
SVDNF: An R Package for Estimating Stochastic

Volatility Models with Jumps Using Discrete

Nonlinear Filtering

Louis Arsenault-Mahjoubi

Simon Fraser University
Jean-François Bégin

Simon Fraser University
Mathieu Boudreault

Université du Québec à Montréal

Abstract

The R package SVDNF provides a comprehensive toolset for estimating stochastic
volatility models with jumps using discrete nonlinear filtering. This package allows users
to simulate and estimate various stochastic volatility models, including those with return
and volatility jumps and asset return predictors, leveraging advanced maximum likelihood
estimation techniques. The package’s primary contributions lie in its flexibility to handle
both built-in and user-defined models that include jumps, making it a valuable resource
for financial econometricians and statisticians. The article details the package’s function-
ality, including its ability to handle complex stochastic volatility models, execute efficient
filtering and estimation processes, and offer user-friendly interfaces for model customiza-
tion and simulation. Through detailed examples and simulation studies, we demonstrate
the package’s effectiveness, highlighting its potential to improve the estimation efficiency
in financial time series analysis.

Keywords: predictive-update algorithm, discrete nonlinear filtering, stochastic volatility mod-
els, maximum likelihood estimation.

1. Introduction

Financial time series exhibit a number of well-known stylized facts such as volatility clustering
and heavy tails (see, e.g., Cont 2001; Eraker, Johannes, and Polson 2003). Various families of
models have been developed in the research literature to capture the bulk of these features.
For instance, autoregressive conditional heteroskedasticity (ARCH) and generalized ARCH
(GARCH) dynamics à la Engle (1982) and Bollerslev (1986), respectively, are some of the first
attempts to capture volatility clustering. The latter models allow for volatility clustering by
letting the future (one-step-ahead) variance be a deterministic function of past observations.

To better capture the variance dynamics, a related literature has developed around stochastic
volatility (SV) models which allow for a time-varying variance process that has a probabilistic
relationship with returns—not deterministic like ARCH and GARCH dynamics. SV models
are either formulated directly in discrete time or through continuous-time stochastic differ-
ential equations, which are discretized in practical applications. The discrete-time SV model
of Taylor (1986) and the continuous-time SV model of Heston (1993) are some of the first
attempts at probabilistic modelling of volatility.

Later frameworks introduced jumps to capture the behaviour of markets during financial

2 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

crises. For example, in the continuous-time literature, Bates (1996) presented an affine SV
model with return jumps. A similar return jump specification is found in the discrete-time
model of Pitt, Malik, and Doucet (2014). Volatility dynamics also allow for discontinuities:
indeed, Duffie, Pan, and Singleton (2000) proposed a flexible affine modelling framework
with both return and volatility jumps in continuous time. The inclusion of jumps brought
important improvements to model fit as it helps to capture the heavy tails of the return
distribution and helps with rapid increases in the volatility factor via volatility jumps (see,
e.g., Eraker, Johannes, and Polson 2003; Eraker 2004).

Another improvement in the continuous-time literature relates to nonaffine dynamics: non-
affine models without jumps can be found in the continuous-time literature in the works of
Lewis (2000), Jones (2003), and Chacko and Viceira (2003). Nonaffine specifications have
been investigated by some over the years; for instance, Christoffersen, Jacobs, and Mimouni
(2010) studied continuous-time nonaffine models with fixed constant elasticity of variance
(CEV) parameters and return jumps. Evidence suggests that including jumps significantly
improves the fit of one-factor nonaffine models (see, e.g., Kaeck and Alexander 2012; Durham
2013; Ignatieva, Rodrigues, and Seeger 2015).1

SV models both with or without jumps have the ability to fit the return data better; nonethe-
less, they require an estimation methodology that is more computationally cumbersome than
standard GARCH-type models. Specifically, computational difficulties arise because volatil-
ity is assumed to be a latent Markov process that is oftentimes nonlinear and non-Gaussian.
Moreover, because the jumps are also unobserved, they must be inferred along with the volatil-
ity factor in the estimation procedure. Not only are the estimation methods computationally
intensive, but there is also a wide array of options available in the literature to choose from.
Bos (2012) argued that one of the reasons for the popularity of GARCH-type models over SV
models is the fact that GARCH models have a common and efficient estimation procedure,
while there exist multiple procedures to estimate SV models without jumps. This is also true
when estimating SV models with jumps.

In the frequentist context, filters are often used to evaluate the likelihood and estimate the
model parameters of SV models with return and volatility jumps. Many recent contributions
have used stochastic filters to capture the posterior distribution of latent factors and compute
the likelihood function. The most frequently employed approach in this stochastic paradigm
is the sequential Monte Carlo (SMC) sampler (also known as the particle filter) as proposed by
Gordon, Salmond, and Smith (1993). This method relies on a large number of particles that
are propagated using the transition and measurement densities to approximate the posterior
distribution of the latent states and the likelihood function (see, e.g., Johannes, Polson,
and Stroud 2009; Christoffersen, Jacobs, and Mimouni 2010; Pitt, Malik, and Doucet 2014;
Bardgett, Gourier, and Leippold 2019; Bégin, Amaya, Gauthier, and Malette 2020; Amaya,
Bégin, and Gauthier 2022; Dufays, Jacobs, Liu, and Rombouts 2023, for applications of
particle filtering).

However, there are two main issues with particle-based methods. First, these methods are
computationally demanding and require high computational power for implementation, even
for one-factor stochastic volatility models (see, e.g., Hurn, Lindsay, and McClelland 2015).

1Other authors have proposed the use of multi-factor SV models (see, e.g., Gallant, Hsu, and Tauchen 1999;
Kaeck and Alexander 2012; Andersen, Fusari, and Todorov 2015; Bégin and Boudreault 2021, among others).
These models have the potential to capture richer variance dynamics in theory; they are also out of the scope
of this article.

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 3

Second, the likelihood function is generally not smooth in the parameter space when using
naive resampling algorithms, which adds complexity to parameter estimation.2

Deterministic filters generally rely on approximate linearization methods or numerical inte-
gration techniques. For example, among the linearization methods, one of the most prevalent
techniques is a generalization of the Kalman filter known as the extended Kalman filter (EKF);
applications of the EKF to SV models can be found in Trolle and Schwartz (2009) and Wang,
He, Zhao, and Zuo (2017), among others.

Another deterministic approach is to rely on numerical integration to evaluate the likelihood
function recursively in the prediction and update steps. This method—the discrete nonlinear
filter or DNF—was first introduced by Kitagawa (1987) and is the object of this very paper.
The method involves computing integrals by generating a discrete grid of potential values for
the latent variables and determining the associated posterior probability for each node in the
grid. The DNF has mostly been used for SV models without jumps (see, e.g., Watanabe 1999;
Clements, Hurn, and White 2006; Langrock, MacDonald, and Zucchini 2012) until the recent
work of Bégin and Boudreault (2021). The latter authors apply the DNF to complex SV
models with simultaneous return and volatility jumps as well as a stochastic jump intensity
component (i.e., an additional persistent latent factor). In their study, they conclude that
the DNF provides accurate likelihood evaluations that are faster than that of the bootstrap
particle filter.

Another deterministic approach involves using numerical integration to recursively evaluate
the likelihood function during the prediction and update steps. This method, known as
the discrete nonlinear filter (DNF), was first introduced by Kitagawa (1987). It involves
computing integrals by generating a discrete grid of potential values for the latent variables
and determining the posterior probability for each node in the grid. Fridman and Harris
(1998) applied this method to financial econometric models, specifically for SV parameter
estimation. Other variations have been used by Watanabe (1999), Clements, Hurn, and
White (2006), and Langrock, MacDonald, and Zucchini (2012). More recently, Bégin and
Boudreault (2021) extended Kitagawa’s methodology to SV models with jumps in return and
volatility, demonstrating that the method is faster than the SMC sampler and yields a smooth
likelihood, making it suitable for parameter estimation.

Bayesian methods are also sometimes used to estimate SV models with return and volatility
jumps, with most implementations relying on Markov chain Monte Carlo (MCMC) samplers.
Simple implementations of such MCMC samplers in the literature combined Gibbs sampling
with the Metropolis–Hastings algorithm to obtain the posterior distribution of the model
parameters and the volatility. We find MCMC samplers applied to discrete-time models in the
work of Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Chib (1998), Omori, Chib,
Shephard, and Nakajima (2007), and to continuous-time models in Eraker (2001) Eraker,
Johannes, and Polson (2003), and Eraker (2004), among others. Other authors have also
combined standard MCMC tools with some of the filters mentioned above (see, e.g., Andrieu,
Doucet, and Holenstein 2010).3

2Malik and Pitt (2011) proposed a resampling method to address the smoothness issue. Nevertheless,
as stated by Creal (2012), the advantage of this resampling method diminishes when moving to multifactor
specifications.

