Last updated on 2025-12-26 23:51:39 CET.
| Package | ERROR | OK |
|---|---|---|
| autonewsmd | 13 | |
| BiasCorrector | 13 | |
| DQAgui | 13 | |
| DQAstats | 13 | |
| kdry | 4 | 9 |
| mlexperiments | 1 | 12 |
| mllrnrs | 4 | 9 |
| mlsurvlrnrs | 13 | |
| rBiasCorrection | 13 | |
| sjtable2df | 13 |
Current CRAN status: OK: 13
Current CRAN status: OK: 13
Current CRAN status: OK: 13
Current CRAN status: OK: 13
Current CRAN status: ERROR: 4, OK: 9
Version: 0.0.2
Check: examples
Result: ERROR
Running examples in ‘kdry-Ex.R’ failed
The error most likely occurred in:
> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: mlh_reshape
> ### Title: mlh_reshape
> ### Aliases: mlh_reshape
>
> ### ** Examples
>
> set.seed(123)
> class_0 <- rbeta(100, 2, 4)
> class_1 <- (1 - class_0) * 0.4
> class_2 <- (1 - class_0) * 0.6
> dataset <- cbind("0" = class_0, "1" = class_1, "2" = class_2)
> mlh_reshape(dataset)
Error in xtfrm.data.frame(list(`0` = 0.219788839894465, `1` = 0.312084464042214, :
cannot xtfrm data frames
Calls: mlh_reshape ... [.data.table -> which.max -> xtfrm -> xtfrm.data.frame
Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc
Version: 0.0.2
Check: tests
Result: ERROR
Running ‘testthat.R’ [6s/7s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> library(testthat)
> library(kdry)
>
> test_check("kdry")
Saving _problems/test-mlh-70.R
[ FAIL 1 | WARN 0 | SKIP 6 | PASS 71 ]
══ Skipped tests (6) ═══════════════════════════════════════════════════════════
• On CRAN (6): 'test-lints.R:10:5', 'test-rep.R:3:1', 'test-rep.R:22:1',
'test-rep.R:42:1', 'test-rep.R:61:1', 'test-rep.R:75:1'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-mlh.R:70:5'): test mlh - mlh_outsample_row_indices ─────────────
Error in `xtfrm.data.frame(structure(list(`0` = 0.219788839894465, `1` = 0.312084464042214, `2` = 0.468126696063321), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55967c6c6fe0>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─kdry::mlh_reshape(dataset) at test-mlh.R:70:5
2. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
3. │ └─data.table:::`[.data.table`(...)
4. └─base::which.max(.SD)
5. ├─base::xtfrm(`<data.table>`)
6. └─base::xtfrm.data.frame(`<data.table>`)
[ FAIL 1 | WARN 0 | SKIP 6 | PASS 71 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 0.0.2
Check: tests
Result: ERROR
Running ‘testthat.R’ [4s/5s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> library(testthat)
> library(kdry)
>
> test_check("kdry")
Saving _problems/test-mlh-70.R
[ FAIL 1 | WARN 0 | SKIP 6 | PASS 71 ]
══ Skipped tests (6) ═══════════════════════════════════════════════════════════
• On CRAN (6): 'test-lints.R:10:5', 'test-rep.R:3:1', 'test-rep.R:22:1',
'test-rep.R:42:1', 'test-rep.R:61:1', 'test-rep.R:75:1'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-mlh.R:70:5'): test mlh - mlh_outsample_row_indices ─────────────
Error in `xtfrm.data.frame(structure(list(`0` = 0.219788839894465, `1` = 0.312084464042214, `2` = 0.468126696063321), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55f1f8151070>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─kdry::mlh_reshape(dataset) at test-mlh.R:70:5
2. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
3. │ └─data.table:::`[.data.table`(...)
