
Package ‘BayesPET’
February 12, 2026

Title Bayesian Prediction of Event Times for Blinded Randomized
Controlled Trials

Version 0.1.0

Date 2026-02-04

Description Bayesian methods for predicting the calendar time at which a target num-
ber of events is reached in clinical trials. The methodology applies to both blinded and un-
blinded settings and jointly models enrollment, event-time, and censoring processes. The pack-
age provides tools for trial data simulation, model fitting using 'Stan' via the 'rstan' inter-
face, and event time prediction under a wide range of trial designs, including varying sam-
ple sizes, enrollment patterns, treatment effects, and event or censoring time distribu-
tions. The package is intended to support interim monitoring, operational planning, and decision-
making in clinical trial development. Methods are de-
scribed in Fu et al. (2025) <doi:10.1002/sim.70310>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.3

Biarch true

Depends R (>= 4.1.0)

Imports dplyr, magrittr, methods, Rcpp (>= 0.12.0), RcppParallel (>=
5.0.1), rstan (>= 2.18.1), utils, furrr, future, readr, tibble,
tidyr, reshape2

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>=
2.18.0)

SystemRequirements GNU make

LazyData true

NeedsCompilation yes

Author Xinyi He [cre, aut],
Jingyan Fu [aut],
Ying Yuan [aut, cph]

Maintainer Xinyi He <xinyi.he@uth.tmc.edu>

1

https://doi.org/10.1002/sim.70310

2 BayesPET-package

Repository CRAN

Date/Publication 2026-02-12 08:00:26 UTC

Contents
BayesPET-package . 2
convert_median . 3
data_example . 6
fit_censor . 8
fit_enroll . 10
fit_event_blind . 13
fit_event_unblind . 16
fit_models . 19
generate_data . 23
get_oc . 27
plot.BayesPET_predtime . 32
predict_eventtime . 33
print.BayesPET_fit . 37
print.BayesPET_predtime . 38
summary.BayesPET_oc . 39
summary.BayesPET_predtime . 41

Index 43

BayesPET-package BayesPET: Bayesian Prediction of Event Times for Blinded Random-
ized Controlled Trials

Description

The package implements Bayesian models for predicting the calendar time at which a target number
of events is reached in clinical trials. The methodology applies to both blinded and unblinded
settings and jointly models enrollment, event-time, and censoring processes.

Details

The package provides tools for trial data simulation, model fitting using ’Stan’ via the ’rstan’ inter-
face, and event time prediction under a wide range of trial designs, including varying sample sizes,
enrollment patterns, treatment effects, and event or censoring time distributions. The package is
intended to support interim monitoring, operational planning, and decision-making in clinical trial
development. For details, please refer to Fu et al. (2025) doi:10.1002/sim.70310.

Author(s)

Xinyi He <xinyi.he@uth.tmc.edu>, Jingyan Fu, and Ying Yuan

https://doi.org/10.1002/sim.70310

convert_median 3

References

Fu, J., Zhao, D., Skanji, D., Liu, H., Tang, R. S., and Yuan, Y. (2025). Bayesian Prediction of Event
Times Using Mixture Model for Blinded Randomized Controlled Trials. Statistics in Medicine,
44(28–30), e70310. doi:10.1002/sim.70310

Stan Development Team (2023). RStan: The R Interface to Stan. R package version 2.32.7. https:
//mc-stan.org

convert_median Solve baseline survival parameters by matching the marginal median
survival time

Description

In practice, it is sometimes more convenient to work with a marginal (population-level) median
survival time. This function solves for exactly one unknown baseline quantity - shape, scale, or
median - in a proportional hazards (PH) survival model with either a Weibull or log-logistic baseline
distribution, given the other two.

When covariates are provided, median is interpreted as the marginal (population-level) median
survival time defined implicitly by

EZ{S(median | Z)} = 0.5

and the unknown quantity is obtained by Monte Carlo integration over the covariate distribution.

Usage

convert_median(
distribution = "Weibull",
shape,
median,
scale,
cov_type = NULL,
cov_dist = NULL,
beta = NULL,
S = 20000,
seed.solveparam = 123,
interval = if (is.null(scale)) c(1e-15, 100) else c(1e-06, 20000),
tol = .Machine$double.eps^0.25,
maxiter = 1000

)

Arguments

distribution Character string specifying the baseline survival distribution. Must be either
"Weibull" or "Loglogistic" (log-logistic). Defaults to "Weibull".

https://doi.org/10.1002/sim.70310
https://mc-stan.org
https://mc-stan.org

4 convert_median

shape Positive numeric scalar. Baseline shape parameter. For distribution =
"Weibull", this corresponds to the Weibull shape ρ. For distribution =
"Loglogistic", this corresponds to the log-logistic shape a. Set to NULL to
solve for the shape.

median Positive numeric scalar. Median survival time. If covariates are provided, this is
the marginal (population) median m defined by

EZ{S(m | Z)} = 0.5,

where Z denotes the covariate vector and the expectation is taken with respect
to the covariate distribution implied by cov_type and cov_dist. Set to NULL to
solve for median.

scale Positive numeric scalar. Baseline scale parameter. For "Weibull", this is the
Weibull scale parameter λ0. For "Loglogistic", this is the log-logistic scale b.
Set to NULL to solve for the scale.

cov_type Character vector specifying the distribution for each component of the covariate
vector Z = (Z1, . . . , Zp) used in the proportional hazards model. Each element
must be "binary" or "continuous". If NULL (default), no covariates are used.

cov_dist Numeric vector of the same length as cov_type, giving parameters for the
covariate-generating distribution of each Zj :

• "binary": Zj ∼ Bernoulli(pj) with pj = cov_dist[j].
• "continuous": Zj ∼ N(0, σ2

j) with σj = cov_dist[j].

If NULL (default), no covariates are used.

beta Numeric vector of regression coefficients β in the proportional hazards linear
predictor Z⊤β. Must have the same length as cov_type. If NULL (default), no
covariates are used.

S Integer. Monte Carlo sample size used to approximate the marginal survival
when covariates are provided. Defaults to 20000.

seed.solveparam

Integer random seed for covariate simulation; if NULL, the RNG state is not reset.
Defaults to 123.

interval Numeric vector of length 2 giving the lower and upper bounds passed to uniroot
for the root-finding procedure used to solve for the unknown parameter (shape,
scale, or median). The interval must bracket the true solution, i.e., the function
values at the two endpoints must have opposite signs. Defaults to c(1e-15,
100) when scale = NULL and c(1e-6, 20000) otherwise.

tol Numeric scalar. Defaults to .Machine$double.eps^0.25. Convergence toler-
ance passed to uniroot.

maxiter Integer giving the maximum number of iterations allowed for uniroot. An error
is raised if the algorithm fails to converge within this limit. Defaults to 1000.

Details

The proportional hazards (PH) model assumes that, conditional on a covariate vector Z, the hazard
function satisfies

h(t | Z) = h0(t) exp(Z
⊤β)

convert_median 5

for t ≥ 0, where h0(t) is the baseline hazard and β is a vector of regression coefficients.

The baseline model is specified by distribution through the baseline survival function S0(t):

• "Weibull": baseline survival is

S0(t) = exp{−λ0t
ρ}

for t ≥ 0, where ρ > 0 is the shape parameter and λ0 > 0 is the scale parameter. An
equivalent representation used by several standard implementations is

S0(t) = exp{−(t/σ0)
ρ}

for t ≥ 0, where σ0 > 0 is a reparameterization satisfying λ0 = σ−ρ
0 . This latter form is used

by dweibull, phreg, flexsurvreg, and rstan.

• "Loglogistic": baseline survival is

S0(t) = {1 + (t/b)a}−1

for t ≥ 0, where a > 0 is the shape parameter and b > 0 is the scale parameter.

Under the PH assumption, the conditional survival satisfies

S(t | Z) = S0(t)
exp(Z⊤β).

When no covariates are supplied (cov_type = NULL), the median survival time corresponds to the
baseline median and closed-form solutions are available for some distributions.

When covariates are supplied, the median survival time m is interpreted as the marginal (population)
median defined implicitly by

EZ{S(m | Z)} = 0.5,

where the expectation is taken with respect to the covariate distribution implied by cov_type and
cov_dist. This expectation is approximated using Monte Carlo simulation with S draws, and the
unknown parameter is obtained by numerical root finding via uniroot.

Value

A numeric scalar giving the solved parameter:

• the shape parameter if shape = NULL;

• the baseline scale parameter if scale = NULL;

• the median survival time if median = NULL.

See Also

dweibull rllogis

6 data_example

Examples

Weibull: convert a desired median to the corresponding scale parameter
No covariates
convert_median(

distribution = "Weibull",
shape = 3,
median = 5,
scale = NULL,
seed = 123

)
With covariates
convert_median(

distribution = "Weibull",
shape = 3,
median = 5,
scale = NULL,
cov_type = c("binary", "continuous"),
cov_dist = c(0.5, 1),
beta = c(1, 0.5),
seed = 123

)

Log-logistic: convert median to scale when covariates enter the model
convert_median(

distribution = "Loglogistic",
shape = 1.5,
median = 3,
scale = NULL,
cov_type = c("binary", "continuous"),
cov_dist = c(0.5, 1),
beta = c(1, 0.5),
seed = 123

)

data_example Example trial datasets for fitting Stan models and predicting event
times

Description

data_example is a simulated set of trial datasets designed to illustrate a complete analysis work-
flow, including fitting enrollment and survival and censoring models using interim data, and pre-
dicting the calendar time at which a prespecified number of events is expected to be observed.

