Package 'CimpleG'

December 3, 2025

Type Package

Title A Method to Identify Single CpG Sites for Classification and Deconvolution

Version 1.0.0

Date 2025-11-21

Maintainer Tiago F.V. Maié <tiagomaie@hotmail.com>

Description DNA methylation signatures are usually based on multivariate approaches that require hundreds of sites for predictions. 'CimpleG' is a method for the detection of small CpG methylation signatures used for cell-type classification and deconvolution. 'CimpleG' is time efficient and performs as well as top performing methods for cell-type classification of blood cells and other somatic cells, while basing its prediction on a single DNA methylation site per cell type (but users can also select more sites if they so wish). Users can train cell type classifiers ('CimpleG' based, and others) and directly apply these in a deconvolution of cell mixes context. Altogether, 'CimpleG' provides a complete computational framework for the delineation of DNAm signatures and cellular deconvolution. For more details see Maié et al. (2023) <doi:10.1186/s13059-023-03000-0>.

License GPL (>= 3)

URL https://github.com/CostaLab/CimpleG,
 https://costalab.github.io/CimpleG/

BugReports https://github.com/CostaLab/CimpleG/issues

Depends R (>= 4.1.0)

Imports archive, assertthat, broom, butcher, caret, data.table, devtools, dplyr, forcats, ggExtra, ggplot2, ggrepel, ggsci, grDevices, gtools, magrittr, matrixStats, methods, nnls, OneR, parsnip, patchwork, purrr, recipes, rlang, rsample, scales, stats, tibble, tictoc, tidyr, tidyselect, tsutils, tune, utils, vroom, workflows, yardstick

2 Contents

Suggests Biobase, biomaRt, C50, circlize, EpiDISH, furrr, future, future.apply, GEOquery, ggbeeswarm, ggsignif, glmnet, knitr, minfi, mltools, NMF, nnet, plyr, ranger, RColorBrewer, reshape2, Rfast, rmarkdown, spelling, stringr,
SummarizedExperiment, testthat (>= 3.0.0), withr, xgboost
VignetteBuilder knitr
Config/testthat/edition 3
Config/testthat/parallel true
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.3.2
NeedsCompilation no

Contents

Repository CRAN

Author Tiago F.V. Maié [aut, cre]

Date/Publication 2025-12-03 20:50:17 UTC

CimpleG
compute_ax
compute_diffmeans_sumvar
darken
deconvolution_barplot
deconvolution_epidish
deconvolution_nmf
deconvolution_nnls
deconv_pred_obs_plot
deconv_ranking_plot
diffmeans_sumvariance_plot
dmsv_plot
eval_test_data
get_cpg_annotation
lighten
load_object
make_color_palette
make_deconv_pred_obs_data
make_deconv_ref_matrix
predict.CimpleG
run_deconvolution
save_object
select_features
signature_plot
test_data

 2
 27
29

CimpleG

Find simple CpG (CimpleG) signatures.

Description

Train a classification model using (CpGs) as features for the given target data.