4. └─base::which.max(.SD)
5. ├─base::xtfrm(`<data.table>`)
6. └─base::xtfrm.data.frame(`<data.table>`)
[ FAIL 1 | WARN 0 | SKIP 6 | PASS 71 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.0.2
Check: examples
Result: ERROR
Running examples in ‘kdry-Ex.R’ failed
The error most likely occurred in:
> ### Name: mlh_reshape
> ### Title: mlh_reshape
> ### Aliases: mlh_reshape
>
> ### ** Examples
>
> set.seed(123)
> class_0 <- rbeta(100, 2, 4)
> class_1 <- (1 - class_0) * 0.4
> class_2 <- (1 - class_0) * 0.6
> dataset <- cbind("0" = class_0, "1" = class_1, "2" = class_2)
> mlh_reshape(dataset)
Error in xtfrm.data.frame(list(`0` = 0.219788839894465, `1` = 0.312084464042214, :
cannot xtfrm data frames
Calls: mlh_reshape ... [.data.table -> which.max -> xtfrm -> xtfrm.data.frame
Execution halted
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc
Version: 0.0.2
Check: tests
Result: ERROR
Running ‘testthat.R’ [9s/10s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> library(testthat)
> library(kdry)
>
> test_check("kdry")
Saving _problems/test-mlh-70.R
[ FAIL 1 | WARN 0 | SKIP 6 | PASS 71 ]
══ Skipped tests (6) ═══════════════════════════════════════════════════════════
• On CRAN (6): 'test-lints.R:10:5', 'test-rep.R:3:1', 'test-rep.R:22:1',
'test-rep.R:42:1', 'test-rep.R:61:1', 'test-rep.R:75:1'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-mlh.R:70:5'): test mlh - mlh_outsample_row_indices ─────────────
Error in `xtfrm.data.frame(structure(list(`0` = 0.219788839894465, `1` = 0.312084464042214, `2` = 0.468126696063321), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x5638be2b5d10>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─kdry::mlh_reshape(dataset) at test-mlh.R:70:5
2. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
3. │ └─data.table:::`[.data.table`(...)
4. └─base::which.max(.SD)
5. ├─base::xtfrm(`<data.table>`)
6. └─base::xtfrm.data.frame(`<data.table>`)
[ FAIL 1 | WARN 0 | SKIP 6 | PASS 71 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.0.2
Check: tests
Result: ERROR
Running ‘testthat.R’ [10s/12s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> library(testthat)
> library(kdry)
>
> test_check("kdry")
Saving _problems/test-mlh-70.R
[ FAIL 1 | WARN 0 | SKIP 6 | PASS 71 ]
══ Skipped tests (6) ═══════════════════════════════════════════════════════════
• On CRAN (6): 'test-lints.R:10:5', 'test-rep.R:3:1', 'test-rep.R:22:1',
'test-rep.R:42:1', 'test-rep.R:61:1', 'test-rep.R:75:1'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-mlh.R:70:5'): test mlh - mlh_outsample_row_indices ─────────────
Error in `xtfrm.data.frame(structure(list(`0` = 0.219788839894465, `1` = 0.312084464042214, `2` = 0.468126696063321), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x2a850550>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─kdry::mlh_reshape(dataset) at test-mlh.R:70:5
2. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
3. │ └─data.table:::`[.data.table`(...)
4. └─base::which.max(.SD)
5. ├─base::xtfrm(`<dt[,3]>`)
6. └─base::xtfrm.data.frame(`<dt[,3]>`)
[ FAIL 1 | WARN 0 | SKIP 6 | PASS 71 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc
Current CRAN status: ERROR: 1, OK: 12
Version: 0.0.8
Check: examples
Result: ERROR
Running examples in 'mlexperiments-Ex.R' failed
The error most likely occurred in:
> ### Name: performance
> ### Title: performance
> ### Aliases: performance
>
> ### ** Examples
>
> dataset <- do.call(
+ cbind,
+ c(sapply(paste0("col", 1:6), function(x) {
+ rnorm(n = 500)
+ },
+ USE.NAMES = TRUE,
+ simplify = FALSE
+ ),
+ list(target = sample(0:1, 500, TRUE))
+ ))
>
> fold_list <- splitTools::create_folds(
+ y = dataset[, 7],
+ k = 3,
+ type = "stratified",
+ seed = 123
+ )
>
> glm_optimization <- mlexperiments::MLCrossValidation$new(
+ learner = LearnerGlm$new(),
+ fold_list = fold_list,
+ seed = 123
+ )
>
> glm_optimization$learner_args <- list(family = binomial(link = "logit"))
> glm_optimization$predict_args <- list(type = "response")
> glm_optimization$performance_metric_args <- list(
+ positive = "1",
+ negative = "0"
+ )
> glm_optimization$performance_metric <- list(
+ auc = metric("AUC"), sensitivity = metric("TPR"),
+ specificity = metric("TNR")
+ )
> glm_optimization$return_models <- TRUE
>
> # set data
> glm_optimization$set_data(
+ x = data.matrix(dataset[, -7]),
+ y = dataset[, 7]
+ )
>
> cv_results <- glm_optimization$execute()
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
>
> # predictions
> preds <- mlexperiments::predictions(
+ object = glm_optimization,
+ newdata = data.matrix(dataset[, -7]),
+ na.rm = FALSE,
+ ncores = 2L,
+ type = "response"
+ )
Error in `[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), :
attempt access index 3/3 in VECTOR_ELT
Calls: <Anonymous> -> [ -> [.data.table
Execution halted
Flavor: r-devel-windows-x86_64
Version: 0.0.8
Check: tests
Result: ERROR
Running 'testthat.R' [296s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> Sys.setenv("OMP_THREAD_LIMIT" = 2)
> Sys.setenv("Ncpu" = 2)
>
> library(testthat)
> library(mlexperiments)
>
> test_check("mlexperiments")
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold4
CV fold: Fold5
Testing for identical folds in 2 and 1.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerGlm'.