Context. Consider a two-arm time-to-event trial that plans to enroll N = 200 participants, with
equal randomization between the experimental and control arms. An interim analysis is conducted
after Ecutoff = 75 events have occurred, and the final analysis is planned at Etarget = 150 events.
Based on the data available at the interim analysis, the goal is to predict the calendar time (measured
from the trial start) at which the cumulative number of events will reach Etarget.

data_example 7

The bundle contains:

example_enroll Enrollment information (interarrival times and enrollment status).

example_eventcensor Treatment assignment, follow-up time, event indicator, censoring indica-
tor, and covariates.

Usage

data(data_example)

Format

A named list with two data frames:

example_enroll A data frame with columns:

No Integer subject identifier.

interarrivaltime Interarrival time.

enrollstatus Enrollment status indicator (1 = enrolled, 0 = administratively censored).

example_eventcensor A data frame with columns:

No Integer subject identifier.

trt Treatment assignment indicator (1 = experimental, 0 = control). This column is used
for unblinded analyses and can be ignored or set to NA when fitting blinded event time
models.

time Observed follow-up time (event or censoring time, positive).

eventstatus Event indicator (1 = event, 0 = right-censored).

censorstatus Random censoring indicator (1 = random censoring observed, 0 = no random
censoring, including administrative censoring or observed event).

X1 Binary covariate (0/1).

X2 Continuous covariate.

Source

Simulated data.

Examples

data(data_example)
names(data_example)
head(data_example$example_enroll)
head(data_example$example_eventcensor)

8 fit_censor

fit_censor Fit a Weibull model for random censoring times

Description

Fits a Weibull proportional hazards model for random censoring times and returns posterior draws
of the Weibull shape parameter ρc > 0, the baseline scale parameter λ0c > 0, and, when covariates
are included, the covariate log hazard ratios βc.

Usage

fit_censor(
t_obs,
status_censor,
cov = NULL,
hyperparams_censor = list(),
chains = 4,
iter = 4000,
seed = 2,
refresh = 0,
mc.cores = 1,
warmup = floor(iter/2),
control = list(adapt_delta = 0.95),
return_fit = FALSE,
quiet = TRUE

)

Arguments

t_obs Numeric vector of observed times t∗ci. Must be >0.

status_censor Integer vector of random censoring indicators δci with values 0 or 1. A value of
1 indicates the random censoring time is observed, while 0 indicates administra-
tive censoring or event at t_obs.

cov Optional matrix or data frame of covariates Z. Each row corresponds to a sub-
ject and each column to a covariate. Covariates must be numeric and are treated
as linear effects in the model. Only binary (0/1) and continuous covariates are
supported. Multilevel or categorical variables are not expanded into dummy
variables; if provided as numeric (e.g., factor codes), they are treated as contin-
uous. If NULL (default), a no-covariate Weibull model is fitted.

hyperparams_censor

A named list of prior hyperparameters for the censoring model. If it is empty
(list()), default values are assigned internally.

• alpha_c, beta_c: Shape and rate parameters of the Gamma prior for the
baseline scale parameter λ0c (defaults: 0.1, 0.1).

• alpha_rc, beta_rc: Shape and rate parameters of the Gamma prior for
the baseline shape parameter ρc (defaults: 0.1, 0.1).

fit_censor 9

• mu_bc, sigma_bc: Mean and standard deviation of the Normal prior for
the covariate effects βcj (defaults: 0,

√
10).

No other hyperparameters are allowed.
chains Number of Markov chain Monte Carlo (MCMC) chains. Defaults to 4.
iter Number of iterations per chain (including warmup). Defaults to 4000.
seed Optional integer seed passed to sampling for reproducibility. If NULL, ’Stan’

generates a seed internally and results may differ across runs. Defaults to 2.
refresh Frequency of progress updates from sampling. Set to 0 (default) to suppress

output.
mc.cores Integer. Number of CPU cores to use when executing Markov chains in parallel

via sampling. Defaults to 1. We recommend setting mc.cores to the maximum
number of processors supported by the available hardware and memory, up to
the number of chains.

warmup Number of warmup (burn-in) iterations per chain. Must be strictly smaller than
iter. Defaults to floor(iter / 2).

control A named list of sampler control parameters passed to sampling. Examples
include adapt_delta and max_treedepth. Defaults to list(adapt_delta =
0.95).

return_fit Logical; if TRUE, also return the underlying ’rstan’ stanfit object. Defaults to
FALSE.

quiet Logical. If TRUE (default), suppress messages and diagnostic warnings from
’Stan’ during model fitting. Useful for large simulation studies.

Details

Let Tci denote the censoring time for subject i. Let Zi denote the covariate vector for subject i (the
i-th row of cov when provided). The parameterization has baseline density function

f0c(t) = λ0c ρc t
ρc−1 exp(−λ0ct

ρc), t ≥ 0.

The model assumes the survival function

Sc(t | Zi) = exp{−λ0c t
ρc exp(Z⊤

i βc)}, t ≥ 0.

The corresponding hazard function is

hc(t | Zi) = λ0c ρc t
ρc−1 exp(Z⊤

i βc), t ≥ 0.

Note: In ’Stan’, the Weibull distribution is parameterized by shape parameter ρc and scale parameter
σ, with baseline density function

f0c(t) = (ρc/σ) (t/σ)
ρc−1 exp(−(t/σ)ρc), t ≥ 0.

To match the hazard-scale parameterization above, we set

σi = {λ0c exp(Z
⊤
i βc)}−1/ρc .

The random censoring indicator status_censor follows the convention:

• 0: random censoring time observed at t_obs (density contribution),
• 1: administratively right-censored at t_obs (survival contribution).

10 fit_enroll

Value

A list with the following components:

• rho_c: Posterior draws of the Weibull shape parameter ρc.

• lambda_0c: Posterior draws of the baseline Weibull scale parameter λ0c.

• beta_c: Posterior draws of the covariate log hazard ratios βc, or NULL if no covariates are
included.

• fit: The ’rstan’ stanfit object (only if return_fit = TRUE).

See Also

Other BayesPET model fitting: fit_enroll, fit_event_blind, fit_event_unblind, fit_models,
print.BayesPET_fit

Examples

data(data_example)
example_eventcensor<-data_example$example_eventcensor

---- fit censoring model ----
Reduced number of chains and iterations compared to defaults
to keep the example computationally manageable.
fit <- fit_censor(

t_obs = example_eventcensor$time,
status_censor = example_eventcensor$censorstatus,
cov = example_eventcensor[,6:7],
chains = 2,
iter = 2000, quiet = FALSE,
seed = 2, return_fit = TRUE

)

summary(fit$rho_c)
summary(fit$lambda_0c)
summary(fit$beta_c)
print(fit$fit)

fit_enroll Fit enrollment model

Description

Fits an exponential model to enrollment interarrival times and returns posterior draws of the enroll-
ment rate µ.

fit_enroll 11

Usage

fit_enroll(
status_enroll,
t_enroll,
hyperparams_enroll = list(),
chains = 4,
iter = 4000,
seed = 1,
refresh = 0,
warmup = floor(iter/2),
mc.cores = 1,
control = list(adapt_delta = 0.95),
return_fit = FALSE,
quiet = TRUE

)

Arguments

status_enroll Integer vector with values 0 or 1 indicating whether the interarrival time is ob-
served (1) or administratively censored (0).

t_enroll Numeric vector giving observed or censored interarrival times. Must be non-
negative and finite.

hyperparams_enroll

A named list of prior hyperparameters for the enrollment model. If it is empty
(list()), default values are assigned internally.

• alpha_mu: Shape parameter of the Gamma prior for the enrollment rate µ
(default: 0.1).

• beta_mu: Rate parameter of the Gamma prior for the enrollment rate µ
(default: 0.1).

No other hyperparameters are allowed.

chains Number of Markov chain Monte Carlo (MCMC) chains. Defaults to 4.

iter Number of iterations per chain (including warmup). Defaults to 4000.

seed Optional integer seed passed to sampling for reproducibility. If NULL, ’Stan’
generates a seed internally and results may differ across runs. Defaults to 1.

refresh Frequency of progress updates from sampling. Set to 0 (default) to suppress
output.

warmup Number of warmup (burn-in) iterations per chain. Must be strictly smaller than
iter. Defaults to floor(iter / 2).

mc.cores Integer. Number of CPU cores to use when executing Markov chains in parallel
via sampling. Defaults to 1. We recommend setting mc.cores to the maximum
number of processors supported by the available hardware and memory, up to
the number of chains.

control A named list of sampler control parameters passed to sampling. Examples
include adapt_delta and max_treedepth. Defaults to list(adapt_delta =
0.95).

12 fit_enroll

return_fit Logical; if TRUE, also return the underlying ’rstan’ stanfit object. Defaults to
FALSE.

quiet Logical. If TRUE (default), suppress messages and diagnostic warnings from
sampling during model fitting. Useful for large simulation studies.

Details

Let ti denote the interarrival time between consecutive enrollments. The enrollment process is
modeled using an exponential distribution with rate parameter µ, so that

ti ∼ Exponential(µ),

where µ > 0 represents the average enrollment rate. The corresponding density is

f(t) = µe−µt, t ≥ 0.

