
Calibrating ModVege

I. INTRODUCTION

In the following we describe the approach that was
used to identify optimal site and model parameters based
on existing experimental data. This process is called
model calibration. ModVege [1] is designed to require
only three inputs pertaining to the simulated site:

• The nutritional index NI, a dimensionless value in
the interval [0.3, 1] which represents plant nutri-
tional availability.

• The soil’s water-holding capacity WHC in mm.

• The composition of plant functional groups in the
site’s plant community according to the categoriza-
tion by Cruz et al. [2]. This is expressed using
weights for the four different functional groups (wi

with i ∈ {A,B,C,D}), where∑
i∈{A,B,C,D}

wi = 1 . (1)

II. GENERAL CONSIDERATIONS

Different strategies are commonly employed for cali-
brating models and there are many decisions that can
influence the calibration procedure [3].

A. Model Performance

Firstly, one has to define how model performance is
measured and thus how the suitability of a set of param-
eters is evaluated. This begins with the choice of mod-
eled variables to consider. Here, reasonable variables are
those related to biomass growth, as these are the quanti-
ties for which experimental data is available: BM, cBM,
dBM or harvested biomass hvBM. Other options could
be to compare the predicted vegetations times, start of
the growing season, or the peak height in daily biomass
growth. All of these latter options are only indirectly
available from the measured data, and only with rather
large uncertainties. For this reason, we only consider
these aspects secondary to the directly measured biomass
quantities.

Once suitable variables are chosen, one also has to de-
fine in which way error is expressed. A common choice
is the square-root of mean squared deviations σRMSE,
sometimes called root-mean-squared error (RMSE):

σRMSE =

√√√√ 1

N

N∑
i=1

(
yi − ymodel

i

)2
(2)

with the N observations yi and model predictions ymodel
i .

Here, we are also going to make use of the mean absolute
error σMAE and the bias b:

σMAE =
1

N

N∑
i=1

∣∣yi − ymodel
i

∣∣ (3)

b =
1

N

N∑
i=1

yi − ymodel
i . (4)

The available grass growth curves provide the average
daily biomass growth over the measurement period T of
two weeks. The variable we choose for model evaluation
is therefore derived from of the model output variable
dBM. We replicate the measurement situation by aver-
aging dBM over the past two weeks:

ymodel
i = dBMi =

1

T

i∑
j=i−T

dBMj . (5)

B. Frequentist or Bayesian

In a frequentist approach, one typically carries out
some sort of minimization of a defined objective function,
often in the form of a gradient descent. In a Bayesian
framework, one has to make assumptions about the forms
of the prior distributions and the likelihood. Here, the
typical implementation of a Bayesian calibration, the
Metropolis or Markov-Chain Monte-Carlo (MCMC) algo-
rithm, could not be employed in a straightforward man-
ner due to interdependence of the parameters wi through
Equation 1. We have thus devised an efficient manner
for sampling parameter space and extensively tested an
MCMC approach to calibration. Despite intense efforts,
we had to conclude that this strategy is unfit to rea-
sonably calibrate ModVege with the existing data, see
section V for details.

C. Choice of Calibration Parameters

It is not always necessary or meaningful to calibrate
all model parameters. Often, one can limit the effort to
a subset. In our case, WHC can be inferred from the
Swiss soil suitability map [4] and does therefore not have
to be calibrated on a per-site basis. Thus, we are left
with the parameters NI, wA, wB , wC and wD that need
to be calibrated.

III. CALIBRATION PROCEDURE

In line with the observation that fully-automated cal-
ibrations are not unequivocally advised [3] and the ap-
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parent equifinality that hindered Bayesian calibration (cf.
Appendix), we eventually defined a semi-automatic cal-
ibration procedure. In it, we iteratively sample subse-
quently smaller volumes in parameter space and evaluate
the respective performance scores of the sampled param-
eter combinations. Based on these scores, the successive
sampling volume in parameter space is defined and the
procedure is re-iterated up to a defined convergence cri-
terion.

In the following explanation of the procedure, we will
use pm,n to refer to parameterm in iteration n and denote
with Pm,n the set of sampled parameter values for pm,n.
pmin
m,n and pmax

m,n then define the range which is considered
for parameter m in iteration n. In the first iteration (n =
1), we usually allow the full parameter space. Therefore,
pmin
m,1 = 0 and pmax

m,1 = 1 for m ∈ {wA, wB , wC , wD} and

pmin
NI,1 = 0.3, pmax

NI,1 = 1.