Usage

```
CimpleG(
  train_data,
  train_targets = NULL,
  target_columns = NULL,
  test_data = NULL,
  test_targets = NULL,
 method = c("CimpleG", "CimpleG_parab", "brute_force", "logistic_reg", "decision_tree",
  "boost_tree", "mlp", "rand_forest"),
pred_type = c("both", "hypo", "hyper"),
engine = c("glmnet", "xgboost", "nnet", "ranger"),
  rank_method = c("ac_rank", "a_rank", "c_rank"),
  k_folds = 10,
  grid_n = 10,
  param_p = 2,
  n_sigs = 1,
  quantile_threshold = 0.005,
  train_only = FALSE,
  split_data = FALSE,
  run_parallel = FALSE,
  deconvolution_reference = TRUE,
  has_annotation = FALSE,
  save_dir = NULL,
  save_format = c("lz4", "gzip", "bzip2", "xz", "nocomp"),
  verbose = 1,
  targets = NULL
)
cimpleg(
  train_data,
  train_targets = NULL,
  target_columns = NULL,
  test_data = NULL,
  test_targets = NULL,
```

```
method = c("CimpleG", "CimpleG_parab", "brute_force", "logistic_reg", "decision_tree",
    "boost_tree", "mlp", "rand_forest"),
  pred_type = c("both", "hypo", "hyper"),
  engine = c("glmnet", "xgboost", "nnet", "ranger"),
  rank_method = c("ac_rank", "a_rank", "c_rank"),
  k_folds = 10,
  grid_n = 10,
  param_p = 2,
  n_sigs = 1,
  quantile_threshold = 0.005,
  train_only = FALSE,
  split_data = FALSE,
  run_parallel = FALSE,
  deconvolution_reference = TRUE,
  has_annotation = FALSE,
  save_dir = NULL,
  save_format = c("lz4", "gzip", "bzip2", "xz", "nocomp"),
  verbose = 1,
  targets = NULL
cpg(
  train_data,
  train_targets = NULL,
  target_columns = NULL,
  test_data = NULL,
  test_targets = NULL,
 method = c("CimpleG", "CimpleG_parab", "brute_force", "logistic_reg", "decision_tree",
    "boost_tree", "mlp", "rand_forest"),
  pred_type = c("both", "hypo", "hyper"),
  engine = c("glmnet", "xgboost", "nnet", "ranger"),
  rank_method = c("ac_rank", "a_rank", "c_rank"),
  k_folds = 10,
  grid_n = 10,
  param_p = 2,
  n_sigs = 1,
  quantile_threshold = 0.005,
  train_only = FALSE,
  split_data = FALSE,
  run_parallel = FALSE,
  deconvolution_reference = TRUE,
  has_annotation = FALSE,
  save_dir = NULL,
  save_format = c("lz4", "gzip", "bzip2", "xz", "nocomp"),
  verbose = 1,
  targets = NULL
)
```

Arguments

train_data Training dataset. A matrix (s x f) with methylation data (Beta values) that will

be used to train/find the predictors. Samples (s) must be in rows while fea-

tures/CpGs (f) must be in columns.

train_targets A data frame with the training target samples one-hot encoded. A data frame

with at least 1 column, with as many rows and in the same order as 'train_data'. Target columns need to be one-hot encoded, meaning that, for that column the target samples should be encoded as '1' while every other sample should be

encoded as '0'.

target_columns A string specifying the name of the column in 'train_targets' to be used for

training. Can be a character vector if there are several columns in 'train_targets' to be used for training. If this argument is a character vector, CimpleG will search for the best predictors for each target sequentially or in parallel depending

on the value of 'run_parallel'

test_data Testing dataset. A matrix (s x f) with methylation data (Beta values) that will

be used to test the performance of the found predictors. Samples (s) must be in rows while features/CpGs (f) must be in columns. If 'test_data' *OR* 'test_targets' are NULL, CimpleG will generate a stratified test dataset based on

'train_targets' by removing 25 samples from 'train_data' and 'train_targets'.

test_targets A data frame with the testing target samples one-hot encoded. A data frame with

at least 1 column, with as many rows and in the same order as 'test_data'. Target columns need to be one-hot encoded, meaning that, for that column the target samples should be encoded as '1' while every other sample should be encoded as '0'. If 'test_data' *OR* 'test_targets' are NULL, CimpleG will generate a stratified test dataset based on 'train_targets' by removing 25 samples from

'train_data' and 'train_targets'.

method A string specifying the method or type of machine learning model/algorithm

to be used for training. These are divided in two main groups. * The simple models (classifiers that use a single feature), 'CimpleG' (default), 'brute_force', 'CimpleG_unscaled' or 'oner'; * the complex models (classifiers that use several features), 'logistic_reg', 'decision_tree', 'boost_tree', 'mlp' or 'rand_forest'.

pred_type A string specifying the type of predictor/CpG to be searched for during training.

Only used for simple models. One of 'both' (default), 'hypo' or 'hyper'. If 'hypo', only hypomethylated predictors will be considered. If 'hyper', only

hypermethylated predictors will be considered.

engine A string specifying the machine learning engine behind 'method'. Only used

for complex models. Currently not in use.

rank_method A string specifying the ranking strategy to rank the features during training.

k_folds An integer specifying the number of folds (K) to be used in training for the

stratified K-fold cross-validation procedure.

grid_n An integer specifying the number of hyperparameter combinations to train for.

param_p An even number in 'sigma / (delta^param_p)'. Tunes how much weight will be

given to delta when doing feature selection. Default is 2.

n_sigs Number of signatures to be saved for classification and used in deconvolution.