Administrative censoring of enrollment is handled through the indicator status_enroll, which
follows the convention:

• 1: the interarrival time is fully observed at t_enroll (density contribution);

• 0: the interarrival time is administratively censored at t_enroll (survival contribution).

Value

A list with components:

• mu: posterior draws of µ,

• fit: The ’rstan’ stanfit fit object (only if return_fit = TRUE).

See Also

Other BayesPET model fitting: fit_censor, fit_event_blind, fit_event_unblind, fit_models,
print.BayesPET_fit

Examples

data(data_example)
example_enroll<-data_example$example_enroll

out <- fit_enroll(
status_enroll = example_enroll$enrollstatus,
t_enroll = example_enroll$interarrivaltime,
seed = 1, return_fit = TRUE,
quiet = FALSE

)

summary(out$mu)
print(out$fit)

fit_event_blind 13

fit_event_blind Fit a Weibull event-time model with unknown treatment assignments

Description

Fits a Weibull event-time model formulated as a mixture over unobserved treatment assignments.
The function returns posterior draws of the Weibull shape parameter ρe, the baseline scale parameter
λ0e, the treatment log hazard ratio η, and when covariates are included, the covariate log hazard
ratios βe. Posterior draws of the latent treatment indicators xi are also returned.

Usage

fit_event_blind(
t_event,
status_event,
p_trt,
cov = NULL,
hyperparams_event = list(),
chains = 4,
iter = 4000,
seed = 123,
refresh = 0,
warmup = floor(iter/2),
mc.cores = 1,
control = list(adapt_delta = 0.95),
return_fit = FALSE,
quiet = TRUE

)

Arguments

t_event Numeric observed time to event t∗ei. Must be >0.

status_event Integer vector of event indicators δei with values 0 or 1 (1 = event observed, 0 =
right-censored at t_event).

p_trt Scalar randomization probability to the experimental arm, γ ∈ (0, 1).

cov Optional matrix or data frame of covariates Z. Each row corresponds to a sub-
ject and each column to a covariate. Covariates must be numeric and are treated
as linear effects in the model. Only binary (0/1) and continuous covariates are
supported. Multilevel or categorical variables are not expanded into dummy
variables; if provided as numeric (e.g., factor codes), they are treated as contin-
uous. If NULL (default), a no-covariate Weibull model is fitted.

hyperparams_event

A named list of prior hyperparameters for the event-time model. If it is empty
(list()), default values are assigned internally.

• alpha_e, beta_e: Shape and rate parameters of the Gamma prior for the
baseline scale parameter λ0e (defaults: 0.1, 0.1).

14 fit_event_blind

• alpha_re, beta_re: Shape and rate parameters of the Gamma prior for the
baseline shape parameter ρe (defaults: 0.1, 0.1).

• mu_eta, sigma_eta: Mean and standard deviation of the Normal prior,
truncated to [0,∞), for the treatment effect (log hazard ratio) η (defaults:
0,
√
2).

• mu_be, sigma_be: Mean and standard deviation of the Normal prior for the
covariate effects βej (defaults: 0,

√
10).

No other hyperparameters are allowed.

chains Number of Markov chain Monte Carlo (MCMC) chains. Defaults to 4.

iter Number of iterations per chain (including warmup). Defaults to 4000.

seed Optional integer seed passed to sampling for reproducibility. If NULL, ’Stan’
generates a seed internally and results may differ across runs. Defaults to 123.

refresh Frequency of progress updates from sampling. Set to 0 (default) to suppress
output.

warmup Number of warmup (burn-in) iterations per chain. Must be strictly smaller than
iter. Defaults to floor(iter / 2).

mc.cores Integer. Number of CPU cores to use when executing Markov chains in parallel
via sampling. Defaults to 1. We recommend setting mc.cores to the maximum
number of processors supported by the available hardware and memory, up to
the number of chains.

control A named list of sampler control parameters passed to sampling. Examples
include adapt_delta and max_treedepth. Defaults to list(adapt_delta =
0.95).

return_fit Logical; if TRUE, also return the underlying ’rstan’ stanfit object. Defaults to
FALSE.

quiet Logical. If TRUE (default), suppress messages and diagnostic warnings from
’Stan’ during model fitting. Useful for large simulation studies.

Details

Let Tei denote the event time for subject i. Let Zi denote the corresponding covariate vector, which
is the i th row of cov when provided. Treatment assignment is represented by a latent indicator xi,
where xi = 0 denotes control and xi = 1 denotes experimental treatment. The latent treatment
indicators are jointly inferred with the model parameters from the observed event time data.

The treatment effect parameter η represents the log hazard ratio comparing experimental treatment
to control, and βe denotes the vector of covariate regression coefficients (log hazard ratios) in the
proportional hazards model.

The baseline event time distribution follows a Weibull model with density

f0e(t) = λ0e ρe t
ρe−1 exp(−λ0et

ρe), t ≥ 0.

Conditional on treatment and covariates, the hazard function is

he(t | xi,Zi) = λ0e ρe t
ρe−1 exp(ηxi +Z⊤

i βe), t ≥ 0,

fit_event_blind 15

and the corresponding survival function is

Se(t | xi,Zi) = exp{−λ0e t
ρe exp(ηxi +Z⊤

i βe)}, t ≥ 0.

For reference, ’Stan’ uses an equivalent Weibull representation based on a shape parameter ρe and
a scale parameter σ, with baseline density

f0e(t) = (ρe/σ) (t/σ)
ρe−1 exp{−(t/σ)ρe}, t ≥ 0.

The two formulations are related through

σi = {λ0e exp(ηxi +Z⊤
i βe)}−1/ρe .

Because xi is not observed in blinded randomized trials, it is treated as a latent variable, and the
observed event-time data marginally follow a mixture of two Weibull distributions corresponding
to the latent treatment groups.

To avoid label switching in posterior inference, the treatment effect parameter η is assigned a Nor-
mal prior truncated to [0,∞), restricting η to be nonnegative.

Value

A list with the following components:

• eta: Posterior draws of the treatment log hazard ratio η.

• rho_e: Posterior draws of the Weibull shape parameter ρe.

• lambda_0e: Posterior draws of the baseline Weibull scale parameter λ0e.

• beta_e: Posterior draws of the covariate log hazard ratios βe, or NULL if no covariates are
included.

• x: Posterior draws of latent treatment indicators xi.

• fit: The ’rstan’ stanfit object (only if return_fit = TRUE).

See Also

Other BayesPET model fitting: fit_censor, fit_enroll, fit_event_unblind, fit_models,
print.BayesPET_fit

Examples

data(data_example)
example_eventcensor<-data_example$example_eventcensor
Use 2 chains and iter = 1000 here to reduce runtime for the example;
use more chains in real analyses.
fit_e_blind <- fit_event_blind(

t_event = example_eventcensor$time,
status_event = example_eventcensor$eventstatus,
cov = example_eventcensor[,6:7],
p_trt = 0.5,
chains = 2,
iter = 1000, seed = 123,

16 fit_event_unblind

return_fit = TRUE
)

summary(fit_e_blind$eta)
print(fit_e_blind$fit)

fit_event_unblind Fit a Weibull event-time model with known treatment assignments

Description

Fits a Weibull event time model in which treatment assignments are observed. The function returns
posterior draws of the Weibull shape parameter ρe > 0, the baseline scale parameter λ0e > 0, the
treatment effect coefficient (log hazard ratio) η, and when covariates are included, the covariate log
hazard ratios βe.

Usage

fit_event_unblind(
t_event,
status_event,
treatment_ind,
cov = NULL,
hyperparams_event = list(),
chains = 4,
iter = 4000,
seed = 123,
refresh = 0,
warmup = floor(iter/2),
mc.cores = 1,
control = list(adapt_delta = 0.95),
return_fit = FALSE,
quiet = TRUE

)

Arguments

t_event Numeric observed time to event t∗ei. Must be >0.

status_event Integer vector of event indicators δei with values 0 or 1 (1 = event observed, 0 =
right-censored at t_event).

treatment_ind Integer vector of treatment assignments xi with values 0 or 1 (1 = treated, 0 =
control).

cov Optional matrix or data frame of covariates Z. Each row corresponds to a sub-
ject and each column to a covariate. Covariates must be numeric and are treated
as linear effects in the model. Only binary (0/1) and continuous covariates are

fit_event_unblind 17

supported. Multilevel or categorical variables are not expanded into dummy
variables; if provided as numeric (e.g., factor codes), they are treated as contin-
uous. If NULL (default), a no-covariate Weibull model is fitted.

hyperparams_event

A named list of prior hyperparameters for the event-time model. If it is empty
(list()), default values are assigned internally.

• alpha_e, beta_e: Shape and rate parameters of the Gamma prior for the
baseline scale parameter λ0e (defaults: 0.1, 0.1).

• alpha_re, beta_re: Shape and rate parameters of the Gamma prior for the
baseline shape parameter ρe (defaults: 0.1, 0.1).

• mu_eta, sigma_eta: Mean and standard deviation of the Normal prior for
the treatment effect (log hazard ratio) η (defaults: 0,

√
2).

• mu_be, sigma_be: Mean and standard deviation of the Normal prior for the
covariate effects βej (defaults: 0,

√
10).