3Other methods have been applied to SV models without jumps. For example, Martino, Aas, Lindqvist,
Neef, and Rue (2011) and de Zea Bermudez, Marín, Rue, and Veiga (2021) applied integrated nested Laplace
approximations (INLA) to SV models without jumps. This frequentist approach is implemented in the stoch-

4 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

In addition to SV models having different estimation methods than GARCH-type frameworks,
Bos (2012) argued that the adoption of SV models has been slow due to the lack of freely
available software packages for their estimation. Over the last ten years, however, some
resources have been made available by the community. MCMC methods for discrete-time SV
models without jumps can be found in the stochvol (Kastner 2016) and ASV (Omori 2022)
R packages. While both packages utilize mixture samplers as in Kim, Shephard, and Chib
(1998) and Omori, Chib, Shephard, and Nakajima (2007), they offer different extensions
to these methods. On the one hand, the stochvol package utilizes the MCMC sampling
scheme detailed in Kastner and Frühwirth-Schnatter (2014), which employs the ancillarity-
sufficiency interweaving strategy (ASIS) sampling method of Yu and Meng (2011) and the
“all without a loop” (AWOL) sampling, a technique based on the Cholesky factorization
described in McCausland, Miller, and Pelletier (2011).4 On the other hand, the ASV R

package’s MCMC algorithm is based on an extension of the mixture sampler of Omori, Chib,
Shephard, and Nakajima (2007); it also allows users to estimate these SV models using the
particle filter. R packages bvarsv, bsvars, and shrinkTVP also provide Bayesian analyses via
MCMC schemes for SV models but in the context of larger modelling frameworks (i.e., vector
autoregressive models, time-varying parameter models, and structural vector autoregressive
models); for more details on these packages, see Krueger (2015), Woźniak (2024), and Knaus,
Bitto-Nemling, Cadonna, and Frühwirth-Schnatter (2021), respectively. The nimbleSMC R

package offers a flexible framework where users can apply the particle filter to a wide class of
state-space models, which includes some SV models as demonstrated in Michaud, de Valpine,
Turek, Paciorek, and Nguyen (2021).5 Similar flexible particle filtering scripts can be found
in C++ (Johansen 2009; Brown 2020), in MATLAB (Chen, Lee, Budhiraja, and Mehra 2007),
and in Python (Nordh 2017). We also find an implementation of the particle filter in Ox and
MATLAB for simple SV models in the materials accompanying Creal (2012) on the author’s
website.

As for the DNF, there are some replication scripts available in MATLAB (Bégin and Boudreault
2021) and in R (Langrock, MacDonald, and Zucchini 2012; Zucchini, MacDonald, and Lan-
grock 2016). However, there are no flexible user-friendly packages. The R codes of Langrock,
MacDonald, and Zucchini (2012) and Zucchini, MacDonald, and Langrock (2016) offer imple-
mentations of the DNF to particular discrete-time SV models without jumps. The replication
materials in Bégin and Boudreault (2021) give scripts for specific affine jump-diffusion models
only.

The present article discusses the SVDNF package for R—a powerful tool designed for the
estimation of SV models with jumps using the DNF—and aims to help users easily apply the
DNF to a wide class of SV models that encompasses the most popular one-factor continuous-
time and discrete-time models. Unlike most implementations cited above, SVDNF allows for
general return and volatility jump distributions; this is the first contribution of our article.
With the package, users are able to simulate observations from and estimate customized SV
models, which can include return and volatility jumps as well as affine or nonaffine volatility

volTMB R package (Wahl 2020). For a discussion and comparison of various methods (either Bayesian or
frequentist) applied to the basic SV model (besides INLA), we refer the reader to Bos (2012).

4The factorstochvol R package of Hosszejni and Kastner (2021) makes similar procedures available for
multivariate SV model estimation.

5In addition to frequentist estimation, the nimbleSMC package allows users to perform Bayesian estimation
by combining the particle filter with MCMC (pMCMC) algorithms via the methods proposed in Andrieu,
Doucet, and Holenstein (2010).

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 5

dynamics. This is our second contribution.

The SVDNF package offers significant flexibility by enabling users to create custom models
through the dynamicsSVM function, where they can specify their own functions and jump
distributions. The package also contains well-known models that are readily available. For
these built-in models, the package automatically sets the necessary functions, covering three
standard discrete-time SV models, three SV jump-diffusion models, and a factor model with
SV.

Key functionalities of the SVDNF package include the DNF function, which applies the
DNF algorithm to provide likelihood evaluations and filtering distribution estimates, and the
DNFOptim function, which uses optimization to find the maximum likelihood estimates of the
model parameters. Additionally, the modelSim function allows for the simulation of volatility
and returns from either built-in or custom model dynamics. This combination of features
provides a user-friendly and versatile tool for researchers and practitioners in financial econo-
metrics and risk management, making it easier to apply advanced filtering and estimation
techniques to a wide range of SV models, including those with complex jump dynamics.

The remainder of this article is organized as follows. Section 2 introduces a general framework
for one-factor SV models. Section 3 outlines how the DNF is applied to this general SV model
framework. Section 4 describes the various functions available in the package and gives some
examples of the package’s functions on simulated data. Section 5 presents a simulation study
to demonstrate its effectiveness. Section 6 displays the package’s ability to estimate and
compare the fit of a variety of models on real-world data. Finally, Section 7 summarizes the
article and provides concluding remarks.

2. Stochastic volatility models

We fix a filtered probability space (Ω, F ,F,P) and a filtration F = {Ft : t ∈ {1, 2, ..., T}}
satisfying the usual conditions. Let yt be the time-t observed return on a security and xt be
the time-t unobserved volatility factor.6 The return and volatility factor dynamics are given
by the following equations:

yt = Ftc
⊤ + µy(xt−1) + σy(xt−1) εy

t + jy
t ,

xt = µx(xt−1) + σx(xt−1) εx
t + jx

t ,

where

– Ftc
⊤ allows for a portion of the return average to be explained by market factors,

captured by the row vector Ft = [Ft,1 ... Ft,d], with c
⊤ being a column vector of

regression coefficients c1, ..., cd,
– µy: R → R is a function representing the portion of the average return that depends on

the volatility factor,
– σy: R → R+ is a function of the volatility factor that provides the conditional return

standard deviation,
– εy

t ∼ N (0, 1) is the time-t return innovation modelled by a standard Gaussian random
variable,

6In some cases, it is more practical to define yt as an excess return (e.g., when working with factor models
such as Model 7 in Section 2.3). We make this distinction explicit when needed.

6 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

– jy
t is the time-t return jump random variable,

– µx: R → R is a function of the volatility factor that gives the conditional volatility
factor average,

– σx: R → R+ is a function of the volatility factor that provides the conditional volatility
factor standard deviation,

– εx
t ∼ N (0, 1) is the time-t volatility factor innovation modelled by a standard Gaussian

random variable, and
– jx

t is the time-t volatility factor jump random variable.

To capture the leverage effect, we allow εy
t and εx

t to be correlated; that is, Corr [εy
t , εx

t] = ρ.

We assume that both processes jump at the same time and that there are nt jumps at time t.
Here, the discrete random variables nt follow the same distribution for t = 1, ..., T . In practice,
the jump components are often modelled via two different assumptions: the first specification
relies on a Poisson distribution to model the number of jumps, and the second specification
uses a Bernoulli distribution. These specifications give rise to the following assumptions on
jy

t and jx
t :

1. Compound Poisson jump components: jy
t =

∑nt

n=1 zy
t,n and jx

t =
∑nt

n=1 zx
t,n, where

the number of jumps is distributed according to a Poisson random variable such that
nt ∼ Poi(λ), {zy

t,n}n∈N are return jump sizes, and {zx
t,n}n∈N are volatility factor jump

sizes.
2. Bernoulli jump components: jy

t = nt zy
t,1 and jx

t = nt zx
t,1, where nt is equal to one if

there is a jump and zero otherwise, or that nt ∼ Ber(p).

In all the cases, we assume that zy
t,n are normally distributed with zy

t,n ∼ N (α + ρz zx
t,n, δ2)

and that zx
t,n are exponentially distributed with zx

t,n ∼ Exp(ν) for all n ∈ N. This very
general jump specification embeds many well-known models in the literature; for example,
the SV models with jumps of Duffie, Pan, and Singleton (2000), Christoffersen, Jacobs, and
Mimouni (2010), Pitt, Malik, and Doucet (2014), and Ignatieva, Rodrigues, and Seeger (2015)
fall within this framework.7

2.1. Standard stochastic volatility models

The standard discrete-time SV models of Taylor (1986) with or without leverage and the SV
model with leverage and return jumps of Pitt, Malik, and Doucet (2014) can be obtained
from the above return and volatility factor equations.