Default is 1.

quantile_threshold

A number between 0 and 1. Determines how many features will be kept. Default is 0.005.

train_only A boolean, if TRUE, CimpleG will only train (find predictors) but not test them

against a test dataset.

split_data A boolean, if 'TRUE', it will subset the train data provided, creating a smaller

test set that will be used to test the models after training. This parameter is

experimental. Default is 'FALSE'.

run_parallel A boolean, if 'FALSE', the default, it will search for predictors for multiple

targets sequentially. If 'TRUE' it will search for predictors for multiple targets at the same time (parallel processing) in order to save in computational time.

You need to set up 'future::plan()' before running this function.

deconvolution_reference

A boolean, if 'TRUE', it will create a deconvolution reference matrix based on the training data. This can later be used to perform deconvolution. Default is

'FALSE'.

has_annotation A boolean, if 'TRUE', it will get the CpG annotation from Illumina for the

generated signature. Default is 'FALSE'.

save_dir If defined it will save the resulting model to the given directory. Default is NULL.

save_format Only used if save_dir is not NULL. One of "lz4", "gzip", "bzip2", "xz", "no-

comp". 1z4 is the best option, fast compression and loading times, low space

usage.

verbose How verbose you want CimpleG to be while it is running. At 0, no message is

displayed, at 3 every message is displayed. Default is 1.

targets DEPRECATED use 'target_columns'.

Value

A CimpleG object with the results per target class.

Examples

```
library("CimpleG")

# read data
data(train_data)
data(train_targets)
data(test_data)
data(test_targets)

# run CimpleG
cimpleg_result <- CimpleG(
    train_data = train_data,
    train_targets = train_targets,
    test_data = test_data,
    test_targets = test_targets,
    method = "CimpleG",
    target_columns = c("glia", "neurons")</pre>
```

compute_ax 7

```
)
# check signatures
cimpleg_result$signatures
```

compute_ax

Feature selection function used in the sigma delta space

Description

Feature selection function used in the sigma delta space

Usage

```
compute_ax(dm, sv, p)
```

Arguments

dm delta (difference in mean values)
sv sigma (sum of variance values)

p even number, the greater 'p' is the more importance will be given to sigma

Value

numeric value, score used for feature selection

```
compute_diffmeans_sumvar
```

Compute diff mean sum var dataframe

Description

Compute diff mean sum var dataframe

Usage

```
compute_diffmeans_sumvar(data, target_vector)
```

Arguments

data Matrix with beta values that will be used to compute diffmeans sumvar data

frame

target_vector boolean vector defining which samples in data are part of the target class

Value

data.frame with computed difference in means and sum of variances for target comparison (target v others)

darken

Helper function to darken down a given color.

Description

Helper function to darken down a given color.

Usage

```
darken(color, factor = 0.5)
```

Arguments

color Color name or hex code of a color

factor Multiplicative factor by which 'color' will be darkened down

Value

a character value, hex color code of the darkened color provided

deconvolution_barplot Stacked barplot of deconvolution results

Description

Stacked barplot of deconvolution results

Usage

```
deconvolution_barplot(
  deconvoluted_data,
  meta_data,
  sample_id_column,
  true_label_column,
  color_dict = NULL,
  show_x_label = FALSE,
  base_size = 14,
  ...
)
```

deconvolution_epidish 9

Arguments

deconvoluted_data

Result from running 'run_deconvolution'

meta_data Data.frame containing metadata from deconvoluted samples

sample_id_column

Name of the column containing the sample id in the meta_data data.frame

true_label_column

Name of the column containing the true labels of the samples in the meta_data

data.frame

color_dict Named string featuring colors as values and labels (true labels) as names

show_x_label A boolean, if 'TRUE' the sample labels in the X axis will be shown. Default is

'FALSE'.

base_size An integer defining the base size of the text in the plot. Default is '14'.

Parameters passed to the ggplot2::theme function.

Value

A list with the data and the ggplot2 plot object.

deconvolution_epidish EpiDISH deconvolution

Description

EpiDISH deconvolution

Usage

```
deconvolution_epidish(
  ref_mat,
  new_data,
  epidish_method = "CBS",
  epidish_nuv = seq(0.1, 1, 0.1),
  epidish_maxit = 10000
)
```

Arguments

ref_mat Reference matrix.
new_data New data matrix.

epidish_method One of 'CBS' (Cibersort), 'RPC' (Robust Partial Correlations), 'CP' (Constrained

Projection). Default is 'CBS'. See 'EpiDISH' documentation for more informa-

tion.

10 deconvolution_nnls

epidish_nuv A vector of candidate values used for svm. Only used when epidish_method is

set to 'CBS'. See 'EpiDISH' documentation for more information.