Saving _problems/test-glm_predictions-79.R
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold4
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold5
Parameter 'ncores' is ignored for learner 'LearnerLm'.
Saving _problems/test-glm_predictions-188.R
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 22.5 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.64 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 23.36 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.64 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
Registering parallel backend using 2 cores.
Running initial scoring function 4 times in 2 thread(s)... 8.95 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.52 seconds
3) Running FUN 2 times in 2 thread(s)... 3.55 seconds
CV fold: Fold1
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 8.58 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.57 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold2
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 8.45 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.56 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 11 times in 2 thread(s)... 8.23 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.58 seconds
Noise could not be added to find unique parameter set. Stopping process and returning results so far.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold2
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold3
Parameter 'ncores' is ignored for learner 'LearnerLm'.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 18.5 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.45 seconds
3) Running FUN 2 times in 2 thread(s)... 3.5 seconds
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.56 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.47 seconds
3) Running FUN 2 times in 2 thread(s)... 1.36 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.78 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.46 seconds
3) Running FUN 2 times in 2 thread(s)... 1.46 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 9.33 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.47 seconds
3) Running FUN 2 times in 2 thread(s)... 1.5 seconds
CV fold: Fold1
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold2
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold3
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
Classification: using 'mean misclassification error' as optimization metric.
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 2.76 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.49 seconds
3) Running FUN 2 times in 2 thread(s)... 0.18 seconds
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 2.75 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.45 seconds
3) Running FUN 2 times in 2 thread(s)... 0.24 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 2.79 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.42 seconds
3) Running FUN 2 times in 2 thread(s)... 0.19 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 2.78 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.46 seconds
3) Running FUN 2 times in 2 thread(s)... 0.19 seconds
CV fold: Fold1
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold2
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold3
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
[ FAIL 2 | WARN 0 | SKIP 1 | PASS 68 ]
══ Skipped tests (1) ═══════════════════════════════════════════════════════════
• On CRAN (1): 'test-lints.R:10:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-glm_predictions.R:73:5'): test predictions, binary - glm ───────
Error in ``[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), sd = stats::sd(as.numeric(.SD), na.rm = na.rm)), .SDcols = colnames(res), by = seq_len(nrow(res)))`: attempt access index 5/5 in VECTOR_ELT
Backtrace:
▆
1. └─mlexperiments::predictions(...) at test-glm_predictions.R:73:5
2. ├─...[]
3. └─data.table:::`[.data.table`(...)
── Error ('test-glm_predictions.R:182:5'): test predictions, regression - lm ───
Error in ``[.data.table`(res, , `:=`(mean = mean(as.numeric(.SD), na.rm = na.rm), sd = stats::sd(as.numeric(.SD), na.rm = na.rm)), .SDcols = colnames(res), by = seq_len(nrow(res)))`: attempt access index 5/5 in VECTOR_ELT
Backtrace:
▆
1. └─mlexperiments::predictions(...) at test-glm_predictions.R:182:5
2. ├─...[]
3. └─data.table:::`[.data.table`(...)
[ FAIL 2 | WARN 0 | SKIP 1 | PASS 68 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-windows-x86_64
Current CRAN status: ERROR: 4, OK: 9
Version: 0.0.7
Check: tests
Result: ERROR
Running ‘testthat.R’ [65s/265s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
> # https://github.com/Rdatatable/data.table/issues/5658
> Sys.setenv("OMP_THREAD_LIMIT" = 2)
> Sys.setenv("Ncpu" = 2)
>
> library(testthat)
> library(mllrnrs)
>
> test_check("mllrnrs")
CV fold: Fold1
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 7.55 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 12.845 seconds
3) Running FUN 2 times in 2 thread(s)... 0.554 seconds
OMP: Warning #96: Cannot form a team with 3 threads, using 2 instead.