1. SV model of Taylor (1986):

µy(xt−1) = 0, σy(xt−1) = exp
(xt−1

2

)

, jy
t = 0,

µx(xt−1) = θ + ϕ (xt−1 − θ) , σx(xt−1) = σ, jx
t = 0,

where Ftc
⊤ and ρ are zero.

2. SV with leverage: same as 1 but with ρ ∈ (−1, 1).
3. SV with leverage and return jumps of Pitt, Malik, and Doucet (2014): same as 2 but

with Bernoulli return jumps such that nt ∼ Ber(p) and jx
t = 0 for all t.8

7The proposed framework focuses on Gaussian innovations, similar to those used in most of the literature.
Extending the derivations for non-Gaussian unconditional innovation distributions would require that the
distribution of return and variance innovations, as well as jumps, belong to the same family of distributions in
addition to being closed in convolution. We leave this interesting question for future research.

8Note that unlike our SV with leverage and return jumps, the model of Pitt, Malik, and Doucet (2014)

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 7

Table 1 summarizes the discrete-time SV model parameters and their descriptions. These
models could be modified by adding non-zero return drift function µy(xt−1) or volatility
factor jumps. Also, Poisson-based jumps could be used instead of Bernoulli ones.

Taylor Pitt, Malik,
Description Support Taylor with leverage and Doucet

ϕ Volatility persistence [−1, 1] ✓ ✓ ✓

θ Long-run mean volatility R ✓ ✓ ✓

σ Volatility of volatility R+ ✓ ✓ ✓

ρ Noise term correlation [−1, 1] ✓ ✓

δ Standard deviation of return jumps R+ ✓

α Average of return jumps R ✓

p Jump probability [0, 1] ✓

Table 1: Parameter description for discrete-time SV models (Models 1–3).

2.2. Stochastic volatility jump-diffusion models

The discretized version of continuous-time models is obtained by using a discretization method
(e.g., Euler–Maruyama, Milstein). Specifically, we rely on the full truncation scheme of Lord,
Koekkoek, and Dijk (2010) in this package. The constant h is used in the discretization to
represent the time step between two observations (e.g., h = 1

252 for daily observations).

4. The SV model of Heston (1993):

µy(xt−1) =
(

µ − xt−1

2

)

h σy(xt−1) =
√

h max [0, xt−1], jy
t = 0,

µx(xt−1) = xt−1 + κ (θ − max [0, xt−1]) h, σx(xt−1) = σ
√

h max [0, xt−1], jx
t = 0,

where Ftc
⊤ = 0.

5. SV with return jumps à la Bates (1996): same as 4 but with Poisson return jumps such

that nt ∼ Poi(ω h), and µy(xt−1) =
(

µ − xt−1

2 − ᾱω
)

h, where ᾱ = exp
(

α + 1
2δ2

)

− 1

and ω = λ/h is the annualized jump intensity parameter.
6. SV with correlated return and volatility jumps proposed by Duffie, Pan, and Singleton

(2000): same as 5 but with jx
t =

∑nt

n=1 zx
t,n and ᾱ = exp

(

α + 1
2δ2

)

/ (1 − ν ρz)−1, where

ρz captures the correlation between the return and volatility jumps.

Table 2 summarizes the jump-diffusion SV model parameters and their descriptions. These
models could be modified by having a return drift term proportional to the variance or
different σx(xt−1) functions; for example,

σx(xt−1) =
√

hσ max [0, xt−1]β ,

where β could be 1
2 , 1, 3

2 (see, e.g., the custom model example in Section 4.3), or simply a
free parameter (see, e.g., the empirical results for CEV models in Section 6). Also, Bernoulli
jumps could also be used here instead of the Poisson jump specification.

fixes the jump size parameter α = 0.

8 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

Duffie, Pan,
Description Support Heston Bates and Singleton

µ Mean return R ✓ ✓ ✓

α Average of return jump R ✓ ✓

δ Standard deviation of return jumps R+ ✓ ✓

ρz Correlation between return and volatility jumps R ✓

ν Average of volatility jumps R+ ✓

ω Jump arrival intensity R+ ✓ ✓

κ Volatility mean reversion R+ ✓ ✓ ✓

θ Long-run mean volatility R+ ✓ ✓ ✓

σ Volatility of volatility R+ ✓ ✓ ✓

ρ Noise term correlation [−1, 1] ✓ ✓ ✓

Table 2: Parameter description for jump-diffusion SV models (Models 4–6).

2.3. Factor models with stochastic volatility

7. The CAPM with stochastic volatility (CAPM-SV) model:

Ftc
⊤ = c0 + (Rm

t − Rf
t)c1, σy(xt−1) = exp

(xt−1

2

)

, jy
t = 0,

µx(xt−1) = θ + ϕ (xt−1 − θ) , σx(xt−1) = σ, jx
t = 0,

where µy(xt−1) = ρ = 0 and the observation yt is the time-t asset excess return over the

market, Rm
t . The variable Rf

t is risk-free rate at time t. The coefficient c0 represents the
measure of the active return on an investment (i.e., the asset’s alpha), and the coefficient
c1 represents the asset return’s sensitivity to excess market returns (i.e., the market beta).
Table 3 summarizes the factor models with SV model parameters and their descriptions.

These models can be extended by incorporating additional factors (see, e.g., Fama and French
1992, 2015), such as small market capitalization minus big (SMB) and high book-to-market
ratio minus low (HML), or adding terms in the drift function µy. For instance, using the
equations

µy(xt−1) = d ζ2 exp (xt−1) and σy(xt−1) = ζ exp

(

xt−1

2

)

,

where d measures the effect of the volatility on the average return and ζ is a positive scaling
factor, results in the CAPM with stochastic volatility in the mean (SVM) model, as proposed
by Koopman and Hol Uspensky (2002).

3. Discrete nonlinear filtering-based method

The discrete nonlinear filter computes:

1. The time-t filtering distribution

pΘ(xt | y1:t) ≡ p(xt | y1:t, Θ),

where Θ is the set of model parameters, and

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 9

Description Support CAPM-SV

c0 Excess return over market returns R ✓

c1 Sensitivity to excess market returns R ✓

ϕ Volatility persistence [−1, 1] ✓

θ Long-run mean volatility R ✓

σ Volatility of volatility R+ ✓

Table 3: Parameter description for factor models with SV models (Model 7).

2. The likelihood function via iterated numerical integration across the latent states.

This methodology introduced by Kitagawa (1987) is applied to jump-diffusion stochastic
volatility models with up to two persistent latent factors in Bégin and Boudreault (2021).
Although the DNF computational costs increase exponentially with the number of latent
variables, they found that the method can be used for quick and accurate likelihood evalua-
tions in this context. We present a brief outline of the algorithm in this section.

We compute the likelihood L(Θ | y1:T) for a parameter set Θ iteratively using the following
decomposition, as is commonly done in time-series analysis:

L(Θ | y1:T) ≡ pΘ(y1:T) = pΘ(y1)
T

∏

t=2

pΘ(yt | y1:t−1). (1)

The time-t likelihood contribution pΘ(yt | y1:t−1) is computed by integrating the joint density
pΘ(yt, nt, jx

t , xt, xt−1 | y1:t−1) over the latent factors’ domain by iteratively conditioning on
each variable,

pΘ(yt | y1:t−1) =
∞

∑

nt=0

∫∫∫

R3
+

pΘ(yt | xt, xt−1, jx
t , nt) (2)

× pΘ(xt | xt−1, jx
t , nt) pΘ(jx

t | nt)pΘ(nt)

× pΘ(xt−1 | y1:t−1) dxt dxt−1 djx
t ,

where nt can be either Poisson, Bernoulli, or any user-chosen discrete distribution, jx
t | nt is

Gamma distributed such that jx
t | nt ∼ Γ(nt, ν) with scale parameter ν,

xt | xt−1, nt, jx
t ∼ N

(

µx(xt−1) + jx
t , σx(xt−1)2

)

, and

yt | xt, xt−1, nt, jx
t ∼ N (µt, σ2

t)

for which the mean and variance parameters are given by

µt = Ftc
⊤ + µy(xt−1) + ρ σy(xt−1)

(

xt − µx(xt−1) − jx
t

σx(xt−1)

)

+ nα + ρzjx
t , and

σ2
t = (1 − ρ2)σy(xt−1)2 + nδ2,

respectively. Similarly, we can obtain the filtering density pΘ(xt | y1:t) by computing the

10 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

following integral:

pΘ(xt | y1:t) =
1

pΘ(yt | y1:t−1)

(∞
∑

nt=0

∫∫

R2
+

pΘ(yt | xt, xt−1, jx
t , nt) pΘ(xt | xt−1, jx

t , nt) (3)

× pΘ(xt−1 | y1:t−1) p(jx
t | nt) pΘ(nt) dxt−1 djx

t

)

.