Squares). Only used when epidish_method is set to 'RPC'.

deconvolution_nmf NMF deconvolution

Description

NMF deconvolution

Usage

```
deconvolution_nmf(weights_mat, values_mat, ...)
```

Arguments

weights_mat Reference matrix.
values_mat New data matrix.

... Extra parameters to be set NMF options. Most relevant parameters are probably

'method' and 'beta'.

deconvolution_nnls NNLS deconvolution

Description

NNLS deconvolution

Usage

```
deconvolution_nnls(dt, compute_cols, ref_mat)
```

Arguments

dt A data.table with the new data with features/predictions on rows and samples on

columns.

compute_cols A character vector with the columns for which the deconvolution algorithm

should be ran.

ref_mat The reference matrix as created by CimpleG.

deconv_pred_obs_plot Scatter plots of observed (true) vs predicted values for deconvolution.

Description

Produces one plot panel per number of methods with predictions. Each plot panel has one plot per cell type.

Usage

```
deconv_pred_obs_plot(
  deconv_df,
  true_values_col,
  predicted_cols,
  sample_id_col,
  group_col,
  axis_lims = list(x = c(0, 1), y = c(0, 1))
)
```

Arguments

deconv_df	A data.frame with meta.data, true values and predictions for different methods as columns. Each row should be a prediction for a given sample and a given group/cell type.
true_values_col	
	A string with the name of the column with the true values in 'deconv_df'.

predicted_cols A vector of strings with the name of the columns with the predictions for different methods in 'deconv_df'.

sample_id_col A string with the name of the column with the sample name or ID in 'deconv_df'.

group_col A string with the name of the column containing the cell types or groups in 'deconv_df'.

axis_lims A list with two entries, 'x' and 'y', defining the limits of the x and y axis of the plot.

Value

list of ggplot2 objects

12 deconv_ranking_plot

deconv_ranking_plot	Boxplot and rankings of deconvolution metrics for deconvolution re-
	sults.

Description

Produces data with varied deconvolution performance metrics. Produces one boxplot and one ranking plot with the for each metric.

Usage

```
deconv_ranking_plot(
  deconv_df,
  true_values_col,
  predicted_cols,
  sample_id_col,
  group_col,
  metrics = c("rmse", "r_squared", "adj.r.squared", "AIC"),
  custom_colours = NULL
)
```

Arguments

deconv_df	A data.frame with meta.data, true values and predictions for different methods as columns. Each row should be a prediction for a given sample and a given group/cell type.
true_values_col	
	A string with the name of the column with the true values in 'deconv_df'.
predicted_cols	A vector of strings with the name of the columns with the predictions for different methods in 'deconv_df'.
sample_id_col	A string with the name of the column with the sample name or ID in 'deconv_df'.
group_col	A string with the name of the column containing the cell types or groups in 'deconv_df'.
metrics	A list with two entries, ' x ' and ' y ', defining the limits of the x and y axis of the plot.
custom_colours	A named vector with colours, where the names are the values defined in 'predicted_cols'. If 'NULL', default colours will be used.

Value

list object with data and deconvolution performance plots

```
diffmeans_sumvariance_plot
```

Creates the old version of the difference in means by sum of variances plot

Description

Represent CpGs in the difference in means, sum of variances space. This plot is often used to select CpGs that would be good classifiers. These CpGs are often located on the bottom left and bottom right of this plot.

Usage

```
diffmeans_sumvariance_plot(
  data,
  xcol = "diff_means",
 ycol = "sum_variance",
  feature_id_col = "id",
  is_feature_selected_col = NULL,
  label_var1 = "Target",
  label_var2 = "Others",
  target_vector = NULL,
 mean_cutoff = NULL,
  var_cutoff = NULL,
  threshold_func = NULL,
  func_factor = NULL,
  feats_to_highlight = NULL,
  cpg_ranking_df = NULL,
  color_all_points = NULL,
 plot_density = TRUE,
  density_type = c("density", "histogram", "boxplot", "violin", "densigram"),
  plot_dir = NULL,
  id_tag = NULL,
  file_tag = NULL,
  custom_mods = FALSE
)
```

