
corner east below, 21 month code, 6
corner north left, 21 month text, 6
corner north right, 21 month xshift, 6
corner south left, 21 month yshift, 6
corner south right, 21 node family/
corner west above, 21 height, 7
corner west below, 21 prefix, 8
day code, 6 setup shape, 8
day text, 6 size, 7
day xshift, 6 text, 8
day yshift, 6 text depth, 7
east above, 20 text height, 7
east below, 20 text width, 8
every arc to, 10 text width align, 8
every day, 6 width, 7
every month, 6 north left, 19
every week, 6 north right, 20
execute at end picture, 7 on grid, 22
fit bounding box, 22 only horizontal first, 14
full arc, 32 only horizontal second, 14
horizontal vertical, 14 only vertical first, 14
horizontal vertical horizontal, 14 only vertical second, 14
hvvh/ pos, 12, 15
distance, 11 right, 20
from center, 12 south left, 20
middle 0 to 1,13 south right, 20
ratio, 11 span, 22
spacing, 12 span horizontal, 22
if, 6 span vertical, 22
image as pattern/ to path, 14
name, 17 udlr/
option, 17 distance, 14
options, 17 du distance, 13
image as pattern, 17 from center, 14
left, 19, 20 1r distance, 13
Mirror, 26 rl distance, 13
mirror, 25 ud distance, 13
Mirror x, 26 vertical horizontal, 14
mirror x, 25 vertical horizontal vertical, 14

41

week code, 6 y radius key, 10
week label left, 6 y radius key, 10
week text, 6 yesterday date test, 31
west above, 20 yMirror key, 26
west below, 20 ymirror key, 25
x radius, 10
XMirror, 26
xmirror, 24
y radius, 10
yMirror, 26
ymirror, 25

to path operation, 23

to path key, 14

ud distance key, 13
use float key, 35
use int key, 35
/utils/
if, 33
TeX/
if, 33
ifdim, 34
ifempty, 34
ifnum, 34
ifx, 34

vertical horizontal key, 14
vertical horizontal vertical key, 14

week date test, 31

week code key, 6

week label left key, 6
week text key, 6

west above key, 20
west below key, 20
width key, 7

x radius key, 10
x radius key, 10
xMirror key, 26
xmirror key, 24

42

	I Introduction
	Usage
	Why do we need it?
	Should these libraries be part of TikZ?

	II TikZ Libraries
	Calendar
	Value-keys and nestable if key
	Week numbering (ISO 8601)

	Node Families
	Arc to a point
	More Horizontal and Vertical Lines
	Zig-Zag
	Zig-Zig
	Even more Horizontal and Vertical Lines

	Extending the Path Timers
	Rectangle
	Parabola
	Sine/Cosine

	Using Images as a Pattern
	Positioning Plus
	Useful corner anchors
	Useful placement keys for vertical and horizontal alignment

	Arcs through Three Points
	Mirror, Mirror on the Wall
	Using the reflection matrix
	Using built-in transformations

	III PGF Libraries
	Transformations: Mirroring
	Using the reflection matrix
	Using built-in transformations

	IV Utilities
	Calendar: Weeknumbers and more conditionals
	Extensions
	Week numbering (ISO 8601)

	And a little bit more
	PGFmath
	Postfix operator R
	Functions
	Functions: using coordinates

	PGFkeys
	Conditionals
	Handlers

	PGFfor

	V Changelog & Index
	Index