Algorithm 1 describes how the likelihood function and filtering densities are obtained.

Algorithm 1 Discrete Nonlinear Filter

1: initialize by selecting density pΘ(x0)
2: for j = 1, 2, . . . , T do

3: compute pΘ(yt | y1:t−1) by numerical integration using Equation (2)
4: compute pΘ(xt | y1:t) by numerical integration using Equation (3)
5: end for

6: compute pΘ(y1:T) using Equation (1)

Although the prediction distribution pΘ(xt+1 | y1:t) is not explicitly computed in Algorithm 1,
it can be retrieved from the filtering distribution using the transition density as

pΘ(xt+1 | y1:t) =

∫

R+

pΘ(xt+1 | xt)pΘ(xt | y1:t)dxt, (4)

with

pΘ(xt+1 | xt) =
∞

∑

nt=0

∫

R+

pΘ(xt+1 | xt, jx
t+1, nt+1)pΘ(xt | y1:t) p(jx

t+1 | nt) pΘ(nt+1) djx
t+1. (5)

For the numerical integration in Algorithm 1, we apply the quadrature method used in Lan-
grock, MacDonald, and Zucchini (2012) and Bégin and Boudreault (2021). This rule states
that for two functions f1 and f2 and two (close enough) constants a and b, we have

∫ b

a
f1(x) f2(x) dx ≈ f1(c)

∫ b

a
f2(x) dx,

where c is the midpoint of the interval [a, b]. If f2 is a probability density function and F2 is
its associated cumulative distribution function, then this rule implies that

∫ b

a
f1(x) f2(x) dx ≈ f1(c)(F2(b) − F2(a)).

We now define the default intervals and midpoints used in the package. Let N be the number
of volatility factor midpoints, K the number of jump size midpoints, and R the maximum
number of jumps per time step. The grids for the volatility factor and the volatility jumps

midpoints are defined as X =
[

x(1) ... x(N)
]

and J =
[

J (1) ... J (K)
]

, respectively.

We define the intervals as

X
(i) =

[

x(i−1) + x(i)

2
,
x(i) + x(i+1)

2

)

, i = 1, . . . , N,

J
(l) =

[

J (l−1) + J (l)

2
,
J (l) + J (l+1)

2

)

, l = 1, . . . , K,

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 11

where x(0) = x(1) −
(

x(2) − x(1)
)

, j(0) = −j(1), and x(N+1) = j(K+1) = ∞.

With these, we estimate the marginal likelihood contribution of Equation (2) with

p̂Θ(yt | y1:t−1) =
R

∑

nt=0

N
∑

it=1

N
∑

it−1=1

K
∑

lt=1

pΘ(yt | x(it), x(it−1), J (lt), nt)

× pΘ(xt ∈ X
(it) | x(it−1), J (lt), nt)

× pΘ(jx
t ∈ J

(lt) | nt) pΘ(nt)pΘ(x(it−1) | y1:t−1).

Then, using Equation (3), we approximate the filtering density with

p̂Θ(x(it) | y1:t) =
1

p̂Θ(yt | y1:t−1)

R
∑

nt=0

N
∑

it−1=1

K
∑

lt=1

pΘ(yt | x(it), x(it−1), J (lt), nt)

× pΘ(xt ∈ X
(it) | x(it−1), J (lt), nt)

× pΘ(jx
t ∈ J

(lt) | nt) pΘ(nt)pΘ(x(it−1) | y1:t−1).

From the filtering density estimate above, we the prediction density with

p̂Θ(x(it+1) | y1:t) =
N

∑

it=1

p̂Θ(x(it+1) | x(it))p̂Θ(x(it) | y1:t),

with

p̂Θ(x(it+1) | x(it)) =
R

∑

nt+1=0

K
∑

lt+1=1

pΘ(xt+1 ∈ X
(it+1) | x(it), J (lt+1), nt+1)

× pΘ(jx
t+1 ∈ J

(lt+1) | nt+1) pΘ(nt+1).

The midpoints X and J must be selected by users when using a custom—not built-in—model.
However, for built-in models, users have the option of using the package default grids.

For the default grids of built-in models, we follow in essence the approach outlined in Bégin
and Boudreault (2021) where, for a given latent factor H, the integration bounds are obtained
using

EH ± (3 + log(L))
√

VH ,

where L is the number of nodes used in the quadrature grid. Moreover,

EH = lim
j→∞

E [Hj | F0] and VH = lim
j→∞

Var [Hj | F0]

are the long-run expected value and variance of process H, respectively.

Within these integration bounds, we want to place nodes in high-probability density regions.
For the built-in discrete-time models, this translates into putting more nodes close to the
long-run average EH , which is set as the central node in the grid. Specifically, we increase
the distance between nodes as we get further than EH by creating an equidistant grid for the
square root of the volatility factor and squaring it. Assuming that EH = θ and VH = σ2

1−φ2 ,

12 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

we have that

x(i) =

θ −
(

⌊N/2⌋+1−i
⌊N/2⌋

√

(3 + log(N))
√

σ2

1−φ2

)2

if i = 1, ..., ⌊N/2⌋ + 1

θ +

(

i−⌊N/2⌋−1
⌊N/2⌋

√

(3 + log(N))
√

σ2

1−φ2

)2

if i = ⌊N/2⌋ + 2, ..., N

,

where the nodes of integration get sparser as they are further from the long-run mean log-
volatility (i.e., from θ) and ⌊N/2⌋ is the floor function of N/2.

For the built-in SV jump-diffusion models, we use a similar trick and create a grid that a
higher density of nodes close to zero. Assuming that EH = θ and VH = θσ2

2κ , we have

x(i) =

max

(

θ − (3 + log (N))
√

θ σ2

2κ , xmin

)

if i = 1
(√

x(1) +
(

i−1
N−1

) (√
x(N) −

√
x(1)

))2
if i = 2, . . . , N − 1

max

(

θ + (3 + log(N))
√

θ σ2

2κ , xmax

)

if i = N

,

and

J (l) =

max
(

ν − (3 + log(K))
√

ν2, 0
)

if l = 1

J (1) +
(

l−1
K−1

) (

J (K) − J (1)
)

if l = 2, . . . , K − 1

νR + (3 + log(K))
√

Rν2 if l = K

,

where the intervals between the variance nodes get larger in i as they are uniformly distributed
in the volatility (i.e., square root of the variance), and then squared to obtain the actual
variance grid. Unlike the logarithm of the volatility used in discrete-time models, variance
cannot be negative. To avoid negative variance node values, we set the lower bound of the
built-in SV jump-diffusion models variance grid as the maximum of the usual grid lower bound
and xmin which is set near zero in this package.9 Moreover, numerical issues can occur if the
variance node grid is too small and the nodes are near zero. To avoid these problems, the
variance grid upper bound xmax is set to 0.05 in this package.

4. Package description and illustration

The SVDNF package contains four primary functions: dynamicsSVM, DNF, DNFOptim, and
modelSim.

– dynamicsSVM defines the SV model dynamics by either choosing from a set of built-in
model dynamics or using custom drift functions, diffusion functions, and jump distri-
butions. This information—the functions and the parameters specifying the model—is
stored in a dynamicsSVM object that is built by the function.
For built-in models, the function automatically sets the appropriate drift, diffusion,
and jump distribution functions. Users only need to specify the model type, and the
function takes care of the rest. The built-in models are the three standard discrete-
time SV models (Models 1–3), the three SV jump-diffusion models (Models 4–6), and

9The actual value of xmin is set to 10−7 to avoid divisions by 0.