Arguments

data	Data to create difference in means, sum of variances plot. Either a data.frame with 'xcol', 'ycol' and 'feature_id_col' or, if 'target_vector' is not 'NULL' a matrix with beta values from which, given the target, the difference in means between the target and others, and the sum of variances within the target and others will be calculated.
xcol	Column with x-axis data
ycol	Column with y-axis data

feature_id_col Column with the feature ID is_feature_selected_col NULL or column with TRUE/FALSE for features which should be highlighted as selected label_var1 Label of the target class label_var2 Label of the other classes target_vector if not NULL a vector target class assignment, see data mean_cutoff a numeric draw mean cutoff at given position var cutoff a numeric draw variance cutoff at given position threshold_func specification of the parabola function, see examples func_factor argument to be passed to the parabola function, see examples feats_to_highlight features (CpGs) to be highlighted in the plot cpg_ranking_df data.frame with ranked features (CpGs) to be highlighted in the plot, if present must have the following columns: .id, predType, Rank and DiffAndFoldScaledAUPR color_all_points color that all non-highlighted points should have, argument defaults to NULL, the default color is black A boolean, if TRUE (default) the function will produce density plots on top/side plot_density of scatterplot One of "density", "histogram", "boxplot", "violin" or "densigram". Defines the density_type type of density plot if 'plot_density = TRUE' plot_dir path to directory where to save the plot. If NULL (default), plot will not be saved. id_tag character string to identify plots, is displayed in the plot and present in the file name character string to identify plots, tags only the file name file_tag a boolean, if TRUE will add some custom labels to the plot. Default is FALSE custom_mods

Value

a ggplot2 object with the dmsv plot.

Examples

```
library("CimpleG")

# read data
data(train_data)
data(train_targets)

# make basic plot
plt <- diffmeans_sumvariance_plot(
    train_data,
    target_vector = train_targets$blood_cells == 1</pre>
```

dmsv_plot 15

```
print(plt)
# make plot with parabola, colored and highlighted features
df_dmeansvar <- compute_diffmeans_sumvar(</pre>
  train_data,
  target_vector = train_targets$blood_cells==1
parab_param <- .7</pre>
df_dmeansvar$is_selected <- select_features(</pre>
    x = df_dmeansvar$diff_means,
    y = df_dmeansvar$sum_variance,
    a = parab_param
plt <- diffmeans_sumvariance_plot(</pre>
  data=df_dmeansvar,
  label_var1="Leukocytes",
  color_all_points="red",
  is_feature_selected_col="is_selected",
  feats_to_highlight=c("cg10456121"),
  threshold_func=function(x,a) (a*x)^2,
  func_factor=parab_param
)
print(plt)
```

 $dmsv_plot$

Creates the old version of the difference in means by sum of variances plot

Description

Represent CpGs in the difference in means, sum of variances space. This plot is often used to select CpGs that would be good classifiers. These CpGs are often located on the bottom left and bottom right of this plot.

Usage

```
dmsv_plot(
  dat,
  target_vector = NULL,
  x_var = "diff_means",
  y_var = "sum_variance",
  id_var = "id",
  highlight_var = NULL,
  display_var = NULL,
  label_var1 = "Target",
  label_var2 = "Others",
  point_color = "black",
```

16 dmsv_plot

```
subtitle = NULL
)
```

Arguments

dat Data to create dmsv plot (difference in means, sum of variances plot). Either a

data.frame with 'x_var', 'y_var' and 'id_var' or, if 'target_vector' is not 'NULL' a matrix with beta values from which, given the target, the difference in means between the target and others, and the sum of variances within the target and

others will be calculated.

target_vector if not NULL a boolean vector with target class assignment, see data

x_var Name of the column with x-axis data (difference of means). y_var Name of the column with y-axis data (sum of variances).

id_var Name of the column with the feature/CpG ID.

highlight_var (Optional) Name of the column with the highlighted features. Values in this

column should be boolean (TRUE for selected, FALSE for not selected).

display_var (Optional) Name of the column with the features that should be displayed in the

plot as a label. Values in this column should be boolean (TRUE for feature that

should be displayed, FALSE for feature that should not be displayed).

label_var1 Label of the target class. Default is "Target".

label_var2 Label of the other classes. Default is "Others".

point_color Color of the features/CpGs in the plot. Default is "black". If features are

highlighted, non-highlighted features will have a lighter color.

subtitle Subtitle to be displayed in the plot. Default is NULL.

Value

a ggplot2 object with the dmsv plot.