No other hyperparameters are allowed.
chains Number of Markov chain Monte Carlo (MCMC) chains. Defaults to 4.
iter Number of iterations per chain (including warmup). Defaults to 4000.
seed Optional integer seed passed to sampling for reproducibility. If NULL, ’Stan’

generates a seed internally and results may differ across runs. Defaults to 123.
refresh Frequency of progress updates from sampling. Set to 0 (default) to suppress

output.
warmup Number of warmup (burn-in) iterations per chain. Must be strictly smaller than

iter. Defaults to floor(iter / 2).
mc.cores Integer. Number of CPU cores to use when executing Markov chains in parallel

via sampling. Defaults to 1. We recommend setting mc.cores to the maximum
number of processors supported by the available hardware and memory, up to
the number of chains.

control A named list of sampler control parameters passed to sampling. Examples
include adapt_delta and max_treedepth. Defaults to list(adapt_delta =
0.95).

return_fit Logical; if TRUE, also return the underlying ’rstan’ stanfit object. Defaults to
FALSE.

quiet Logical. If TRUE (default), suppress messages and diagnostic warnings from
’Stan’ during model fitting. Useful for large simulation studies.

Details

Let Tei denote the event time for subject i. Let Zi denote the corresponding covariate vector, which
is the i th row of cov when provided. Treatment assignment is represented by a known indicator
xi, where for example xi = 0 denotes control and xi = 1 denotes experimental treatment. The
treatment effect parameter η represents the log hazard ratio comparing experimental treatment to
control, and βe denotes the vector of covariate regression coefficients (log hazard ratios) in the
proportional hazards model.

The baseline event time distribution follows a Weibull model with density

f0e(t) = λ0e ρe t
ρe−1 exp(−λ0et

ρe), t ≥ 0.

18 fit_event_unblind

Conditional on treatment and covariates, the hazard function is

he(t | xi,Zi) = λ0e ρe t
ρe−1 exp(ηxi +Z⊤

i βe), t ≥ 0,

and the corresponding survival function is

Se(t | xi,Zi) = exp{−λ0e t
ρe exp(ηxi +Z⊤

i βe)}, t ≥ 0.

For reference, ’Stan’ uses an equivalent Weibull representation based on a shape parameter ρe and
a scale parameter σ, with baseline density

f0e(t) = (ρe/σ) (t/σ)
ρe−1 exp{−(t/σ)ρe}, t ≥ 0.

The two formulations are related through

σi = {λ0e exp(ηxi +Z⊤
i βe)}−1/ρe , t ≥ 0.

Value

A list with the following components:

• eta: Posterior draws of the treatment log hazard ratio η.
• rho_e: Posterior draws of the Weibull shape parameter ρe.
• lambda_0e: Posterior draws of the baseline Weibull scale parameter λ0e.
• beta_e: Posterior draws of the covariate log hazard ratios βe, or NULL if no covariates are

included.
• fit: The ’rstan’ stanfit object (only if return_fit = TRUE).

See Also

Other BayesPET model fitting: fit_censor, fit_enroll, fit_event_blind, fit_models,
print.BayesPET_fit

Examples

data(data_example)
example_eventcensor<-data_example$example_eventcensor
Use chains = 1 here to reduce runtime for the example;
use more chains in real analyses.
fit_e_unblind <- fit_event_unblind(

t_event = example_eventcensor$time,
status_event = example_eventcensor$eventstatus,
treatment_ind = example_eventcensor$trt,
cov = example_eventcensor[,6:7],
chains = 1, iter = 2000, seed = 123,
return_fit = TRUE

)

summary(fit_e_unblind$eta)
print(fit_e_unblind$fit)

fit_models 19

fit_models Fit enrollment, event-time, and censoring models to clinical trial data
and return posterior draws model parameters

Description

Fits the enrollment, event-time, and censoring models to trial data and returns posterior draws of
model parameters.

Usage

fit_models(
data.enroll,
data.eventcensor,
blinded = TRUE,
p_trt = NULL,
hyperparams_enroll = list(),
hyperparams_event = list(),
hyperparams_censor = list(),
chains = 4,
iter = 4000,
mc.cores = 1,
warmup = floor(iter/2),
seed = list(123),
refresh = 0,
control = list(list(adapt_delta = 0.95)),
return_fit = FALSE,
quiet = TRUE

)

Arguments

data.enroll A data frame of enrollment information up to the analysis time. Must contain
the columns:

• interarrivaltime: Numeric vector of interarrival times (> 0).
• enrollstatus: Integer vector coded 1 = enrolled, 0 = administratively

censored.

Any additional columns are ignored.
data.eventcensor

A data frame of observed event/censoring outcomes at the analysis time. Must
contain (at minimum) the following columns:

• time: observed follow-up time (event or censoring time); must be numeric
and > 0.

• eventstatus: event indicators (1 = event, 0 = right-censored).

20 fit_models

• censorstatus: random censoring indicators δci (1 = random censoring
observed, 0 = no random censoring, including administrative censoring or
event observed).

If blinded = FALSE, data.eventcensor must also contain:

• trt: observed treatment assignment indicators coded 0/1.

The column No (representing a subject index) may be included but is not re-
quired. Any additional columns (other than No, trt, time, eventstatus, and
censorstatus) are treated as numeric baseline covariates and will be used if
present.

blinded Logical. If TRUE (default), the interim analysis is blinded and treatment assign-
ments for current subjects are not observed in the data. If FALSE, the analysis is
unblinded and observed treatment assignments are used.

p_trt Numeric scalar in [0, 1] giving the prespecified randomization probability of as-
signment to the experimental treatment arm. Required only if blinded = TRUE;
ignored otherwise. Defaults to NULL.

hyperparams_enroll

A named list of prior hyperparameters for the enrollment model. If it is empty
(list()), default values are assigned internally.

• alpha_mu: Shape parameter of the Gamma prior for the enrollment rate µ
(default: 0.1).

• beta_mu: Rate parameter of the Gamma prior for the enrollment rate µ
(default: 0.1).

No other hyperparameters are allowed.
hyperparams_event

A named list of prior hyperparameters for the event-time model. If it is empty
(list()), default values are assigned internally.

• alpha_e, beta_e: Shape and rate parameters of the Gamma prior for the
baseline scale parameter λ0e (defaults: 0.1, 0.1).

• alpha_re, beta_re: Shape and rate parameters of the Gamma prior for the
baseline shape parameter ρe (defaults: 0.1, 0.1).

• mu_eta, sigma_eta: Mean and standard deviation of the Normal prior for
the treatment effect (log hazard ratio) η (defaults: 0,

√
2).

• mu_be, sigma_be: Mean and standard deviation of the Normal prior for the
covariate effects βej (defaults: 0,

√
10).

When blinded = TRUE, the prior for the treatment effect η is a truncated Normal
distribution on [0,∞) with parameters mu_eta and sigma_eta. When blinded
= FALSE, the prior for η is an untruncated Normal distribution. No other hyper-
parameters are allowed.

hyperparams_censor

A named list of prior hyperparameters for the censoring model. If it is empty
(list()), default values are assigned internally.

• alpha_c, beta_c: Shape and rate parameters of the Gamma prior for the
baseline scale parameter λ0c (defaults: 0.1, 0.1).

• alpha_rc, beta_rc: Shape and rate parameters of the Gamma prior for
the baseline shape parameter ρc (defaults: 0.1, 0.1).

fit_models 21

• mu_bc, sigma_bc: Mean and standard deviation of the Normal prior for
the covariate effects βcj (defaults: 0,

√
10).

No other hyperparameters are allowed.

chains Number of Markov chain Monte Carlo (MCMC) chains. Defaults to 4.

iter Number of iterations per chain (including warmup). Defaults to 4000.

mc.cores Integer. Number of CPU cores to use when executing Markov chains in parallel
via sampling. Defaults to 1. We recommend setting mc.cores to the maximum
number of processors supported by the available hardware and memory, up to
the number of chains.

warmup Number of warmup (burn-in) iterations per chain. Must be strictly smaller than
iter. Defaults to floor(iter / 2).

seed Optional random seed(s) passed to sampling for reproducibility. Can be speci-
fied as:

• a single integer or NULL, in which case the same seed is used for all three
submodels, or

• a list of up to three integers or NULLs, recycled to length 3, corresponding
to the enrollment, censoring, and event-time models, respectively.

Use NULL to allow ’Stan’ to select a seed internally. Defaults to list(123).

refresh Frequency of progress updates from sampling. Set to 0 (default) to suppress
output.

control Sampler control settings passed to sampling for the three submodels (enroll-
ment, censoring, and event-time). Can be specified as:

• a single named list of control parameters (shared across all three submod-
els), or

• a list of up to three named lists, recycled to length 3, giving separate control
settings for the enrollment, censoring, and event-time models, respectively.

Typical entries include adapt_delta and max_treedepth.

Defaults to list(list(adapt_delta = 0.95)).

return_fit Logical; if TRUE, also return the underlying ’rstan’ stanfit objects for the en-
rollment, censoring, and event models. Defaults to FALSE.

quiet Logical. If TRUE (default), suppress messages and diagnostic warnings from
’Stan’ during model fitting. Useful for large simulation studies.

Details

This function fits three submodels: an enrollment model, a censoring model, and an event-time
model conditional on the given trial data. If treatment assignments are known, the event-time model
is fit using fit_event_unblind; otherwise, a blinded event-time model is fit using
fit_event_blind. Technical details of the likelihoods, priors and parameterizations are docu-
mented in fit_enroll, fit_censor, fit_event_unblind, and fit_event_blind.