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 13

the factor model with SV model (Model 7) described in Sections 2.1, 2.2, and 2.3,
respectively.
For custom models, the user must specify functions µy, σy, µx, σx, and a jump dis-
tribution for the return and volatility dynamics presented in Section 2. These custom
functions allow for a high degree of flexibility in modelling complex financial time se-
ries data. Objects with class dynamicsSVM have DNF, DNFOptim, modelSim, and print

methods available.
– DNF applies the DNF of Kitagawa (1987) as per the implementation of Bégin and

Boudreault (2021), summarized in Section 3 of this paper, to obtain likelihood evalua-
tions and filtering distribution estimates for the model dynamics and given parameter
values stored in the dynamicsSVM object. This function returns a list of class SVDNF,
which contains the likelihood evaluation, the log-likelihood contribution at each step t,
the grids used by the DNF for numerical integration, estimates of the filtering distri-
bution at each step t, and the model dynamics used by the DNF. These computations
are run in C++ thanks to the Rcpp package of Eddelbuettel and François (2011). The
SVDNF objects allow for the following methods: logLik, plot, predict, and print.

– DNFOptim finds maximum likelihood estimates Θ for either built-in or custom model
dynamics stored in a dynamicsSVM object using the DNF function. The maximization
relies on R’s optim function to find the maximum likelihood estimates. This function
returns a DNFOptim object that contains two lists. The first list contains the values
computed by optim; that is, the set of parameters found, the log-likelihood evaluated
at those parameters, the number of DNF evaluations used in the optimizer, the error
codes in case of convergence issues, any additional messages, and an estimate of the
Hessian matrix (R Core Team 2019).10 The second list is the SVDNF object obtained
from running the DNF function at the MLE parameter values. DNFOptim objects allows
for the logLik, plot, predict, print, and summary methods.

– modelSim generates return and variance series for a wide class of built-in or custom
model dynamics stored in a dynamicsSVM object.

The relationships among the SVDNF’s packages primary functions are summarized in Fig-
ure 1. The package also offers the extractVolPerc function which returns a given percentile
value of either the filtering or the prediction distribution at each time t for DNFOptim and
SVDNF objects, and the pars function to print the parameters name in a dynamicsSVM object
in the order that initial parameters should be passed to the DNFOptim function.

We now explore possible applications of the SVDNF package. We start by simulating two
sets of returns using modelSim. The first time series showcases the use of built-in models,
while the second illustrates how to use the framework of Section 2 to create a custom model.

4.1. Model simulation

Built-in model dynamics

To demonstrate how to use modelSim, we first generate data from a built-in model. For this
example, we use a discretized version of the model of Duffie, Pan, and Singleton (2000) (i.e.,
Model 6 in Section 2.2). To start, we create a dynamicsSVM object where we set model =

DuffiePanSingleton and keep the parameters to their default values. Then, we generate ten

10The estimate of the Hessian is only returned if the argument hessian = TRUE is passed to optim.

14 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

dynamicsSVM

creates
custom or

built-in model
dynamics

DNF

receives model dy-
namics and data,

runs the DNF at the
given parameters

modelSim

receives model
dynamics,

outputs returns and
volatility values

DNFOptim

receives model
dynamics and

data, returns MLE
parameter values

Asset returns

Functions

Data

Inputs to

Example of

Figure 1: Flowchart of the various SVDNF package functions.

years of daily return data (i.e., 2,520 business days) using modelSim and plot the return and
the volatility factor values, which is shown in Figure 2.

R> library("SVDNF")

R> set.seed(1)

R> DPS_mod <- dynamicsSVM(model = "DuffiePanSingleton")

R> DPS_sim <- modelSim(t = 2520, dynamics = DPS_mod)

R> head(DPS_sim$returns)

R> plot(DPS_sim$returns, type = "l", ylim = c(-0.1, 0.22), ylab = "Returns")

R> lines(DPS_sim$volatility_factor, col = "red")

Custom model dynamics

For the second example, we demonstrate the package’s ability to create custom models. The
custom dynamics that we define are based on a discretized version of the ONEN model of
Christoffersen, Jacobs, and Mimouni (2010) with simultaneous and correlated return and
volatility jumps. This model is similar to Model 6 in Section 2.2, except that

µx(xt−1) = xt−1 + κ max [0, xt−1] (θ − max [0, xt−1]) h, and

σx(xt−1) = σ max [0, xt−1]
√

h.

We now set the model parameters as follows:

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 15

0 500 1000 1500 2000 2500

−
0.

10
0.

00
0.

10
0.

20

Index

R
et

ur
ns

Figure 2: Simulated returns (in black) and volatility factors values (in red) from a discretized
version of the model of Duffie, Pan, and Singleton (2000) with simultaneous return and
volatility jumps.

R> h <- 1/252

R> mu <- 0.04; kappa <- 100; theta <- 0.05; sigma <- 2.3; rho <- -0.8

R> omega <- 5; alpha <- -0.025; delta <- 0.025; nu <- 0.004; rho_z <- -1

Then, we define the drift and diffusion functions while storing their parameters in lists. When
defining custom model functions, it is important that the parameters in the lists are in the
same order they appear in the drift and diffusion function definitions. Moreover, since the
custom functions receive a vector of volatility factor values (i.e., all points of the grid X), we
must apply vectorized versions of certain built-in R functions instead of their scalar versions
(e.g., pmax in the sigma_y function below instead of max).

R> mu_y <- function(x, mu, alpha, delta, omega, rho_z, nu){

+ alpha_bar <- exp(alpha + 0.5 * delta ^ 2) / (1 - rho_z * nu) - 1

+ return(h * (mu - x / 2 - alpha_bar * omega))

+ }

R> mu_y_params <- list(mu, alpha, delta, omega, rho_z, nu)

R> sigma_y <- function(x, sigma_y_params){

+ return(sqrt(h * pmax(x, 0)))

+ }

R> sigma_y_params <- list(0)

R> mu_x <- function(x, kappa, theta){

+ return(x + h * kappa * pmax(0, x) * (theta - pmax(0, x)))

+ }

R> mu_x_params <- list(kappa, theta)

16 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

R> sigma_x <- function(x, sigma){

+ return(sigma * sqrt(h) * pmax(0, x))

+ }

R> sigma_x_params <- list(sigma)

Next, we set our jump distribution, density function, and parameters:

R> jump_pois_d <- function(n, omega){return(dpois(n, h * omega))}

R> jump_pois_r <- function(n, omega){return(rpois(n, h * omega))}

R> jump_dist <- jump_pois_r

R> jump_density <- jump_pois_d

R> jump_params <- list(omega)

Finally, we pass all arguments to the dynamicsSVM function to store the dynamics of this
custom model and use modelSim to simulate 2,520 observations from the ONEN model.

R> custom_mod <- dynamicsSVM(model = "Custom", mu_x = mu_x, mu_y = mu_y,

+ sigma_x = sigma_x, sigma_y = sigma_y, rho = rho,

+ mu_x_params = mu_x_params, mu_y_params = mu_y_params,

+ sigma_x_params = sigma_x_params, sigma_y_params = sigma_y_params,

+ jump_dist = jump_dist, jump_params = jump_params,

+ jump_density = jump_density, nu = nu, rho_z = rho_z,

+ alpha = alpha, delta = delta)

R> custom_sim <- modelSim(t = 2520, dynamics = custom_mod, init_vol = 0.05)

R> plot(custom_sim$returns, type = "l", ylim = c(-0.1, 0.22),

+ ylab = "Returns")

R> lines(custom_sim$volatility_factor, col = "red")

When creating custom models in the SVDNF package, identifiability issues can pose signif-
icant challenges. Identifiability refers to the ability to uniquely estimate model parameters
based on the observed data. In complex SV models with multiple parameters and jumps, it
can be difficult to distinguish the individual contributions of each parameter to the overall
model behaviour, particularly when many parameters exert similar influences on the model.
Ensuring identifiability typically requires careful model specification to help disentangle the
effects of different parameters. Users should be vigilant when building custom models.

4.2. The filtering problem

We can estimate the log-likelihood and the filtering distribution for the data generated above
with the DNF function. Throughout this section, we assume that the parameters used to
generate the data are known and constant. Section 4.3 considers the case where parameters
are unknown and uses MLE to obtain parameter estimates.

First, we evaluate the log-likelihood from the data generated using the built-in model by
passing the simulated return data stored in DPS_sim and the dynamics object to the DNF

function.11

11Note that df=NULL occurs due to the fact that the DNF function receives a fixed set of parameters. When
using DNFOptim, we will get a degree of freedom value equal to the number of free parameters in the optimiza-
tion.

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 17

0 500 1000 1500 2000 2500

−
0.

10
0.

00
0.

10
0.

20

Index

R
et

ur
ns

Figure 3: Simulated returns (in black) and volatility factors values (in red) from the ONEN
model of Christoffersen, Jacobs, and Mimouni (2010) with simultaneous and correlated return
and volatility jumps.