Examples

```
library("CimpleG")

# load CimpleG example data
data(train_data)
data(train_targets)

# make basic plot straight from the data
plt <- dmsv_plot(
    dat = train_data,
    target_vector = train_targets$blood_cells == 1
)
print(plt)

# make plot with highlighted features
# first create a diffmeans sumvar data frame from the data
df_dmeansvar <- compute_diffmeans_sumvar(</pre>
```

eval_test_data 17

```
train_data,
  target_vector = train_targets$blood_cells==1
)

# adding a column to this data frame \code{hl_col} with random CpGs
# selected (as TRUE) or not (as FALSE) to be highlighted and displayed.

df_dmeansvar$hl_col <- sample(c(TRUE,FALSE),nrow(df_dmeansvar),replace=TRUE,prob=c(0.1,0.9))

df_dmeansvar$dp_col <- df_dmeansvar$hl_col

plt <- dmsv_plot(
    dat=df_dmeansvar,
    highlight_var="hl_col",
    display_var="dp_col",
    label_var1="Leukocytes",
    point_color="red",
    subtitle="method: CimpleG"
)
print(plt)</pre>
```

eval_test_data

Evaluation of produced models on test data

Description

Evaluation of produced models on test data

Usage

```
eval_test_data(test_data, final_model, method = "oner", verbose = 1)
```

Arguments

test_data Test data.

final_model Model to be tested.

method Method used to train model.

verbose How verbose the logs should be.

Value

a data.frame with the evaluation statistics

18 get_cpg_annotation

get_cpg_annotation

Get CpG annotation from Illumina

Description

Get CpG annotation from Illumina

Usage

```
get_cpg_annotation(
  cpg_id,
  is_epic = TRUE,
  short_annotation = TRUE,
  silence_warnings = TRUE
)
```

Arguments

cpg_id A character vector with the CpG IDs from Illumina to annotate.

is_epic A boolean, if TRUE, the annotation will be fetched from the EPIC array, other-

wise from the 450k array. Default is TRUE.

A boolean, if TRUE, only a small number of columns from the full annotation reference will be kept. This leads to an easier to read output. Default is TRUE.

silence_warnings

short_annotation

A boolean, if TRUE, warnings produced during the downloading and loading of the data will be silenced. Default is TRUE.

Value

A table with the annotated CpGs in the same order as the provided signatures.

Examples

```
library("CimpleG")

# read data
signatures <- c("cg14501977", "cg24548498")

# Get signature annotation
signature_annotation <- get_cpg_annotation(signatures)

# check signature annotation
signature_annotation</pre>
```

lighten 19

lighten

Helper function to lighten up a given color.

Description

Helper function to lighten up a given color.

Usage

```
lighten(color, factor = 0.5)
```

Arguments

color Color name or hex code of a color

factor Multiplicative factor by which 'color' will be lightened up

Value

a character value, hex color code of the lightened color provided

load_object

Load an R object saved with CimpleG or an RDS file.

Description

Load an R object saved with CimpleG or an RDS file.

Usage

```
load_object(file_name)
```

Arguments

file_name

File name in the working directory or path to file to be loaded. Files saved with CimpleG::save_object and base::saveRDS files are supported.

Value

the loaded R object

make_color_palette

Make color palette data frame

Description

Make color palette data frame

Usage

```
make_color_palette(classes)
```

Arguments

classes

Vector with classes for which to create a color palette

Value

data.frane with colors defined for each class provided

```
make_deconv_pred_obs_data
```

Make tidy data for use in deconvolution plots

Description

Produces data with varied deconvolution performance metrics.

Usage

```
make_deconv_pred_obs_data(
  dat,
  true_values_col,
  predicted_cols,
  sample_id_col,
  group_col
)
```

Arguments

dat

data.frame with predictions as columns, each row should be a prediction for a given sample and given group/celltype

```
true_values_col
```

A string with the name of the column with the true values in 'dat'. true values should be between 0 and 1.

predicted_cols A vector of strings with the name of the columns with the predictions for differ-

ent methods in 'dat'. predictions should be between 0 and 1

sample_id_col A string with the name of the column with the sample name or ID in 'dat'.

group_col A string with the name of the column containing the cell types or groups in 'dat'.

group col should be a factor, otherwise the function will make it a factor

Value

tibble with tidied up deconvolution performance data in nested fields

make_deconv_ref_matrix

Build deconvolution reference matrix

Description

Build deconvolution reference matrix

Usage

```
make_deconv_ref_matrix(cpg_obj, ref_data, ref_data_labels, method = NULL)
```

Arguments

cpg_obj A CimpleG object.