OMP: Hint Consider unsetting KMP_DEVICE_THREAD_LIMIT (KMP_ALL_THREADS), KMP_TEAMS_THREAD_LIMIT, and OMP_THREAD_LIMIT (if any are set).
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.346 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 12.369 seconds
3) Running FUN 2 times in 2 thread(s)... 0.702 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.193 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 17.069 seconds
3) Running FUN 2 times in 2 thread(s)... 0.607 seconds
CV fold: Fold1
Classification: using 'mean classification error' as optimization metric.
Saving _problems/test-binary-287.R
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Saving _problems/test-multiclass-162.R
CV fold: Fold1
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold2
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold3
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold1
Saving _problems/test-multiclass-294.R
CV fold: Fold1
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 6.892 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.903 seconds
3) Running FUN 2 times in 2 thread(s)... 0.922 seconds
CV fold: Fold2
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 7.493 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.249 seconds
3) Running FUN 2 times in 2 thread(s)... 0.592 seconds
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 6.746 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.353 seconds
3) Running FUN 2 times in 2 thread(s)... 0.942 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold2
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold3
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 9.821 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 21.466 seconds
3) Running FUN 2 times in 2 thread(s)... 1.08 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 9.533 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 3.618 seconds
3) Running FUN 2 times in 2 thread(s)... 0.994 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.939 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 31.815 seconds
3) Running FUN 2 times in 2 thread(s)... 0.942 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
[ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ]
══ Skipped tests (3) ═══════════════════════════════════════════════════════════
• On CRAN (3): 'test-binary.R:57:5', 'test-lints.R:10:5',
'test-multiclass.R:57:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-binary.R:287:5'): test nested cv, grid, binary - ranger ────────
Error in `xtfrm.data.frame(structure(list(`0` = 0.379858310721837, `1` = 0.620141689278164), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55c38be73fe0>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─ranger_optimizer$execute() at test-binary.R:287:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─hparam_tuner$execute(k = self$k_tuning)
9. │ └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer)
10. │ └─mlexperiments:::.run_optimizer(...)
11. │ └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper)
12. │ ├─base::do.call(...)
13. │ └─mlexperiments (local) `<fn>`(...)
14. │ └─base::lapply(...)
15. │ └─mlexperiments (local) FUN(X[[i]], ...)
16. │ ├─base::do.call(FUN, fun_parameters)
17. │ └─mlexperiments (local) `<fn>`(...)
18. │ ├─base::do.call(private$fun_optim_cv, kwargs)
19. │ └─mllrnrs (local) `<fn>`(...)
20. │ ├─base::do.call(ranger_predict, pred_args)
21. │ └─mllrnrs (local) `<fn>`(...)
22. │ └─kdry::mlh_reshape(preds)
23. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
24. │ └─data.table:::`[.data.table`(...)
25. └─base::which.max(.SD)
26. ├─base::xtfrm(`<dt[,2]>`)
27. └─base::xtfrm.data.frame(`<dt[,2]>`)
── Error ('test-multiclass.R:162:5'): test nested cv, grid, multiclass - lightgbm ──
Error in `xtfrm.data.frame(structure(list(`0` = 0.20774260202068, `1` = 0.136781829323219, `2` = 0.655475568656101), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55c38be73fe0>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─lightgbm_optimizer$execute() at test-multiclass.R:162:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─mlexperiments:::.cv_fit_model(...)
9. │ ├─base::do.call(self$learner$predict, pred_args)
10. │ └─mlexperiments (local) `<fn>`(...)
11. │ ├─base::do.call(private$fun_predict, kwargs)
12. │ └─mllrnrs (local) `<fn>`(...)
13. │ └─kdry::mlh_reshape(preds)
14. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
15. │ └─data.table:::`[.data.table`(...)
16. └─base::which.max(.SD)
17. ├─base::xtfrm(`<dt[,3]>`)
18. └─base::xtfrm.data.frame(`<dt[,3]>`)
── Error ('test-multiclass.R:294:5'): test nested cv, grid, multi:softprob - xgboost, with weights ──
Error in `xtfrm.data.frame(structure(list(`0` = 0.250160574913025, `1` = 0.124035485088825, `2` = 0.62580394744873), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55c38be73fe0>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─xgboost_optimizer$execute() at test-multiclass.R:294:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─mlexperiments:::.cv_fit_model(...)
9. │ ├─base::do.call(self$learner$predict, pred_args)
10. │ └─mlexperiments (local) `<fn>`(...)
11. │ ├─base::do.call(private$fun_predict, kwargs)
12. │ └─mllrnrs (local) `<fn>`(...)