22 fit_models

Value

An object of class "BayesPET_fit", a named list containing posterior draws and related informa-
tion from the fitted models, with elements:

• blinded: Logical; indicates whether the analysis is blinded,

• mu: Posterior draws of the enrollment rate µ.

• rho_c: Posterior draws of the censoring-model Weibull shape parameter ρc.

• lambda_0c: Posterior draws of the censoring-model baseline Weibull scale parameter λ0c.

• beta_c: Posterior draws of the censoring-model covariate log hazard ratios βc, or NULL if no
covariates are included.

• eta: Posterior draws of the treatment log hazard ratio η.

• rho_e: Posterior draws of the event-model Weibull shape parameter ρe.

• lambda_0e: Posterior draws of the event-model baseline Weibull scale parameter λ0e.

• beta_e: Posterior draws of the event-model covariate log hazard ratios βe, or NULL if no
covariates are included.

• treatment_ind: Observed treatment assignments xi ∈ {0, 1} (only returned if blinded =
FALSE).

• x: Posterior draws of latent treatment assignments xi ∈ {0, 1} (only returned if blinded =
TRUE).

• fit: A list with components enroll, censor, and event containing the underlying ’rstan’
stanfit objects (present only if return_fit = TRUE).

The default print method displays a concise overview.

See Also

Other BayesPET model fitting: fit_censor, fit_enroll, fit_event_blind, fit_event_unblind,
print.BayesPET_fit

Examples

data(data_example)
example_enroll <- data_example$example_enroll
example_eventcensor <- data_example$example_eventcensor

Unblinded analysis
Use 2 chains and iter = 2000 here to reduce runtime for the example;
use more chains in real analyses.
fit.unblind <- fit_models(

data.enroll = example_enroll,
data.eventcensor = example_eventcensor,
blinded = FALSE,
chains = 2, iter = 2000, seed = list(123),
return_fit = TRUE, mc.cores = 1, quiet = FALSE

)

generate_data 23

Blinded analysis
example_eventcensor.blind <- example_eventcensor
example_eventcensor.blind$trt <- NA
Use 2 chains and iter = 2000 here to reduce runtime for the example;
use more chains in real analyses.
fit.blind <- fit_models(

data.enroll = example_enroll,
data.eventcensor = example_eventcensor.blind,
blinded = TRUE, p_trt = 0.5,
chains = 2, iter = 2000, seed = list(123),
return_fit = TRUE, mc.cores = 1, quiet = FALSE

)

print(fit.unblind)
summary(fit.unblind$eta)

print(fit.blind)
summary(fit.blind$eta)

generate_data Generate two-arm trial data with enrollment, event, and censoring
processes, and return data formatted for event-time prediction.

Description

Simulates data from a two-arm clinical trial with a time-to-event endpoint. The data generating
process incorporates staggered enrollment, event times, and random censoring, with event and cen-
soring distributions specified as Weibull or log-logistic. Treatment and covariate effects are incor-
porated through a proportional hazards structure.

Usage

generate_data(
N,
E_target,
E_cutoff,
p_trt,
cov_type,
cov_dist,
logHR.trt = NULL,
enroll_rate,
dist.event,
dist.censor,
blinded = TRUE,
event.scale = NULL,
event.shape = NULL,
censor.scale = NULL,

24 generate_data

censor.shape = NULL,
beta.event,
beta.censor,
event.scale_trt = NULL,
event.shape_trt = NULL,
beta.event_trt = if (is.null(logHR.trt)) beta.event else NULL,
assess_window = 0,
seed = 123

)

Arguments

N Integer. Total planned sample size (maximum number of subjects that can be
enrolled in the trial).

E_target Integer. Target number of events for the final analysis.

E_cutoff Integer. Target number of events for the interim analysis.

p_trt Scalar randomization probability to the experimental arm, γ ∈ (0, 1).

cov_type Character vector specifying the distribution for each component of the covariate
vector Z = (Z1, . . . , Zp) used in the proportional hazards model. Each element
must be "binary" or "continuous". If NULL, no covariates are used.

cov_dist Numeric vector of the same length as cov_type, giving parameters for the
covariate-generating distribution of each Zj :

• "binary": Zj ∼ Bernoulli(pj) with pj = cov_dist[j].
• "continuous": Zj ∼ N(0, σ2

j) with σj = cov_dist[j].

logHR.trt Numeric scalar giving the log hazard ratio for the experimental versus control
arm in the event-time model. When NULL (default), the two treatment arms are
generated from separate proportional hazards models with arm-specific baseline
parameters and covariate effects.

enroll_rate Positive numeric scalar specifying the enrollment rate.

dist.event Character. Baseline distribution for event times: "Weibull" or "Loglogistic".
This distribution family is the same for both arms.

dist.censor Character. Baseline distribution for random censoring times: "Weibull" or
"Loglogistic".

blinded Logical. If TRUE (default), the generated interim dataset is blinded and treat-
ment assignments in data.eventcensor$trt are set to NA. If FALSE, treatment
assignments in data.eventcensor$trt are coded as 0 for control and 1 for the
experimental group.

event.scale Numeric scalar > 0. Control-arm event baseline scale parameter.

event.shape Numeric scalar > 0. Control-arm event baseline shape parameter.

censor.scale Numeric scalar > 0. Random censoring baseline scale parameter.

censor.shape Numeric scalar > 0. Random censoring baseline shape parameter.

beta.event Numeric vector. Regression coefficients for baseline covariates in the event-
time proportional hazards model; must have the same length and ordering as
cov_type.

generate_data 25

beta.censor Numeric vector. Regression coefficients for baseline covariates in the random
censoring-time proportional hazards model; must have the same length and or-
dering as cov_type.

event.scale_trt

Numeric scalar > 0. Experimental-arm event baseline scale parameter (used
when logHR.trt = NULL).

event.shape_trt

Numeric scalar > 0. Experimental-arm event baseline shape parameter (used
when logHR.trt = NULL).

beta.event_trt Numeric vector. Regression coefficients for baseline covariates in the experimental-
arm event-time proportional hazards model, used when logHR.trt = NULL. Must
have the same length and ordering as cov_type. Defaults to beta.event.

assess_window Numeric scalar >= 0. Assessment window width. If > 0, observed event/censoring
times are coarsened to the midpoint of the window containing min(Tevent, Tcensor).
Defaults to 0.

seed Integer or NULL. Random seed for data generation. If the value is NULL then no
random seed is used. Defaults to 123.

Details

Subjects are randomized independently to the experimental arm with probability p_trt. Baseline
covariates are generated independently based on cov_type and cov_dist. Binary covariates follow
a Bernoulli distribution, while continuous covariates follow a normal distribution with mean zero
and standard deviation determined by cov_dist.

Interarrival times between successive enrollments are drawn from an exponential distribution with
rate enroll_rate with model details documented in fit_enroll. Calendar enrollment times are
obtained by cumulative summation of these interarrival times.

Event times and random censoring times are generated from Weibull or log-logistic baseline dis-
tributions, as specified by dist.event and dist.censor. For the Weibull model, the baseline
survival function is parameterized as

S0(t) = exp{−λ0t
ρ}, t ≥ 0,

where ρ > 0 is the shape and λ0 > 0 is the baseline hazard scale. For the log-logistic model, the
baseline survival function is

S0(t) = {1 + (t/b)a}−1, t ≥ 0,

where a > 0 and b > 0 denote the shape and scale parameters, respectively. Parameter calibration
via marginal median survival can be performed using convert_median prior to simulation.

Covariate effects are incorporated through a proportional hazards structure for both the event and
censoring processes. When logHR.trt is provided, the treatment effect is modeled through a pro-
portional hazards formulation. When logHR.trt is NULL, the two treatment arms are allowed to
differ through separate baseline parameters and covariate effects. The random censoring mecha-
nism does not depend on treatment assignment.

26 generate_data

Value

A list with elements:

• data.enroll: A data frame of observed enrollment information up to the interim data cut.
Columns: subject index No, subject enrollment calendar time enrolltime, enrollment inter-
arrival time interarrivaltime, enrollment status enrollstatus (1 = enrolled, 0 = adminis-
tratively censored enrollment process).

• data.eventcensor: A data frame of observed survival outcomes at the interim cut. Columns
include subject index No, treatment assignment indicator trt (NA if blinded = TRUE), observed
time time (administratively censored at interim cut), event status eventstatus (1 = event, 0
= right censored), random censoring status censorstatus (1 = random censoring before the
interim data cut; 0 = otherwise), followed by covariates.

• truesurvival: Full underlying data without administrative censoring: No, trt, t_event (true
underlying event time), t_randcensor (true underlying random censoring time), t_event.obs
(underlying follow-up time without administrative censoring),
t_event.obswithintervalassess (underlying follow-up time without administrative cen-
soring but applied with assessment windows), status (1 = event before random censoring),
enrollmenttime, plus covariates.

• event.interim.obs: Observed number of events at the interim data cut. If the prespecified
interim event cutoff E_cutoff cannot be reached, this equals the maximum number of events
observed.

• event.max: Number of events that would occur without administrative censoring (i.e., after
accounting only for random censoring).

• cuttime.true: The true calendar time at which the cumulative number of observed events
reaches the target event count. If the target number of events cannot be reached, this is the
calendar time of the last observed event or censoring.

• event.final.obs: The latent true number of events at cuttime.true.