ref_data A matrix with the reference data to be used to build the reference matrix.

ref_data_labels

A character vector with the true labels of the samples in the 'reference_data'.

method Method used to train models in the CimpleG object. If not provided (NULL),

method will be taken from the CimpleG object. Creates the old version of the

difference in means by sum of variances plot

Value

A list object containing the deconvolution reference matrix

22 run_deconvolution

predict	Cimn	LAC
DI CATCE	· · CTIIID	TCO

Predict outcome from a CimpleG signatures on new data

Description

Predict outcome from a CimpleG signatures on new data

Usage

```
## S3 method for class 'CimpleG'
predict(object, ..., new_data, class_labels = NULL)
```

Arguments

object CimpleG object.

... Not used at the moment.

new_data Data to be predicted, samples should be in rows and features in columns. Last

column of 'new_data' should have the target/class labels coded as 0 or 1.

class_labels Class labels of new data if these are not provided directly with it.

Value

prediction object, list with an entry for each signature

run_deconvolution

Perform deconvolution on a new set of samples, based on the CimpleG models trained

Description

Perform deconvolution on a new set of samples, based on the CimpleG models trained

Usage

```
run_deconvolution(
  cpg_obj = NULL,
  new_data = NULL,
  ref_mat = NULL,
  deconvolution_method = c("NNLS", "EpiDISH", "NMF"),
   ...
)
```

save_object 23

Arguments

cpg_obj A CimpleG object. When creating/training CimpleG the parameter 'deconvolu-

tion_reference' should be set to 'TRUE'.

new_data Matrix or data.frame that should have the samples you want to perform decon-

volution on. Samples should be in rows and probes/CpGs in columns.

ref_mat If the CimpleG object does not have the reference matrix, you can provide it

here instead. See 'make_deconv_ref_matrix'

deconvolution_method

Deconvolution method to be used. One of #TODO

... Extra parameters only used when deconvolution_method is set to 'NMF'. The

most relevant parameter are probably 'method' and 'beta'.

Value

a data.table with the deconvolution results

save_object

Save an R object to disk with fast and efficient compression algorithms.

Description

Save an R object to disk with fast and efficient compression algorithms.

Usage

```
save_object(object, file_name, file_format = "lz4")
```

Arguments

object Object to be saved to disk.

file_name Name of the file where the R object is saved to.

file_format One of "lz4", "gzip", "bzip2", "xz", "nocomp". lz4 is the best option, fast com-

pression and loading times, low space usage. Format "lz4" is only available if package archive is installed. Format "zstd" is not supported anymore as the

library now needs to be precompiled with R.

Value

NULL invisibly

24 signature_plot

select_features

Feature selection function used in the diffmeans, sumvariance space

Description

Feature selection function used in the diffmeans, sumvariance space

Usage

```
select_features(x, y, a)
```

Arguments

x difference in means valuey sum of variances value

a parabola parameter, scales how open/closed the parabola is, the higher the value,

the more closed the parabola is.

Value

bool vector

signature_plot

CpG signature plot

Description

CpG signature plot

Usage

```
signature_plot(
  cpg_obj,
  data,
  meta_data,
  sample_id_column,
  true_label_column,
  color_dict = NULL,
  color_others = "black",
  as_panel = TRUE,
  is_beta = TRUE,
  base_size = 14,
  ...
)
```

test_data 25

Arguments

cpg_obj	A CimpleG object, as generated by the CimpleG function. Alternatively a names character vector or list with the signatures.
data	Matrix or data.frame that should have the samples and signatures to plot. Samples should be in rows and probes/CpGs in columns.
meta_data	Data.frame containing metadata from samples in 'data'.
sample_id_colu	mn
	Name of the column containing the sample id in the meta_data data.frame
true_label_col	umn
	Name of the column containing the true labels of the samples in the meta_data data.frame
color_dict	Named string featuring colors as values and labels (true labels) as names
color_others	The name or hex code of a color by which the non-target samples should be colored by.
as_panel	A boolean, if TRUE (default) a single figure panel with all the signatures will be generated. Otherwise, the individual plots will be returned as a list.
is_beta	A boolean, if TRUE (default) the values will be plotted in a scale suitable for Beta values. Otherwise, the values will be plotted in scale suitable for M values.
base_size	An integer defining the base size of the text in the plot. Default is '14'.
	Parameters passed to the ggplot2::theme function.