13. │ └─kdry::mlh_reshape(preds)
14. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
15. │ └─data.table:::`[.data.table`(...)
16. └─base::which.max(.SD)
17. ├─base::xtfrm(`<dt[,3]>`)
18. └─base::xtfrm.data.frame(`<dt[,3]>`)
[ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-debian-clang
Version: 0.0.7
Check: tests
Result: ERROR
Running ‘testthat.R’ [51s/164s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
> # https://github.com/Rdatatable/data.table/issues/5658
> Sys.setenv("OMP_THREAD_LIMIT" = 2)
> Sys.setenv("Ncpu" = 2)
>
> library(testthat)
> library(mllrnrs)
>
> test_check("mllrnrs")
CV fold: Fold1
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 5.368 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 6.117 seconds
3) Running FUN 2 times in 2 thread(s)... 0.573 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 4.949 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 4.889 seconds
3) Running FUN 2 times in 2 thread(s)... 0.512 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 4.947 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 8.056 seconds
3) Running FUN 2 times in 2 thread(s)... 0.56 seconds
CV fold: Fold1
Classification: using 'mean classification error' as optimization metric.
Saving _problems/test-binary-287.R
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Saving _problems/test-multiclass-162.R
CV fold: Fold1
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold2
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold3
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold1
Saving _problems/test-multiclass-294.R
CV fold: Fold1
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 3.782 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 0.693 seconds
3) Running FUN 2 times in 2 thread(s)... 0.463 seconds
CV fold: Fold2
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 4.265 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.099 seconds
3) Running FUN 2 times in 2 thread(s)... 0.546 seconds
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 4.314 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.443 seconds
3) Running FUN 2 times in 2 thread(s)... 1.494 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold2
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold3
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 7.904 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 10.589 seconds
3) Running FUN 2 times in 2 thread(s)... 0.596 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 5.377 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.315 seconds
3) Running FUN 2 times in 2 thread(s)... 0.612 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 5.5 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 16.422 seconds
3) Running FUN 2 times in 2 thread(s)... 0.861 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
[ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ]
══ Skipped tests (3) ═══════════════════════════════════════════════════════════
• On CRAN (3): 'test-binary.R:57:5', 'test-lints.R:10:5',
'test-multiclass.R:57:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-binary.R:287:5'): test nested cv, grid, binary - ranger ────────
Error in `xtfrm.data.frame(structure(list(`0` = 0.379858310721837, `1` = 0.620141689278164), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x556d81434070>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─ranger_optimizer$execute() at test-binary.R:287:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─hparam_tuner$execute(k = self$k_tuning)
9. │ └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer)
10. │ └─mlexperiments:::.run_optimizer(...)
11. │ └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper)
12. │ ├─base::do.call(...)
13. │ └─mlexperiments (local) `<fn>`(...)
14. │ └─base::lapply(...)
15. │ └─mlexperiments (local) FUN(X[[i]], ...)
16. │ ├─base::do.call(FUN, fun_parameters)
17. │ └─mlexperiments (local) `<fn>`(...)
18. │ ├─base::do.call(private$fun_optim_cv, kwargs)
19. │ └─mllrnrs (local) `<fn>`(...)
20. │ ├─base::do.call(ranger_predict, pred_args)
21. │ └─mllrnrs (local) `<fn>`(...)
22. │ └─kdry::mlh_reshape(preds)
23. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
24. │ └─data.table:::`[.data.table`(...)
25. └─base::which.max(.SD)
26. ├─base::xtfrm(`<dt[,2]>`)
27. └─base::xtfrm.data.frame(`<dt[,2]>`)
── Error ('test-multiclass.R:162:5'): test nested cv, grid, multiclass - lightgbm ──
Error in `xtfrm.data.frame(structure(list(`0` = 0.20774260202068, `1` = 0.136781829323219, `2` = 0.655475568656101), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x556d81434070>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─lightgbm_optimizer$execute() at test-multiclass.R:162:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─mlexperiments:::.cv_fit_model(...)
9. │ ├─base::do.call(self$learner$predict, pred_args)
10. │ └─mlexperiments (local) `<fn>`(...)
11. │ ├─base::do.call(private$fun_predict, kwargs)
12. │ └─mllrnrs (local) `<fn>`(...)
13. │ └─kdry::mlh_reshape(preds)
14. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
15. │ └─data.table:::`[.data.table`(...)