A. Step 1: Parameter Sampling

We choose for each parameter a number of values that
lie within the allowed minimum and maximum values
for that parameter in a given iteration n. The num-
ber of chosen values and their distribution might, in
principle, depend on how much we expect that param-
eter to influence the results and with what precision
we want to trace its influence. Typically, however, we
choose N equidistantly spaced values between pmin

m,n and

pmax
m,n , i.e. Pm,n = {pmin

m,n, p
min
m,n + ∆pm,n, . . . , p

max
m,n} with

∆pm,n = (pmax
m,n − pmin

m,n)/N . N , or generally the number
of elements in the Pm,n should be chosen such that the
computations in step 2 can be carried out in a reasonable
timeframe.

We then generate all possible combinations Cn of the
sampled parameters, taking care to remove those combi-
nations In that do not fulfill the functional group sum
criterion Equation 1:

Cn =
⊗
m

Pm,n − In . (6)

The exclusion of combinations not fulfilling Equation 1
significantly reduces the number of elements in Cn, mak-
ing this approach feasable despite the otherwise large
numbers that arise combinatorially. We further note that
care needs to be taken in the construction of the Pm,n for
the functional group weights wi in that the resulting com-
binations actually need to be able to fulfill the sum rule
(Equation 1). As an example, the following choices for
Pwi,n would allow for only one valid combination, despite
providing several values for each parameter:

PwA,n = {0.5, 0.75, 1}
PwB ,n = {0.5, 0.75, 1}
PwC ,n = {0.1, 0.2}
PwD,n = {0.1, 0.2} .

FIG. 1. Performance scores versus parameter value for differ-
ent metrics for 140 combinations of parameters for an example
site. The five top performing combinations in terms of bias b
are highlighted in red. It is evident that these do not coincide
with the top performers according to σMAE and σRMSE.

A general way for constructing suitable Pm,n for the wi

is to (i) let the step size be equal for all sets and (ii)
ensure that for every pmax

m,n there is at least one pmin
l,n with

pmin
l,n = 1−pmax

m,n . Even so, there is a danger of accidentally
leaving out some volume of parameter space, even though
it might look as if it was included on first glance. Human
supervision of the process is therefore recommended.

B. Step 2: Performance Evaluation

We now run the model for each valid parameter combi-
nation c ∈ Cn, thus generating model outputs Mc. Per-
formance scores for the metrics σc

RMSE, σ
c
MAE and bc for

each Mc are calculated using the measured data. These
scores are carefully inspected and compared with each
other in order to identify trends in the parameters. Gen-
erally, if a combination c scores well for all metrics, its
parameter values should be within the parameter ranges
for the next iteration. Likewise, parameter values of com-
binations that score badly in all metrics are candidates
for exclusion. A way to visualize the results of this step
is shown in Figure 1.
It might occur that there are less obvious situations: (i)

Certain parameter combinations score very well for some
metrics, but not for others. This case is showcased by the
highlighted points in Figure 1. (ii) For one ore more pa-
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rameters the whole range of its previous values appears in
the top performing combinations. Case (i) is most easily
addressed by requiring parameter combinations to score
well across all metrics in order to be considered good. It is
still advisable to take note of these cases and, potentially,
decide whether the malperformance in one metric is made
up for by the excellence in another. After all, we have al-
ready introduced an element of subjectivity through the
choice of evaluated variable and used metrics. It may
be that this subjectivity needs to be accounted for here.
Case (ii) might hint towards the existence of separated
optima in parameter space. One should carefully exam-
ine the different parameter combinations and potentially
design the allowed parameter ranges for the next iteration
with holes, i.e. with separated intervals. Alternatively,
one could carry out separate runs towards the different
optima and compare the converged results.

The above considerations implicitly assume the exis-
tence of one optimal, correct parameter set, an idea that
is challenged by the concept of equifinality [5], confer also
section V. In line with the validity of different parame-
ter sets proposed by equifinality, one could also attempt
to follow different optima and allow for multiple results
instead of one. The final simulations should then be car-
ried out with all identified optimal parameter sets and
the variances in model output could be interpreted as a
measure of model uncertainty.

C. Iteration Up To Convergence

Through the considerations in the previous step, one
should be able to formulate the new parameter ranges
pmin
m,n+1, p

max
m,n+1, possibly with forbidden intervals in be-

tween. Using this information, one can start over in step
1 and sample new sets of parameter values Pm,n+1 out of
which to generate combinations Cn+1. This procedure is
repeated up to the point where the parameter ranges are
smaller than the desired precision εm for that parameter:
|pmax

m,final − pmin
m,final| < εm.