Examples

--- Weibull event/censoring with a common PH treatment effect ---
data.weibull <- generate_data(

N = 80, E_target = 50, E_cutoff = 25, p_trt = 0.5,
cov_type = c("binary", "continuous"),
cov_dist = c(0.5, sqrt(2)),
beta.event = c(0.2, 0.2),
beta.censor = c(0, 0),
logHR.trt = log(0.5),
enroll_rate = 50/3, beta.event_trt = NULL,
dist.event = "Weibull", dist.censor = "Weibull",
event.scale = 1/5^3, event.shape = 3,
censor.scale = 10^(-6), censor.shape = 6,
blinded = TRUE,
assess_window = 2,
seed = 1

)
names(data.weibull)

get_oc 27

--- Log-logistic event/censoring with a common PH treatment effect ---
data.logl <- generate_data(

N = 80, E_target = 50, E_cutoff = 25, p_trt = 0.5,
cov_type = c("binary", "continuous"),
cov_dist = c(0.5, sqrt(2)),
beta.event = c(0.2, 0.2),
beta.censor = c(0, 0),
logHR.trt = log(0.5),
enroll_rate = 50/3, beta.event_trt = NULL,
dist.event = "Loglogistic", dist.censor = "Loglogistic",
event.scale = 6, event.shape = 6,
censor.scale = 20, censor.shape = 4,
blinded = TRUE,
assess_window = 2,
seed = 1

)
summary(data.logl$truesurvival$t_event)
true underlying event time without administrative censoring

--- Weibull arm-specific models (logHR.trt = NULL) ---
data.weibull.nonPH <- generate_data(

N = 80, E_target = 50, E_cutoff = 25, p_trt = 0.5,
cov_type = c("binary", "continuous"),
cov_dist = c(0.5, sqrt(2)),
beta.event = c(0.2, 0.2),
beta.censor = c(0, 0),
logHR.trt = NULL,
enroll_rate = 50/3,
dist.event = "Weibull", dist.censor = "Weibull",
event.scale = 1/5^3, event.shape = 3, # control
event.scale_trt = 1/6^3, event.shape_trt = 3, # experiment
beta.event_trt = c(0.15, 0.2),
censor.scale = 10^(-6), censor.shape = 6,
blinded = TRUE,
assess_window = 2,
seed = 1

)
data.weibull.nonPH$cuttime.true

get_oc Generate operating characteristics for event prediction

Description

Generate operating characteristics for multiple simulated trials

Usage

get_oc(

28 get_oc

N,
E_target,
E_cutoff,
p_trt,
cov_type,
cov_dist,
logHR.trt = NULL,
enroll_rate,
dist.event,
dist.censor,
blinded = TRUE,
event.scale = NULL,
event.shape = NULL,
censor.scale = NULL,
censor.shape = NULL,
beta.event,
beta.censor,
event.scale_trt = NULL,
event.shape_trt = NULL,
beta.event_trt = if (is.null(logHR.trt)) beta.event else NULL,
assess_window = 0,
seed = 123,
hyperparams_enroll = list(),
hyperparams_event = list(),
hyperparams_censor = list(),
chains = 4,
iter = 4000,
warmup = floor(iter/2),
refresh = 0,
control = list(list(adapt_delta = 0.95)),
nsim = 1000,
nsim.max = 3 * nsim,
n_workers = 1,
...

)

Arguments

N Integer. Total planned sample size (maximum number of subjects that can be
enrolled in the trial).

E_target Integer. Target number of events for the final analysis.
E_cutoff Integer. Target number of events for the interim analysis.
p_trt Scalar randomization probability to the experimental arm, γ ∈ (0, 1).
cov_type Character vector specifying the distribution for each component of the covariate

vector Z = (Z1, . . . , Zp) used in the proportional hazards model. Each element
must be "binary" or "continuous". If NULL, no covariates are used.

cov_dist Numeric vector of the same length as cov_type, giving parameters for the
covariate-generating distribution of each Zj :

get_oc 29

• "binary": Zj ∼ Bernoulli(pj) with pj = cov_dist[j].
• "continuous": Zj ∼ N(0, σ2

j) with σj = cov_dist[j].
logHR.trt Numeric scalar giving the log hazard ratio for the experimental versus control

arm in the event-time model. When NULL (default), the two treatment arms are
generated from separate proportional hazards models with arm-specific baseline
parameters and covariate effects.

enroll_rate Positive numeric scalar specifying the enrollment rate.
dist.event Character. Baseline distribution for event times: "Weibull" or "Loglogistic".

This distribution family is the same for both arms.
dist.censor Character. Baseline distribution for random censoring times: "Weibull" or

"Loglogistic".
blinded Logical. If TRUE (default), the generated interim dataset is blinded and treat-

ment assignments in data.eventcensor$trt are set to NA. If FALSE, treatment
assignments in data.eventcensor$trt are coded as 0 for control and 1 for the
experimental group.

event.scale Numeric scalar > 0. Control-arm event baseline scale parameter.
event.shape Numeric scalar > 0. Control-arm event baseline shape parameter.
censor.scale Numeric scalar > 0. Random censoring baseline scale parameter.
censor.shape Numeric scalar > 0. Random censoring baseline shape parameter.
beta.event Numeric vector. Regression coefficients for baseline covariates in the event-

time proportional hazards model; must have the same length and ordering as
cov_type.

beta.censor Numeric vector. Regression coefficients for baseline covariates in the random
censoring-time proportional hazards model; must have the same length and or-
dering as cov_type.

event.scale_trt

Numeric scalar > 0. Experimental-arm event baseline scale parameter (used
when logHR.trt = NULL). Defaults to NULL.

event.shape_trt

Numeric scalar > 0. Experimental-arm event baseline shape parameter (used
when logHR.trt = NULL). Defaults to NULL.

beta.event_trt Numeric vector. Regression coefficients for baseline covariates in the experimental-
arm event-time proportional hazards model, used when logHR.trt = NULL. Must
have the same length and ordering as cov_type. Defaults to beta.event.

assess_window Numeric scalar >= 0. Assessment window width. If > 0, observed event/censoring
times are coarsened to the midpoint of the window containing min(Tevent, Tcensor).
Defaults to 0.

seed Integer. Base random seed used to generate simulated datasets. Replicate i uses
seed seed + i - 1. Defaults to 123.

hyperparams_enroll

List of prior hyperparameters for the enrollment model. See fit_models for
details.

hyperparams_event

List of prior hyperparameters for the event-time model. See fit_models for
details.

30 get_oc

hyperparams_censor

List of prior hyperparameters for the censoring model. See fit_models for
details.

chains Number of Markov chain Monte Carlo (MCMC) chains. Defaults to 4.

iter Number of iterations per chain (including warmup). Defaults to 4000.

warmup Number of warmup (burn-in) iterations per chain. Must be strictly smaller than
iter. Defaults to floor(iter / 2).

refresh Frequency of progress updates from sampling. Set to 0 (default) to suppress
output.

control Sampler control settings passed to sampling for the three submodels (enroll-
ment, censoring, and event-time). Can be specified as:

• a single named list of control parameters (shared across all three submod-
els), or

• a list of up to three named lists, recycled to length 3, giving separate control
settings for the enrollment, censoring, and event-time models, respectively.

Typical entries include adapt_delta and max_treedepth.
Defaults to list(list(adapt_delta = 0.95)).

nsim Integer. Number of valid simulated trial replicates used to compute operating
characteristics. Defaults to 1000.

nsim.max Integer. Maximum number of simulated datasets to attempt in order to ob-
tain nsim valid replicates (i.e., replicates that can reach E_target). Defaults
to 3*n.sim.

n_workers Integer or NULL. Number of parallel workers used by the ’future’ backend. If
NULL, defaults to one fewer than the number of available CPU cores.

... Additional arguments passed to future_map. These can be used to control par-
allel execution behavior (e.g., scheduling, chunk size, or progress reporting) and
do not affect data generation or model fitting.

Details

This function first simulates a two-arm time-to-event trial using generate_data and constructs
interim datasets (data.enroll and data.eventcensor). It then fits the enrollment, event-time,
and random censoring models and generates posterior predictive draws of the calendar time at
which the cumulative number of events reaches E_target using predict_eventtime.

Only simulated datasets in which the target number of events E_target is reachable are retained
for analysis. Up to nsim.max datasets are generated in order to obtain at most nsim valid replicates.
As a result, the retained replicates correspond to a subset of the attempted simulations, and their
associated seeds are recorded explicitly in the returned object.

Value

An object of class "BayesPET_oc" containing operating characteristics for event-time prediction,
based on simulated trial replicates for which the target number of events E_target is reachable.
The object is a named list with components:

get_oc 31

• replicate: A data frame with one row per retained (valid) simulated trial replicate. Columns
include:

– median: Median of the posterior predictive draws of the calendar time at which E_target
events are reached.

– cuttime.true: True calendar time at which the cumulative number of observed events
in the simulated trial first reaches E_target.

– difference: Absolute prediction error, abs(median - cuttime.true).

• n_valid: Number of retained replicates.

• n_attempt: Total number of simulated datasets attempted.

• nsim_target: Target number of replicates requested.

• nsim_max: Maximum number of datasets that may be generated.

• seed0: Base random seed used to generate simulated datasets; equals the input argument
seed.

• seeds: Integer vector of seeds corresponding to the retained replicates (one per row of replicate).

• call: Matched function call.