16. └─base::which.max(.SD)
17. ├─base::xtfrm(`<dt[,3]>`)
18. └─base::xtfrm.data.frame(`<dt[,3]>`)
── Error ('test-multiclass.R:294:5'): test nested cv, grid, multi:softprob - xgboost, with weights ──
Error in `xtfrm.data.frame(structure(list(`0` = 0.250160574913025, `1` = 0.124035485088825, `2` = 0.62580394744873), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x556d81434070>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─xgboost_optimizer$execute() at test-multiclass.R:294:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─mlexperiments:::.cv_fit_model(...)
9. │ ├─base::do.call(self$learner$predict, pred_args)
10. │ └─mlexperiments (local) `<fn>`(...)
11. │ ├─base::do.call(private$fun_predict, kwargs)
12. │ └─mllrnrs (local) `<fn>`(...)
13. │ └─kdry::mlh_reshape(preds)
14. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
15. │ └─data.table:::`[.data.table`(...)
16. └─base::which.max(.SD)
17. ├─base::xtfrm(`<dt[,3]>`)
18. └─base::xtfrm.data.frame(`<dt[,3]>`)
[ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 0.0.7
Check: tests
Result: ERROR
Running ‘testthat.R’ [87s/239s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
> # https://github.com/Rdatatable/data.table/issues/5658
> Sys.setenv("OMP_THREAD_LIMIT" = 2)
> Sys.setenv("Ncpu" = 2)
>
> library(testthat)
> library(mllrnrs)
>
> test_check("mllrnrs")
CV fold: Fold1
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 10.758 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 16.779 seconds
3) Running FUN 2 times in 2 thread(s)... 0.785 seconds
OMP: Warning #96: Cannot form a team with 24 threads, using 2 instead.
OMP: Hint Consider unsetting KMP_DEVICE_THREAD_LIMIT (KMP_ALL_THREADS), KMP_TEAMS_THREAD_LIMIT, and OMP_THREAD_LIMIT (if any are set).
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 10.313 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 12.87 seconds
3) Running FUN 2 times in 2 thread(s)... 0.662 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.89 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 19.163 seconds
3) Running FUN 2 times in 2 thread(s)... 0.693 seconds
CV fold: Fold1
Classification: using 'mean classification error' as optimization metric.
Saving _problems/test-binary-287.R
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Saving _problems/test-multiclass-162.R
CV fold: Fold1
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold2
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold3
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold1
Saving _problems/test-multiclass-294.R
CV fold: Fold1
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 6.836 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.372 seconds
3) Running FUN 2 times in 2 thread(s)... 0.726 seconds
CV fold: Fold2
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 6.552 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.395 seconds
3) Running FUN 2 times in 2 thread(s)... 0.625 seconds
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 6.515 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.189 seconds
3) Running FUN 2 times in 2 thread(s)... 0.693 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold2
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold3
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 7.849 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 20.789 seconds
3) Running FUN 2 times in 2 thread(s)... 0.838 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 7.109 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 8.6 seconds
3) Running FUN 2 times in 2 thread(s)... 0.661 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 7.097 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 13.924 seconds
3) Running FUN 2 times in 2 thread(s)... 0.566 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
[ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ]
══ Skipped tests (3) ═══════════════════════════════════════════════════════════
• On CRAN (3): 'test-binary.R:57:5', 'test-lints.R:10:5',
'test-multiclass.R:57:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-binary.R:287:5'): test nested cv, grid, binary - ranger ────────
Error in `xtfrm.data.frame(structure(list(`0` = 0.403024198843656, `1` = 0.596975801156344), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55c52180ed10>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─ranger_optimizer$execute() at test-binary.R:287:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─hparam_tuner$execute(k = self$k_tuning)
9. │ └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer)
10. │ └─mlexperiments:::.run_optimizer(...)
11. │ └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper)
12. │ ├─base::do.call(...)
13. │ └─mlexperiments (local) `<fn>`(...)
14. │ └─base::lapply(...)
15. │ └─mlexperiments (local) FUN(X[[i]], ...)
16. │ ├─base::do.call(FUN, fun_parameters)
17. │ └─mlexperiments (local) `<fn>`(...)
18. │ ├─base::do.call(private$fun_optim_cv, kwargs)
19. │ └─mllrnrs (local) `<fn>`(...)
20. │ ├─base::do.call(ranger_predict, pred_args)
21. │ └─mllrnrs (local) `<fn>`(...)
22. │ └─kdry::mlh_reshape(preds)
23. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
24. │ └─data.table:::`[.data.table`(...)