R> DPS_dnf <- DNF(dynamics = DPS_mod, data = DPS_sim$returns)

R> logLik(DPS_dnf)

'log Lik.' 7542.083 (df=NULL)

By default, the grids used for numerical integration for the DuffiePanSingleton model are
constructed as presented in Section 3. The arguments N, K, and R in the DNF function determine
the size of the grids. The volatility factor is integrated over a grid of length N, while the
integration for the volatility jump dimension uses a grid of length K. The maximum number
of jumps per time step is R.

We can extract the prediction and filtering distributions from the DPS_dnf object above.
The results for the particular time-point t = 1000 are shown in Figure 4. We plot both
distributions (the dotted blue line for the prediction distribution and the magenta line for
the filtering distribution) as well as the simulated volatility factor value at time 1000 (black
vertical line).

R> tlim <- 1000

R> plot(x = DPS_dnf, tlim = tlim, type = "l",

+ ylab = "Volatility Factor", xlab = "Time")

R> abline(v = DPS_sim$volatility_factor[tlim], col = "black", lwd = 1.5)

R> legend("topright", legend = c("Prediction", "Filtering", "True Value"),

+ lwd = c(1.5, 1.5, 1.5), col = c("blue", "magenta", "black"),

+ lty = c(2, 1, 1))

18 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

0.00 0.05 0.10 0.15 0.20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Plot of the Prediction and Filtering Distributions at t = 1000

Volatility Factor

D
en

si
ty

Prediction
Filtering

Prediction
Filtering
True Value

Prediction
Filtering
True Value

Figure 4: Prediction (dotted blue line) and filtering (solid magenta line) distributions from
the DNF as well as the simulated value of the volatility factor (vertical black line).

We now apply the DNF function to the data generated from the custom model in Section 4.1.
When using built-in models, we only need to pass the grid size arguments (i.e., N, K, and R)
to the DNF function, and the function automatically creates grids adjusted to the dynamics
of the built-in model. However, when working with custom models, we must define our own
grids. Ideally, these grids cover the integration range of the variables and have more nodes
in regions of high probability density. In this example, we create grids with uniformly spaced
nodes for the volatility factor and volatility jumps for simplicity’s sake.

R> N <- 75; R <- 1; K <- 25

R> var_mid_points <- seq(from = 0.000001, to = 0.2, length = N)

R> j_nums <- seq(from = 0, to = R, length = R + 1)

R> jump_mid_points <- seq(from = 0.00000001, to = 4 * nu, length = K)

R> grids <- list(var_mid_points = var_mid_points,

+ j_nums = j_nums, jump_mid_points = jump_mid_points)

Then, we pass our custom model dynamics and grids to the DNF function along with the
ONEN model returns simulated in Section 4.1:

R> dnf_custom <- DNF(dynamics = custom_mod,

+ data = custom_sim$returns, grids = grids)

The DNF function results are passed to the plot function which shows the median along with
5th and 95th percentile estimates of the volatility factors filtering and prediction distributions.

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 19

We add the simulated volatility factor values to the plot to compare our estimates with their
targets.

R> par(mfrow = c(1, 2), cex.main = 0.85)

R> plot(dnf_custom, upper_p = 0.05, lower_p = 0.95,

+ ylim = c(0, 0.25), type = "l",

+ ylab = "Volatility Factor", xlab = "Time")

R> matplot(y = custom_sim$volatility_factor,

+ add = TRUE, type = "l", col = "blue", lty = 1)

R> legend("topright", cex = 0.75,

+ legend = c("Median", "5th/95th Percentiles", "True Value"),

+ col = c("black", "gray", "blue"), lty = c(1, 2, 1))

R> par(mfg=c(1, 1))

R> matplot(y = custom_sim$volatility_factor,

+ add = TRUE, type = "l", col = "blue", lty = 1)

0 500 1500 2500

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Plot of Prediction Distribution Percentiles

Time

V
ol

at
ili

ty
 F

ac
to

r

0 500 1500 2500

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Plot of Filtering Distribution Percentiles

Time

V
ol

at
ili

ty
 F

ac
to

r

Median
5th/95th Percentiles
True Value

Figure 5: Simulated values of the volatility factor (in blue) along with the median estimate
(in black) and the 5th and 95th percentile estimates (dotted grey lines) for the filtering and
prediction distributions.

The resulting graph is shown in Figure 5. The estimate of the median of the filtering dis-
tribution (black line) is similar to the simulated volatility factor (blue line) and remains in

20 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

between our estimates of the 5th and 95th percentiles (dotted grey lines) for both the filtering
and prediction distributions. Generally, both distributions have similar medians, 5th, and 95th

percentiles. However, the 5th and 95th percentile estimates tend to be slightly closer to one
another for the filtering distribution than for the prediction distribution, which is expected
as the filtering distribution contains additional information about the volatility factor.

4.3. Maximum likelihood estimation

We illustrate how the DNFOptim function can be used to obtain MLEs using simulated data
from the SV model of Taylor with leverage (i.e., Model 2 in Section 2.1). We generate a
ten-year return series with the modelSim function.

R> Taylor_mod <- dynamicsSVM(model = "TaylorWithLeverage",

+ phi = 0.9, theta = -7.36, sigma = 0.363, rho = -0.75)

R> Taylor_sim <- modelSim(t = 2520, dynamics = Taylor_mod, init_vol = -7.36)

When passing the initial parameter vector to the optimizer, the parameters should follow
a specific order. For the PittMalikDoucet model (and all other nested specifications; that
is, Models 1–3), the parameters should be in the following order: phi, theta, sigma, rho,
delta, alpha, and p. For the DuffiePanSingleton model (and all other nested specifications;
that is, Models 4–6), the parameters should be in the following order: mu, alpha, delta,
rho_z, nu, omega, kappa, theta, sigma, and rho. The CAPM_SV model (Model 7) parameters
should be passed as: c_0, c_1, phi, theta, and sigma. The parameters not in use in a
given model should be discarded and not included to the list of parameters. For example,
the TaylorWithLeverage model does not contain jumps; its four parameters are passed in
the following order: phi, theta, sigma, and rho. Alternatively, users can pass the model
dynamics to the pars function to find the initial parameter order.

R> pars(Taylor_mod)

[1] "phi" "theta" "sigma" "rho"

This determines the order in which we define the elements of the initial parameter vector
init_par below.

R> init_par <- c(0.8, -10, 0.5, -0.8)

We pass the data and initial parameters to the DNFOptim function that uses the optimization
algorithm of Nelder and Mead (1965).

R> optim_test <- DNFOptim(data = Taylor_sim$returns,

+ dynamics = Taylor_mod, par = init_par, method = "Nelder-Mead",

+ hessian = TRUE)

The MLE can be extracted from optim_test, which stores the results of the DNFOptim

method. Running the optimizer takes about 1.5 minutes on a laptop with a 4 GHz Intel
Core i7-8550U processor.

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 21

R> summary(optim_test)

Model:

TaylorWithLeverage

Coefficients:

Estimate Std Error 2.5 % 97.5 %

phi 0.8895 0.01341 0.8632 0.9158

theta -7.3321 0.05387 -7.4377 -7.2265

sigma 0.3555 0.02715 0.3023 0.4087

rho -0.7536 0.03714 -0.8264 -0.6808

Log-Likelihood:

'log Lik.' 5673.654 (df=4)

The 95% confidence intervals based on the MLE parameters and their standard errors cover
the true parameters.

For built-in models, users need not pass initial parameters to the optimizer. If the par argu-
ment of the DNFOptim function is left to its default values, par = NULL, the initial parameters
are found using a heuristic algorithm detailed in Appendix A. In this case, omitting the initial
parameters gives virtually identical results.

R> optim_no_init <- DNFOptim(data = Taylor_sim$returns,

+ dynamics = Taylor_mod, method = "Nelder-Mead",

+ hessian = TRUE)

No initial parameters given.

Obtaining initial guess for starting parameters...

Initial par vector is:

0.9509383 -7.155225 0.1196848 0.3119251

>R summary(optim_no_init)

Model:

TaylorWithLeverage

Coefficients:

Estimate Std Error 2.5 % 97.5 %

phi 0.8895 0.01342 0.8632 0.9158

theta -7.3317 0.05389 -7.4373 -7.2261

sigma 0.3559 0.02718 0.3027 0.4092

rho -0.7535 0.03714 -0.8263 -0.6808

Log-Likelihood:

'log Lik.' 5673.654 (df=4)

22 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

We can use the model dynamics estimated by the DNFOptim function to generate forecasts of
future return and volatility factor values. The forecasts from the MLE model dynamics are
obtained by generating sample paths (1,000 by default) that are simulated from modelSim

where the initial volatility is sampled from the filtering distribution at time T (here, T =
2, 520).12

R> par(mfrow = c(1, 2), cex.main = 0.85)

R> plot(predict(optim_test, n_ahead = 250))

R> legend("topright", cex = 0.75,

+ legend = c("Actual", "95 % Confidence Intervals", "Predicted"),

+ col = c("black", "blue", "magenta"), lty = c(1, 1, 1))

Figure 6 shows the resulting predictions. The left plot showcases how the expected log-
volatility reverts to its long-run mean value of θ = −8.972. As the forecast long-run mean
log-volatility decreases, we can observe in the right plot the width of the 95% confidence
around our expected future returns shrinking as the volatility falls.