See Also

Other BayesPET operating characteristics: summary.BayesPET_oc()

Examples

Using nsim = 2, chains = 2, and iter = 2000 to reduce runtime.
Use larger nsim, chains and iter in real analyses.
oc <- get_oc(

N = 200, E_target = 150,
E_cutoff = 75, p_trt = 0.5,
cov_type = c("binary", "continuous"),
cov_dist = c(0.5, 2),
beta.event = c(-0.2, -0.2),
beta.censor = c(0, 0),
logHR.trt = log(0.65),
enroll_rate = 16,
dist.event = "Weibull", dist.censor = "Weibull",
event.scale = 1/5^3, event.shape = 3,
censor.scale = 1/10^6, censor.shape = 6,
blinded = TRUE,
assess_window = 2,
seed = 1,
chains = 2, iter = 2000,
nsim = 2,
n_workers = 1

)

summary(oc)

32 plot.BayesPET_predtime

plot.BayesPET_predtime

Plot method for BayesPET prediction objects

Description

Plots an object of class "BayesPET_predtime" by displaying a histogram of posterior predictive
draws of the calendar time at which the target number of events is reached. Only finite draws are
included. A vertical line indicates the posterior median when it is finite.

Usage

S3 method for class 'BayesPET_predtime'
plot(
x,
breaks = "Sturges",
xlab = "Predicted calendar time to reach target number of events",
...

)

Arguments

x An object of class "BayesPET_predtime" returned by predict_eventtime.

breaks Passed to hist. Default is "Sturges".

xlab X-axis label. Default is "Calendar time to reach E_target".

... Additional arguments passed to methods. Not used.

Value

Invisibly returns NULL.

See Also

Other BayesPET prediction: predict_eventtime, print.BayesPET_predtime,
summary.BayesPET_predtime

Examples

data(data_example)
Reduced number of chains and iterations compared to defaults
to keep the example computationally manageable.
pred <- predict_eventtime(

N = 200,
E_target = 150,
data.enroll = data_example$example_enroll,
data.eventcensor = data_example$example_eventcensor,

predict_eventtime 33

blinded = TRUE,
p_trt = 0.5,
chains = 2,
iter = 2000,
assess_window = 2,
seed.fit = 1,
seed.pred = 2,
return_fit = TRUE,
return_draws = TRUE,
quiet = TRUE

)

print(pred)
summary(pred)
plot(pred)

predict_eventtime Predict the calendar time at which a target number of events is reached
from interim analysis data

Description

Fits enrollment, event-time, and random censoring models to data observed at the interim analysis
and predicts the calendar time at which the cumulative number of events reaches E_target.

Usage

predict_eventtime(
N,
E_target,
data.enroll,
data.eventcensor,
blinded = TRUE,
p_trt = NULL,
hyperparams_enroll = list(),
hyperparams_event = list(),
hyperparams_censor = list(),
chains = 4,
iter = 4000,
warmup = floor(iter/2),
seed.fit = list(123),
refresh = 0,
control = list(list(adapt_delta = 0.95)),
mc.cores = 1,
assess_window = 0,
seed.pred = 1,

34 predict_eventtime

return_fit = FALSE,
quiet = TRUE,
return_draws = FALSE

)

Arguments

N Integer. Total planned sample size (maximum number of subjects that can be
enrolled in the trial).

E_target Integer. Target number of events for the final analysis.
data.enroll A data frame of observed enrollment information up to the interim analysis time.

Must contain the columns enrollstatus, enrolltime, and interarrivaltime.
These columns follow the conventions defined by generate_data:

• enrolltime: Calendar time of enrollment for each subject, measured from
the trial time origin.

• interarrivaltime: Time between consecutive enrollments.
• enrollstatus: Enrollment status indicator with 1 indicating an observed

enrollment time and 0 indicating administrative censoring of the enrollment
process at the interim analysis time.

The No column is optional and provides a subject index used to align enrollment
records with data.eventcensor. If missing, it is created internally as No =
seq_len(nrow(data.enroll)) and a warning is returned.
All subjects in B1 (subjects enrolled before the interim analysis who have not yet
experienced an event or random censoring, as defined from data.eventcensor)
must be present in data.enroll and are matched by No. When not all N sub-
jects have enrolled by the interim analysis (i.e., nrow(data.eventcensor) < N),
data.enroll must contain exactly one administratively censored enrollment
record (enrollstatus == 0). See data_example (element example_enroll)
for a concrete example of the expected data layout.

data.eventcensor

A data frame of observed event and censoring outcomes at the interim analysis
time. Must contain the columns time, eventstatus, and censorstatus. These
columns follow the conventions defined by generate_data:

• time: observed follow up time, administratively censored at the interim
analysis.

• eventstatus: event indicator (1 = event, 0 = right-censored).
• censorstatus: random censoring indicators δci (1 = random censoring

observed, 0 = no random censoring, including administrative censoring or
observed event).

When blinded = FALSE, the data frame must also contain the treatment assign-
ment indicator column trt coded as 0 or 1. When blinded = TRUE, trt may
be present but ignored. The No column is optional and represents a subject in-
dex used to align this data frame with data.enroll. If missing, it is created
internally as No = 1:nrow(data.eventcensor) and a warning is returned.
Any columns other than No, trt, time, eventstatus, and censorstatus are
treated as numeric baseline covariates. See fit_models for covariate require-
ments

predict_eventtime 35

blinded Logical. If TRUE (default), the interim analysis is blinded and treatment assign-
ments for current subjects are not observed in the data. If FALSE, the analysis is
unblinded and observed treatment assignments are used.

p_trt Numeric scalar in [0, 1] giving the prespecified randomization probability of as-
signment to the experimental treatment arm. Required only if blinded = TRUE;
ignored otherwise. Defaults to NULL.

hyperparams_enroll

List of prior hyperparameters for the enrollment model. See fit_models for
details.

hyperparams_event

List of prior hyperparameters for the event-time model. See fit_models for
details.

hyperparams_censor

List of prior hyperparameters for the censoring model. See fit_models for
details.

chains Number of Markov chain Monte Carlo (MCMC) chains. Defaults to 4.

iter Number of iterations per chain (including warmup). Defaults to 4000.

warmup Number of warmup (burn-in) iterations per chain. Must be strictly smaller than
iter. Defaults to floor(iter / 2).

seed.fit Optional random seed(s) passed to sampling for reproducibility. Can be speci-
fied as:

• a single integer or NULL, in which case the same seed is used for all three
submodels, or

• a list of up to three integers or NULLs, recycled to length 3, corresponding
to the enrollment, censoring, and event-time models, respectively.

Use NULL to allow ’Stan’ to select a seed internally. Defaults to list(123).

refresh Frequency of progress updates from sampling. Set to 0 (NULL) to suppress
output.

control Sampler control settings passed to sampling for the three submodels (enroll-
ment, censoring, and event-time). Can be specified as:

• a single named list of control parameters (shared across all three submod-
els), or

• a list of up to three named lists, recycled to length 3, giving separate control
settings for the enrollment, censoring, and event-time models, respectively.

Typical entries include adapt_delta and max_treedepth.
Defaults to list(list(adapt_delta = 0.95)).

mc.cores Integer. Number of CPU cores to use when executing Markov chains in parallel
via sampling. Defaults to 1. We recommend setting mc.cores to the maximum
number of processors supported by the available hardware and memory, up to
the number of chains.

assess_window Non-negative numeric. If > 0, predicted event/censor times from enrollment
are recorded at the midpoint of the assessment window in which they occur.
Defaults to 0.

36 predict_eventtime

seed.pred Optional integer seed for the RNG used in posterior predictive simulation. It
controls only the RNG used in posterior predictive simulation and is independent
of the ’Stan’ sampling seed. Defaults to list(123).

return_fit Logical; if TRUE, also return the underlying ’rstan’ stanfit objects for the en-
rollment, censoring, and event models. Defaults to FALSE.

quiet Logical. If TRUE (default), suppress messages and diagnostic warnings from
’Stan’ during model fitting. Useful for large simulation studies.

return_draws Logical. If TRUE, also return the posterior draws from the fitted submodels as
result$draws. Defaults to FALSE.

Details

The function fits three components in sequence using fit_models: an enrollment model, an event-
time model, and a random censoring model, all based on data observed at the interim analysis. It
then performs posterior predictive simulation for two groups of subjects:

• B1: subjects enrolled before the interim analysis who have not experienced an event or random
censoring by the interim data cut;

• B2: subjects not yet enrolled by the interim analysis.

For each posterior draw, the function estimates the calendar time at which the cumulative number
of events reaches E_target.

Value

An object of class "BayesPET_predtime", which is a named list with components:

• prediction: A numeric vector of length S, where S is the number of posterior draws from the
fitted models. Each element is a posterior predictive draw of the calendar time at which the
cumulative number of events reaches E_target. Values may be Inf if fewer than E_target
events occur in that draw.

• fit: Present only if return_fit = TRUE. A list of ’rstan’ stanfit objects with components
enroll, censor, and event, corresponding to the enrollment, censoring, and event-time mod-
els, respectively.

• draws: Present only if return_draws = TRUE. A list of posterior draws of model parameters
produced by the fitted submodels. This includes posterior draws from the enrollment, event-
time, and censoring models.

• call: The function call used to generate this object.

Methods include print, summary, and plot.