25. └─base::which.max(.SD)
26. ├─base::xtfrm(`<dt[,2]>`)
27. └─base::xtfrm.data.frame(`<dt[,2]>`)
── Error ('test-multiclass.R:162:5'): test nested cv, grid, multiclass - lightgbm ──
Error in `xtfrm.data.frame(structure(list(`0` = 0.20774260202068, `1` = 0.136781829323219, `2` = 0.655475568656101), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55c52180ed10>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─lightgbm_optimizer$execute() at test-multiclass.R:162:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─mlexperiments:::.cv_fit_model(...)
9. │ ├─base::do.call(self$learner$predict, pred_args)
10. │ └─mlexperiments (local) `<fn>`(...)
11. │ ├─base::do.call(private$fun_predict, kwargs)
12. │ └─mllrnrs (local) `<fn>`(...)
13. │ └─kdry::mlh_reshape(preds)
14. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
15. │ └─data.table:::`[.data.table`(...)
16. └─base::which.max(.SD)
17. ├─base::xtfrm(`<dt[,3]>`)
18. └─base::xtfrm.data.frame(`<dt[,3]>`)
── Error ('test-multiclass.R:294:5'): test nested cv, grid, multi:softprob - xgboost, with weights ──
Error in `xtfrm.data.frame(structure(list(`0` = 0.274507701396942, `1` = 0.12648206949234, `2` = 0.599010229110718), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x55c52180ed10>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─xgboost_optimizer$execute() at test-multiclass.R:294:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─mlexperiments:::.cv_fit_model(...)
9. │ ├─base::do.call(self$learner$predict, pred_args)
10. │ └─mlexperiments (local) `<fn>`(...)
11. │ ├─base::do.call(private$fun_predict, kwargs)
12. │ └─mllrnrs (local) `<fn>`(...)
13. │ └─kdry::mlh_reshape(preds)
14. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
15. │ └─data.table:::`[.data.table`(...)
16. └─base::which.max(.SD)
17. ├─base::xtfrm(`<dt[,3]>`)
18. └─base::xtfrm.data.frame(`<dt[,3]>`)
[ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-clang
Version: 0.0.7
Check: tests
Result: ERROR
Running ‘testthat.R’ [81s/272s]
Running the tests in ‘tests/testthat.R’ failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
> # https://github.com/Rdatatable/data.table/issues/5658
> Sys.setenv("OMP_THREAD_LIMIT" = 2)
> Sys.setenv("Ncpu" = 2)
>
> library(testthat)
> library(mllrnrs)
>
> test_check("mllrnrs")
CV fold: Fold1
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 13.936 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 15.599 seconds
3) Running FUN 2 times in 2 thread(s)... 1.026 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 9.67 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 13.19 seconds
3) Running FUN 2 times in 2 thread(s)... 0.761 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.648 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 18.391 seconds
3) Running FUN 2 times in 2 thread(s)... 0.758 seconds
CV fold: Fold1
Classification: using 'mean classification error' as optimization metric.
Saving _problems/test-binary-287.R
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Saving _problems/test-multiclass-162.R
CV fold: Fold1
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold2
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold3
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
Classification: using 'mean classification error' as optimization metric.
CV fold: Fold1
Saving _problems/test-multiclass-294.R
CV fold: Fold1
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 7.741 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 1.538 seconds
3) Running FUN 2 times in 2 thread(s)... 0.699 seconds
CV fold: Fold2
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 7.22 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.107 seconds
3) Running FUN 2 times in 2 thread(s)... 0.672 seconds
CV fold: Fold3
Registering parallel backend using 2 cores.
Running initial scoring function 5 times in 2 thread(s)... 7.472 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 2.057 seconds
3) Running FUN 2 times in 2 thread(s)... 0.569 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
CV fold: Fold1
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold2
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold3
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
Regression: using 'mean squared error' as optimization metric.
CV fold: Fold1
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.488 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 14.291 seconds
3) Running FUN 2 times in 2 thread(s)... 0.902 seconds
CV fold: Fold2
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 8.278 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 4.069 seconds
3) Running FUN 2 times in 2 thread(s)... 1.247 seconds
CV fold: Fold3
Number of rows of initialization grid > than 'options("mlexperiments.bayesian.max_init")'...
... reducing initialization grid to 10 rows.
Registering parallel backend using 2 cores.
Running initial scoring function 10 times in 2 thread(s)... 10.291 seconds
Starting Epoch 1
1) Fitting Gaussian Process...