Value

A list with the data and the ggplot2 plot object.

|--|

Description

Cell line test data

Usage

test_data

Format

A matrix with beta values for 1000 CpGs. Features/variables as columns and 170 samples as rows

26 test_targets

test_targets

Cell line test data targets

Description

Cell line test data targets

Usage

test_targets

Format

A data frame with 18 variables for 170 samples as rows.

gsm GSM identifier (GEO accession number) of the sample
cell_type the cell type of the respective sample
adipocytes one-hot encoded (1 or 0) column defining if a given sample is an adipocyte
astrocytes one-hot encoded (1 or 0) column defining if a given sample is an astrocyte
blood_cells one-hot encoded (1 or 0) column defining if a given sample is a blood cell
endothelial_cells one-hot encoded (1 or 0) column defining if a given sample is an endothelial
cell

epidermal_cells one-hot encoded (1 or 0) column defining if a given sample is an epidermal cell epithelial_cells one-hot encoded (1 or 0) column defining if a given sample is an epithelial cell fibroblasts one-hot encoded (1 or 0) column defining if a given sample is a fibroblast glia one-hot encoded (1 or 0) column defining if a given sample is a glia cell hepatocytes one-hot encoded (1 or 0) column defining if a given sample is an hepatocyte ips_cells one-hot encoded (1 or 0) column defining if a given sample is an ipsc msc one-hot encoded (1 or 0) column defining if a given sample is an msc muscle_cells one-hot encoded (1 or 0) column defining if a given sample is a muscle cell neurons one-hot encoded (1 or 0) column defining if a given sample is a neuron muscle_sc one-hot encoded (1 or 0) column defining if a given sample is a muscle stem cell group_data to which dataset these data belong to (train or test) description the cell type of the respective sample, in long form

train_data 27

train_data

Cell line train data

Description

Cell line train data

Usage

train_data

Format

A matrix with beta values for 1000 CpGs. Features/variables as columns and 409 samples as rows

train_targets

Cell line train data targets

Description

Cell line train data targets

Usage

train_targets

Format

A data frame with 18 variables for 409 samples as rows.

gsm GSM identifier (GEO accession number) of the sample cell_type the cell type of the respective sample adipocytes one-hot encoded (1 or 0) column defining if a given sample is an adipocyte

astrocytes one-hot encoded (1 or 0) column defining if a given sample is an astrocyte blood_cells one-hot encoded (1 or 0) column defining if a given sample is a blood cell endothelial_cells one-hot encoded (1 or 0) column defining if a given sample is an endothelial

epidermal_cells one-hot encoded (1 or 0) column defining if a given sample is an epidermal cell epithelial_cells one-hot encoded (1 or 0) column defining if a given sample is an epithelial cell fibroblasts one-hot encoded (1 or 0) column defining if a given sample is a fibroblast glia one-hot encoded (1 or 0) column defining if a given sample is a glia cell hepatocytes one-hot encoded (1 or 0) column defining if a given sample is an hepatocyte ips_cells one-hot encoded (1 or 0) column defining if a given sample is an ipsc

28 train_targets

msc one-hot encoded (1 or 0) column defining if a given sample is an msc muscle_cells one-hot encoded (1 or 0) column defining if a given sample is a muscle cell neurons one-hot encoded (1 or 0) column defining if a given sample is a neuron muscle_sc one-hot encoded (1 or 0) column defining if a given sample is a muscle stem cell group_data to which dataset these data belong to (train or test) description the cell type of the respective sample, in long form

Index

```
* datasets
                                                 test_targets, 26
    test_data, 25
                                                 train_data, 27
    test_targets, 26
                                                 train_targets, 27
    train_data, 27
    train_targets, 27
CimpleG, 3
cimpleg (CimpleG), 3
compute_ax, 7
compute_diffmeans_sumvar, 7
cpg (CimpleG), 3
darken, 8
{\tt deconv\_pred\_obs\_plot, 11}
deconv_ranking_plot, 12
deconvolution_barplot, 8
deconvolution_epidish, 9
deconvolution_nmf, 10
deconvolution_nnls, 10
diffmeans\_sumvariance\_plot, 13
dmsv_plot, 15
eval_test_data, 17
{\tt get\_cpg\_annotation}, 18
load_object, 19
make_color_palette, 20
{\tt make\_deconv\_pred\_obs\_data, 20}
make_deconv_ref_matrix, 21
predict.CimpleG, 22
run_deconvolution, 22
save_object, 23
select_features, 24
signature_plot, 24
test_data, 25
```