0 500 1000 1500 2000 2500

−
10

−
9

−
8

−
7

Plot of Filtered Volatility and Predictions

Time

V
ol

at
ili

ty
 F

ac
to

r

0 500 1000 1500 2000 2500

−
0.

06
−

0.
02

0.
02

0.
06

Plot of Past Returns and Predictions

Time

R
et

ur
ns

Figure 6: The filtered volatility factor values (in black on the left) and the observed returns
(in black on the right) along with their expected forecasts (in magenta) with 95% confidence
intervals (in blue).

We can also use the DNFOptim function to get MLE parameters for custom models. The
order in which we pass the initial custom model parameters will depend on the function in
which they appear. Some parameters appear in user-specified functions (i.e., mu_y_params,
sigma_y_params, mu_x_params, sigma_x_params, and jump_params), while others are present
in the general framework for custom models in Section 2 (i.e., rho, delta, alpha, rho_z, and
nu). The order to pass the parameters is: mu_y_params, sigma_y_params, mu_x_params,

12Specifically, sample paths based on the estimated parameters are generated using Monte Carlo simulation
(via the modelSim function). The initial volatility for each of these paths is sampled from the filtering distri-
bution of the volatility factor at time T , p(xT | y1 : T). The predict function then computes the mean of the
the simulated paths and constructs confidence intervals based on their standard deviation at each time step.

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 23

sigma_x_params, rho, delta, alpha, rho_z, nu, and jump_params. If an argument is re-
peated (e.g., both mu_y_params and sigma_y_params use the same parameter), we write it
only when it first appears in the custom model definition.

In this case, we apply the DNFOptim function to returns generated from the ONEN model
built from custom model dynamics; that is, the model of Section 4.1 without jumps (i.e.,
ω = α = δ = ρz = ν = 0). Thus, mu_y is a function of mu, sigma_y is not a function of any
model parameters, mu_x is a function of kappa and theta, and sigma_x is a function of sigma.
Following the parameter order for custom models given above, the initial parameters must
be passed as follows: mu, kappa, theta, sigma, and rho. The parameter order for custom
models can also be found using the pars function.

R> N <- 50

R> var_mid_points <- seq(from = 0.000001, to = 0.2, length = N)

R> j_nums <- 0

R> jump_mid_points <- 0

R> grids <- list(var_mid_points = var_mid_points,

+ j_nums = j_nums, jump_mid_points = jump_mid_points)

R> init_par <- c(0.03, 120, 0.04, 3.5, -0.75)

R> lower <- c(-0.2, 0, 0, 0, -1)

R> upper <- c(0.2, Inf, 0.15, 10, 0)

R> dnf_custom_opt <- DNFOptim(data = custom$returns, grids = grids,

+ dynamics = custom_mod, lower = lower,

+ upper = upper, par = init_par, method = "L-BFGS-B",

+ rho = "var", hessian = TRUE)

For built-in models, DNFOptim constrains the parameter search to the ranges given in the
support column of Tables 1, 2, and 3. For custom models, only certain model parameters are
constrained to their support (i.e., rho, delta, alpha, rho_z, and nu). In order to place limits
on the search for the other parameters in the ONEN model, we set method = "L-BFGS-B and
pass upper and lower bounds to the DNFOptim function.13 The optimization takes roughly
10 minutes.14 After running DNFOptim, we now print out the estimated parameters and get
the standard errors:

R> summary(dnf_custom_opt)

Model:

Custom

Coefficients:

Estimate Std Error 2.5 % 97.5 %

mu -0.02025 0.027772 -0.07468 0.03418

kappa 120.03658 25.964937 69.14624 170.92693

13The L-BGFS-B optimization algorithm is the only optimizer in the optim function to support parameter
constraints.

14This timing is also obtained from a laptop equipped with a 4 GHz Intel Core i7-8550U processor.

24 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

theta 0.06091 0.007494 0.04622 0.07559

sigma 2.62066 0.150532 2.32562 2.91569

rho -0.60071 0.024960 -0.64963 -0.55179

Log-Likelihood:

'log Lik.' 16829.34 (df=5)

We find that most of the MLE parameters are fairly close to those used to generate the data,
except for σ and ρ, which are outside the 95% confidence interval obtained from their standard
errors. Overall, the estimated parameters are reasonable for a single simulated path.

The filtering and predictions distribution along with the true volatility are displayed in Fig-
ure ??. Once again, the prediction and filtering distributions generally cover the true volatility
values from the simulated data.

0 1000 3000 5000

0.
00

0.
10

0.
20

Plot of Prediction Distribution Percentiles

Time

V
ol

at
ili

ty
 F

ac
to

r

0 1000 3000 5000

0.
00

0.
10

0.
20

Plot of Filtering Distribution Percentiles

Time

V
ol

at
ili

ty
 F

ac
to

r

Median
5th/95th Percentiles
True Value

Figure 7: Simulated values of the volatility factor (in blue) along with the median estimate
(in black) and the 5th and 95th percentile estimates (dotted grey lines) for the filtering and
prediction distributions of simulated data from the ONEN model of Christoffersen, Jacobs,
and Mimouni (2010)

5. MLE simulation study

In this section, we study the parameter bias that results from using the DNF in maximum
likelihood estimation. We perform a simulation study that extends previous work on the
DNF.

In their study, Bégin and Boudreault (2021) assessed the bias in the DNF likelihood evalua-
tions for jump-diffusion models. Using likelihood evaluations from a particle filter with a large

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 25

number of particles as a proxy for the true likelihood, they found that the DNF likelihood
evaluations have a mean absolute percentage error (MAPE) that is less than 0.1% with 50–60
volatility nodes.

Through simulation studies, both Watanabe (1999) and Langrock, MacDonald, and Zucchini
(2012) investigated the parameter bias that results from using the DNF to estimate discrete-
time SV models without jumps. Both studies found that the DNF has comparable or lower
errors than alternative methods, and Langrock, MacDonald, and Zucchini (2012) found that
the DNF achieved these results with lower or comparable computing times when using between
50 and 100 volatility nodes.

The present simulation study has three objectives. First, we want to verify whether the slight
biases in the likelihood evaluations of jump-diffusion models noted in Bégin and Boudreault
(2021) translate into accurate parameter MLEs. Second, we determine whether the promising
results of Watanabe (1999) and Langrock, MacDonald, and Zucchini (2012) extend to discrete-
time models that allow for the leverage effect and return jumps. Finally, the study provides
users with an overview of the finite-sample performance they can anticipate when using the
DNFOptim function.

For this exercise, we generate 100 random daily return series of 20 years for each built-in model
using the parameters in the “True value” columns of Table 4 for standard discrete-time SV
models and Table 5 for SV jump-diffusion models. We then use the DNFOptim function to
obtain the MLE of each series with the limited-memory Broyden–Fletcher–Goldfarb–Shanno
with box constraints (L–BFGS–B) optimization algorithm of Byrd, Lu, Nocedal, and Zhu
(1995); that is, using the method = "L-BGFS-B" argument in the DNFOptim function.15 The
other columns of Tables 4 and 5 give the average and standard deviations (SDs) of the MLE
from the 100 simulated return series. All estimations are performed with the default grid
lengths (i.e., N = 50, K = 20, and R = 1).

Taylor Pitt, Malik,
True value Taylor with leverage and Doucet

ϕ 0.900 0.898 0.899 0.900
(0.013) (0.007) (0.008)

θ −7.360 −7.354 −7.366 −7.375
(0.052) (0.034) (0.038)

σ 0.363 0.362 0.359 0.358
(0.027) (0.016) (0.017)

ρ −0.745 −0.745 −0.749
(0.024) (0.029)

δ 0.026 0.022
(0.011)

α −0.050 −0.053
(0.023)

p 0.010 0.013
(0.013)

Table 4: Average maximum likelihood estimates and standard deviations for standard
discrete-time stochastic volatility models.

15We change the optimization algorithm to show that it is possible to do so. Results obtained with the
Nelder–Mead method are virtually the same as those obtained with the L–BFGS–B method.