2) Running local optimum search... 37.276 seconds
3) Running FUN 2 times in 2 thread(s)... 1.041 seconds
CV fold: Fold1
CV fold: Fold2
CV fold: Fold3
[ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ]
══ Skipped tests (3) ═══════════════════════════════════════════════════════════
• On CRAN (3): 'test-binary.R:57:5', 'test-lints.R:10:5',
'test-multiclass.R:57:5'
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test-binary.R:287:5'): test nested cv, grid, binary - ranger ────────
Error in `xtfrm.data.frame(structure(list(`0` = 0.379858310721837, `1` = 0.620141689278164), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x20a9e550>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─ranger_optimizer$execute() at test-binary.R:287:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─hparam_tuner$execute(k = self$k_tuning)
9. │ └─mlexperiments:::.run_tuning(self = self, private = private, optimizer = optimizer)
10. │ └─mlexperiments:::.run_optimizer(...)
11. │ └─optimizer$execute(x = private$x, y = private$y, method_helper = private$method_helper)
12. │ ├─base::do.call(...)
13. │ └─mlexperiments (local) `<fn>`(...)
14. │ └─base::lapply(...)
15. │ └─mlexperiments (local) FUN(X[[i]], ...)
16. │ ├─base::do.call(FUN, fun_parameters)
17. │ └─mlexperiments (local) `<fn>`(...)
18. │ ├─base::do.call(private$fun_optim_cv, kwargs)
19. │ └─mllrnrs (local) `<fn>`(...)
20. │ ├─base::do.call(ranger_predict, pred_args)
21. │ └─mllrnrs (local) `<fn>`(...)
22. │ └─kdry::mlh_reshape(preds)
23. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
24. │ └─data.table:::`[.data.table`(...)
25. └─base::which.max(.SD)
26. ├─base::xtfrm(`<dt[,2]>`)
27. └─base::xtfrm.data.frame(`<dt[,2]>`)
── Error ('test-multiclass.R:162:5'): test nested cv, grid, multiclass - lightgbm ──
Error in `xtfrm.data.frame(structure(list(`0` = 0.20774260202068, `1` = 0.136781829323219, `2` = 0.655475568656101), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x20a9e550>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─lightgbm_optimizer$execute() at test-multiclass.R:162:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─mlexperiments:::.cv_fit_model(...)
9. │ ├─base::do.call(self$learner$predict, pred_args)
10. │ └─mlexperiments (local) `<fn>`(...)
11. │ ├─base::do.call(private$fun_predict, kwargs)
12. │ └─mllrnrs (local) `<fn>`(...)
13. │ └─kdry::mlh_reshape(preds)
14. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
15. │ └─data.table:::`[.data.table`(...)
16. └─base::which.max(.SD)
17. ├─base::xtfrm(`<dt[,3]>`)
18. └─base::xtfrm.data.frame(`<dt[,3]>`)
── Error ('test-multiclass.R:294:5'): test nested cv, grid, multi:softprob - xgboost, with weights ──
Error in `xtfrm.data.frame(structure(list(`0` = 0.250160574913025, `1` = 0.124035485088825, `2` = 0.62580394744873), row.names = c(NA, -1L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x20a9e550>, .data.table.locked = TRUE))`: cannot xtfrm data frames
Backtrace:
▆
1. ├─xgboost_optimizer$execute() at test-multiclass.R:294:5
2. │ └─mlexperiments:::.run_cv(self = self, private = private)
3. │ └─mlexperiments:::.fold_looper(self, private)
4. │ ├─base::do.call(private$cv_run_model, run_args)
5. │ └─mlexperiments (local) `<fn>`(train_index = `<int>`, fold_train = `<named list>`, fold_test = `<named list>`)
6. │ ├─base::do.call(.cv_run_nested_model, args)
7. │ └─mlexperiments (local) `<fn>`(...)
8. │ └─mlexperiments:::.cv_fit_model(...)
9. │ ├─base::do.call(self$learner$predict, pred_args)
10. │ └─mlexperiments (local) `<fn>`(...)
11. │ ├─base::do.call(private$fun_predict, kwargs)
12. │ └─mllrnrs (local) `<fn>`(...)
13. │ └─kdry::mlh_reshape(preds)
14. │ ├─data.table::as.data.table(object)[, cn[which.max(.SD)], by = seq_len(nrow(object))]
15. │ └─data.table:::`[.data.table`(...)
16. └─base::which.max(.SD)
17. ├─base::xtfrm(`<dt[,3]>`)
18. └─base::xtfrm.data.frame(`<dt[,3]>`)
[ FAIL 3 | WARN 0 | SKIP 3 | PASS 25 ]
Error:
! Test failures.
Execution halted
Flavor: r-devel-linux-x86_64-fedora-gcc
Current CRAN status: OK: 13
Current CRAN status: OK: 13
Current CRAN status: OK: 13