See Also

Other BayesPET prediction: plot.BayesPET_predtime, print.BayesPET_predtime,
summary.BayesPET_predtime

print.BayesPET_fit 37

Examples

data(data_example)
Reduced number of chains and iterations compared to defaults
to keep the example computationally manageable.
pred <- predict_eventtime(

N = 200,
E_target = 150,
data.enroll = data_example$example_enroll,
data.eventcensor = data_example$example_eventcensor,
blinded = TRUE,
p_trt = 0.5,
chains = 2,
iter = 2000,
assess_window = 2,
seed.fit = 1,
seed.pred = 2,
return_fit = TRUE,
return_draws = TRUE,
quiet = TRUE

)

print(pred)
summary(pred)
plot(pred)

print.BayesPET_fit Print method for BayesPET model fitting objects

Description

Displays a concise overview of an object of class "BayesPET_fit", including whether the analysis
is blinded, the number of posterior draws, and the model components.

Usage

S3 method for class 'BayesPET_fit'
print(x, ...)

Arguments

x An object of class "BayesPET_fit" returned by fit_models.

... Additional arguments passed to methods. Not used.

Value

The object x, invisibly.

38 print.BayesPET_predtime

See Also

Other BayesPET model fitting: fit_censor, fit_enroll, fit_event_blind, fit_models,
fit_event_unblind

Examples

data(data_example)
example_enroll <- data_example$example_enroll
example_eventcensor <- data_example$example_eventcensor

Blinded analysis
example_eventcensor.blind <- example_eventcensor
example_eventcensor.blind$trt <- NA
Use 2 chains and iter = 2000 here to reduce runtime for the example;
use more chains in real analyses.
fit.blind <- fit_models(

data.enroll = example_enroll,
data.eventcensor = example_eventcensor.blind,
blinded = TRUE, p_trt = 0.5,
chains = 2, iter = 2000, seed = list(123),
return_fit = TRUE, mc.cores = 1, quiet = FALSE

)
print(fit.blind)

print.BayesPET_predtime

Print method for BayesPET prediction objects

Description

Displays a brief overview of an object of class "BayesPET_predtime" and lists the components
available in the result. For numerical summaries, use summary; for visualization, use plot.

Usage

S3 method for class 'BayesPET_predtime'
print(x, ...)

Arguments

x An object of class "BayesPET_predtime" returned by predict_eventtime.

... Additional arguments passed to methods. Not used.

Value

The object x, invisibly.

summary.BayesPET_oc 39

See Also

Other BayesPET prediction: plot.BayesPET_predtime, predict_eventtime,
summary.BayesPET_predtime

Examples

data(data_example)
Reduced number of chains and iterations compared to defaults
to keep the example computationally manageable.
pred <- predict_eventtime(

N = 200,
E_target = 150,
data.enroll = data_example$example_enroll,
data.eventcensor = data_example$example_eventcensor,
blinded = TRUE,
p_trt = 0.5,
chains = 2,
iter = 2000,
assess_window = 2,
seed.fit = 1,
seed.pred = 2,
return_fit = TRUE,
return_draws = TRUE,
quiet = TRUE

)

print(pred)
summary(pred)
plot(pred)

summary.BayesPET_oc Summary method for BayesPET operating characteristics object

Description

Computes summary measures of prediction accuracy from a "BayesPET_oc" object. The sum-
maries are based on the differences between the predicted median and true calendar times to reach
the target number of events.

Usage

S3 method for class 'BayesPET_oc'
summary(object, thresholds = c(0.25, 0.5, 1, 1.5, 2), ...)

S3 method for class 'summary.BayesPET_oc'
print(x, digits = 3, ...)

40 summary.BayesPET_oc

Arguments

object An object of class "BayesPET_oc" returned by get_oc.

thresholds Numeric vector of non-negative thresholds used to compute the proportion of
replicates for which the absolute prediction error is less than each threshold.
Defaults to c(0.25, 0.5, 1, 1.5, 2).

... Not used.

x An object of class "summary.BayesPET_oc" returned by summary.BayesPET_oc.

digits Integer specifying the number of decimal places to use when printing numerical
summaries. Defaults to 3.

Value

summary.BayesPET_oc returns an object of class "summary.BayesPET_oc", a list containing:

• n_valid: Number of valid simulation replicates (where the target event count can be reached).

• n_attempt: Number of datasets generated to obtain the valid replicates.

• success_rate: Proportion of attempted datasets that produced valid replicates.

• thresholds: Threshold values used to evaluate prediction accuracy.

• pr_lt: Proportion of replicates with prediction error less than each threshold.

• mae: Mean absolute prediction error.

• median_ae: Median absolute prediction error.

• rmse: Root mean squared prediction error.

• call: The matched function call.

print.summary.BayesPET_oc returns the object x, invisibly.

See Also

Other BayesPET operating characteristics: get_oc()

Examples

Using nsim = 2, chains = 2, and iter = 2000 to reduce runtime.
Use larger nsim, chains and iter in real analyses.
oc <- get_oc(

N = 200, E_target = 150,
E_cutoff = 75, p_trt = 0.5,
cov_type = c("binary", "continuous"),
cov_dist = c(0.5, 2),
beta.event = c(-0.2, -0.2),
beta.censor = c(0, 0),
logHR.trt = log(0.65),
enroll_rate = 16,
dist.event = "Weibull", dist.censor = "Weibull",
event.scale = 1/5^3, event.shape = 3,
censor.scale = 1/10^6, censor.shape = 6,

summary.BayesPET_predtime 41

blinded = TRUE,
assess_window = 2,
seed = 1,
chains = 2, iter = 2000,
nsim = 2,
n_workers = 1

)

summary(oc)

summary.BayesPET_predtime

Summary method for BayesPET prediction objects

Description

Summarizes an object of class "BayesPET_predtime" by reporting summary statistics of the pos-
terior predictive distribution of the calendar time at which the target number of events is reached.

Usage

S3 method for class 'BayesPET_predtime'
summary(object, ...)

S3 method for class 'summary.BayesPET_predtime'
print(x, digits = 4, ...)

Arguments

object An object of class "BayesPET_predtime" returned by predict_eventtime.

... Additional arguments passed to methods. Not used.

x An object of class "summary.BayesPET_predtime" returned by summary ap-
plied to a "BayesPET_predtime" object.

digits Integer. Number of significant digits to use when printing numerical summaries.
Defaults to 4.

Value

summary.BayesPET_predtime returns an object of class "summary.BayesPET_predtime", which
is a named list containing summary information for the posterior predictive distribution of the target
event time. Components include:

• S: Total number of posterior predictive draws.

• n_infinite: Number of draws in which the target number of events is not reached.

• prob_not_reached: Proportion of draws in which the target is not reached.

42 summary.BayesPET_predtime

• q25: Posterior 25th percent quantile of the target event time.

• median: Posterior median of the target event time.

• q75: Posterior 75th percent quantile of the target event time.

• call: The function call used to generate the prediction.

print.summary.BayesPET_predtime returns the object x, invisibly.

See Also

Other BayesPET prediction: plot.BayesPET_predtime, predict_eventtime,
print.BayesPET_predtime

Examples

data(data_example)
Reduced number of chains and iterations compared to defaults
to keep the example computationally manageable.
pred <- predict_eventtime(

N = 200,
E_target = 150,
data.enroll = data_example$example_enroll,
data.eventcensor = data_example$example_eventcensor,
blinded = TRUE,
p_trt = 0.5,
chains = 2,
iter = 2000,
assess_window = 2,
seed.fit = 1,
seed.pred = 2,
return_fit = TRUE,
return_draws = TRUE,
quiet = TRUE

)

print(pred)
summary(pred)
plot(pred)

Index

∗ BayesPET operating characteristics
get_oc, 27
summary.BayesPET_oc, 39

∗ datasets
data_example, 6

BayesPET (BayesPET-package), 2
BayesPET-package, 2

convert_median, 3, 25

data_example, 6, 34
dweibull, 5

fit_censor, 8, 12, 15, 18, 21, 22, 38
fit_enroll, 10, 10, 15, 18, 21, 22, 25, 38
fit_event_blind, 10, 12, 13, 18, 21, 22, 38
fit_event_unblind, 10, 12, 15, 16, 21, 22, 38
fit_models, 10, 12, 15, 18, 19, 29, 30, 34–38
flexsurvreg, 5
future_map, 30

generate_data, 23, 30, 34
get_oc, 27, 40

hist, 32

phreg, 5
plot, 36, 38
plot.BayesPET_predtime, 32, 36, 39, 42
predict_eventtime, 30, 32, 33, 38, 39, 41, 42
print, 22, 36
print.BayesPET_fit, 10, 12, 15, 18, 22, 37
print.BayesPET_predtime, 32, 36, 38, 42
print.summary.BayesPET_oc, 40
print.summary.BayesPET_oc

(summary.BayesPET_oc), 39
print.summary.BayesPET_predtime, 42
print.summary.BayesPET_predtime

(summary.BayesPET_predtime), 41

rllogis, 5
rstan, 5

sampling, 9, 11, 12, 14, 17, 21, 30, 35
summary, 36, 38, 41
summary.BayesPET_oc, 31, 39, 40
summary.BayesPET_predtime, 32, 36, 39, 41,

41

uniroot, 4, 5

43

	BayesPET-package
	convert_median
	data_example
	fit_censor
	fit_enroll
	fit_event_blind
	fit_event_unblind
	fit_models
	generate_data
	get_oc
	plot.BayesPET_predtime
	predict_eventtime
	print.BayesPET_fit
	print.BayesPET_predtime
	summary.BayesPET_oc
	summary.BayesPET_predtime
	Index

