BayesPIM: Bayesian Prevalence-Incidence Mixture Model
Models time-to-event data from interval-censored
screening studies. It accounts for latent prevalence at baseline and
incorporates misclassification due to imperfect test sensitivity. For usage
details, see the package vignette ("BayesPIM_intro"). Further details can be
found in T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024),
"A Bayesian prevalence-incidence mixture model for screening outcomes with
misclassification", <doi:10.48550/arXiv.2412.16065>.
Version: |
1.0.0 |
Depends: |
R (≥ 3.5.0), coda |
Imports: |
Rcpp, mvtnorm, MASS, ggamma, doParallel, foreach, parallel, actuar |
LinkingTo: |
Rcpp |
Suggests: |
knitr, rmarkdown |
Published: |
2025-03-22 |
DOI: |
10.32614/CRAN.package.BayesPIM |
Author: |
Thomas Klausch [aut, cre] |
Maintainer: |
Thomas Klausch <t.klausch at amsterdamumc.nl> |
BugReports: |
https://github.com/thomasklausch2/BayesPIM/issues |
License: |
MIT + file LICENSE |
URL: |
https://github.com/thomasklausch2/bayespim |
NeedsCompilation: |
yes |
Materials: |
README |
CRAN checks: |
BayesPIM results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BayesPIM
to link to this page.