The εm can be defined through considerations of how
much a change ∆pm in a given parameter affects the
model output M . If changes in model outputs are in the
order of the measurement uncertainty or smaller, it is
not possible to gain higher precision for the parameters.
We find that εm is in the order of 0.1 for the wi and
εNI ≈ 0.05.

D. Automation

We note that, despite the fact that we have chosen
to manually inspect each step in the calibration, it is
possible to employ the same routine in an unsupervised
fashion. One would initiate the parameter scan with a
sample of full parameter space. Criteria could then be
formulated to automatically identify boundaries on the
parameters for the next step. As an example, one could

look at the distributions of parameters spanned by the
top 30% performing combinations for each metric. From
these top-performers, one should exclude those that per-
form poorly in different metrics, e.g. there might be com-
binations that minimize the bias b but show large σRMSE

and σMAE or vice versa. Given that only few (< 5) it-
erations are required, the reduction of workload gained
by such an automation does not seem worth the loss of
fine-grained control over the procedure.

IV. EVALUATION OF THE RESULTS

V. APPENDIX

Parameter correlations such as between the functional
group weights, Equation 1, are not foreseen in typical
MCMC implementations. The most straightforward way
to incorporate them would be a rejection scheme, where
parameters wi are sampled until they fulfill Equation 1,
up to a small error to account for numeric precision. This
approach, however, leads to unfeasibly large sampling at-
tempts. Is is also not possible to start by sampling wA

freely, then choosing wB from the interval [0, 1 − wA],
then wC from [0, 1−wA −wB ], etc. as this will skew the
distributions for the parameters in favour of large values
for the first sampled and low values for the last sampled.
We hypothesize that the same approach should work, if
the order in which the wi are sampled is also randomized,
but have not proven that this would lead to independent
distributions when executed along a Markov-Chain.
The solution we have implemented instead relies on the

fact that the sum rule (Equation 1) can be interpreted
geometrically as the vector p⃗ = (wA, wB , wC , wD) lying
on the four-dimensional hyperplane E : x+y+z+w = 1.
If we start with a vector p⃗0 already lying on that plane,
we can ensure that we stay on that plane if our parameter
step ∆p⃗ is parallel to E, the sum p⃗0 + ∆p⃗ is also in E
and thus, the wi fulfill the sum rule.
The problem now comes down to sampling a step vec-

tor ∆q⃗′ in the xy plane and rotating it onto the plane E:
∆p⃗ = M∆q. The matrix M rotates the plane xy into E
and can be found using singular value decomposition:

M0 =

0
0
0
1

× 1√
4
(1, 1, 1, 1) (7)

M0 = UΣV T (8)

M = U × V T . (9)

Equation 7 constructs a matrix from the normal vectors
of the two planes we want to connect through rotation.
The matrices U and V are used to construct the final
rotation matrix M are found through singular value de-
composition according to Equation 8 (the matrix Σ is not
used).
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A. Testing the Bayesian Approach

Despite the previously described way of efficiently sam-
pling parameter space in a Markov-Chain, we have found
after extensive testing that this Bayesian calibration ap-
proach is not able to reliable converge to the correct so-
lution. We have tested this by generating model data
with known parameter sets and treating them as our cal-
ibration data. If the calibration routine works, we should
recover the known parameters that were used to gener-
ate the testing data. However, this was generally not
the case. We suspect the reason in the fact that mod-
els with different sets of parameters are able to describe
a given set of data points almost equally well, a phe-
nomenon sometimes referred to as equifinality [5]. The
Monte-Carlo nature of the Bayesian calibration means
that the question of which optimum is found in a given

run is a consequence of random number generation.

There are, however, still more constraints on the wi

than have been incorporated mathematically, thus far.
The wi reflect certain properties of the plant communi-
ties, some of which are, not strictly, but somewhat, mu-
tually exclusive. E.g. functional group A defines plant
species adapted to fertile sites and frequent defoliation,
while group D describes plant species adapted to infer-
tile sites and infrequent defoliation. It is therefore rather
unlikely for a plant community to be composed of similar
amounts of groups A and D. The same can be said about
B and C. We have captured this fact algorithmically in
the prior definition, by letting said combinations lead to
lower scores. Even with this being accounted for, some
equifinality remains rendering the MCMC approach im-
practical.
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