26 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

Table 4 displays the average MLEs and their SDs for the SV model of Taylor (1986), the SV
model with leverage, and the SV model with leverage and return jumps of Pitt, Malik, and
Doucet (2014). These correspond to Models 1, 2, and 3 of Section 2.1, respectively.

Throughout the models, the MLE for the parameters that are not related to jumps (i.e., ϕ, θ,
σ, and ρ) are close to their true values, on average, for the standard discrete-time SV models.
The accuracy of the estimates for the model of Taylor (1986) are congruent with the results
of Watanabe (1999) and Langrock, MacDonald, and Zucchini (2012). The jump parameters
(i.e., p, δ, and α) tend to be more difficult to estimate, displaying fairly large SDs.

Duffie, Pan,
True value Heston Bates and Singleton

µ 0.038 0.048 0.044 0.021
(0.027) (0.036) (0.037)

κ 3.689 4.810 4.811 4.352
(0.824) (0.525) (0.379)

θ 0.032 0.027 0.029 0.036
(0.004) (0.003) (0.006)

σ 0.446 0.419 0.431 0.452
(0.024) (0.027) (0.033)

ρ −0.745 −0.728 −0.737 −0.731
(0.030) (0.037) (0.040)

ω 5.125 4.165 4.665
(0.386) (0.339)

δ 0.026 0.025 0.026
(0.004) (0.006)

α −0.050 −0.055 −0.051
(0.005) (0.006)

ρz −1.000 −1.008
(0.138)

ν 0.020 0.022
(0.004)

Table 5: Average maximum likelihood estimates and standard deviations for stochastic volatil-
ity jump-diffusion models.

Table 5 reports the average MLE parameters and their SDs for the jump-diffusion SV models
of Heston (1993), Bates (1996), and Duffie, Pan, and Singleton (2000), corresponding to
Models 4, 5, and 6 in Section 2.2, respectively. For the models, we find that the parameters
that are not associated with jumps (i.e., µ, κ, θ, σ, and ρ) are well estimated. As for the jump
parameters, we find relatively small SDs when using jump-diffusion models. For both return
and volatility jumps, the MLE slightly overestimates the jump sizes, and underestimates their
frequency, on average. However, the only parameters that are significantly misestimated are
the ω and κ parameters in the model of Bates (1996).

6. Empirical applications

We can also use the DNFOptim function to obtain model MLE parameters from real data. In
this section, we use the quantmod package of Ryan and Ulrich (2022) to load return data
from individual equities, the S&P 500 index, and obtain MLE parameters for both built–in

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 27

and custom SV models. The data are from January 2007 to November 2022, accounting for
roughly 16 years of daily observations. This period includes the 2008 Global Financial Crisis
and the COVID-19 pandemic.

6.1. Parameter estimation for the Standard and Poor’s 500 index

We start by extracting the S&P 500 returns.

R> library("quantmod")

R> library("xts")

R> getSymbols("^GSPC", src = "yahoo")

R> SP500 <- periodReturn(GSPC, period = "daily", subset = "2007/20221107")

R> date <- index(SP500)

R> plot(x = date, y = SP500, main = "", type = "l",

+ ylab = "Returns", xlab = "Time")

2010 2015 2020

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

R
et

ur
ns

Figure 8: Daily S&P 500 index returns from January 2007 to November 2022.

The above code generates the plot of our return data in Figure 8.

We give the code for this workflow with market data using the Heston model. The DNF and
DNFOptim functions support extensible time series objects from the xts package of Ryan and
Ulrich (2024). Thus, the SP500 object can be passed directly to the SVDNF package’s DNF
functions. In this exercise, we use the optimization algorithm of Nelder and Mead (1965).16

R> init_par <- c(0.038, 3.689, 0.032, 0.446, -0.745)

R> Heston_mod <- dynamicsSVM(model = "Heston")

R> optim_Heston <- DNFOptim(data = SP500,

+ dynamics = Heston_mod, par = init_par, method = "Nelder-Mead", tol = 1,

+ hessian = TRUE)

16Similar results can be obtained using the L-BFGS-B optimization algorithm.

28 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

The tol argument of the DNF function allows users to rerun the optimizer using the MLEs
from the previous iteration as starting values until the likelihood does not improve by at least
the value tol. All the parameter MLEs obtained in this section are computed with tol = 1

in the DNFOptim function.

R> summary(optim_Heston)

Model:

Heston

Coefficients:

Estimate Std Error 2.5 % 97.5 %

mu 0.04313 0.025114 -0.006094 0.09235

kappa 4.31819 0.321101 3.688846 4.94754

theta 0.04919 0.003013 0.043289 0.05510

sigma 0.57642 0.026777 0.523934 0.62890

rho -0.77202 0.028515 -0.827910 -0.71614

Log-Likelihood:

'log Lik.' 13042.06 (df=5)

Tables 6, 7, and 8 give the MLE parameter estimates, Θ̂, and their standard errors (SEs)
obtained for the built-in standard discrete-time (Models 1–3), the built-in jump-diffusion
models (Models 4–6), and custom CEV versions of the jump-diffusion models, respectively.
The custom CEV models are similar to Models 4, 5, and 6, but with the volatility factor
diffusion function specified as in Equation (1).

Tables 6, 7, and 8 also provide the log-likelihood at the MLE, log L(Θ̂ | y1:T), and the Bayesian
information criterion (BIC) of Schwarz (1978) for each model. The BIC provides a criterion
for us to compare SV models with different numbers of parameters and from different model
families (i.e., discrete-time versus continuous-time). It is defined as

BIC = −2 log L(Θ̂ | y1:T) + k ln(T),

where k is the number of parameters in a given model, and is used to adjust the log-likelihood
value by penalizing for model complexity (i.e., the number of parameters). The BIC can be
easily computed using the BIC function.

BIC(logLik(optim_Heston))

[1] -26042.65

For the standard discrete-time models, the MLE parameters are reported in Table 6. We find
that the log-likelihood increases both when incorporating the leverage effect in the standard
SV model and adding return jumps. Moreover, the more complicated models outperform the
simpler ones in terms of BIC despite the penalty for additional model parameters. These
results are similar to those in Pitt, Malik, and Doucet (2014), where they find that the

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 29

Taylor Pitt, Malik,
Taylor with leverage and Doucet

ϕ 0.975 0.959 0.964
(0.005) (0.004) (0.004)

θ −9.470 −9.245 −9.097
(0.163) (0.088) (0.096)

σ 0.248 0.308 0.298
(0.019) (0.018) (0.017)

ρ −0.740 −0.838
(0.029) (0.028)

p 0.039
(0.018)

δ 0.011
(0.001)

α −0.007
(0.004)

Log-likelihood 12,928.99 13,050.98 13,072.40
BIC –25,833.10 –26,068.78 –26,086.76

Table 6: Maximum likelihood estimates for the S&P 500 index with standard discrete-time
stochastic volatility models.

Duffie, Pan,
Heston Bates and Singleton

µ 0.043 0.032 −0.001
(0.025) (0.028) (0.027)

κ 4.318 4.288 4.427
(0.321) (0.350) (0.352)

θ 0.049 0.046 0.041
(0.003) (0.003) (0.001)

σ 0.576 0.557 0.526
(0.027) (0.027) (0.024)

ρ −0.772 −0.793 −0.813
(0.029) (0.027) (0.027)

ω 3.816 2.824
(1.218) (0.810)

δ 0.006 0.003
(0.004) (0.003)

α −0.016 −0.021
(0.003) (0.003)

ρz −0.136
(0.098)

ν 0.024
(0.007)

Log-likelihood 13,042.06 13,053.92 13,065.71
BIC –26,042.65 –26,041.52 –26,048.50

Table 7: Maximum likelihood estimates for the S&P 500 index with stochastic volatility
jump-diffusion models.

30 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

Duffie, Pan,
Heston-CEV Bates-CEV and Singleton-CEV

µ 0.099 0.066 −0.029
(0.024) (0.024) (0.030)

κ 4.849 4.343 4.508
(0.084) (0.067) (0.129)

θ 0.040 0.041 0.037
(0.002) (0.001) (0.001)

σ 2.039 1.882 1.822
(0.325) (0.249) (0.251)

ρ −0.768 −0.803 −0.834
(0.028) (0.026) (0.025)

ω 4.281 5.879
(2.329) (1.860)

δ 0.005 0.003
(0.004) (0.005)

α −0.015 −0.016
(0.005) (0.006)

ρz −0.301
(0.318)

ν 0.014
(0.005)

β 0.780 0.767 0.766
(0.035) (0.028) (0.027)

Log-likelihood 13,085.40 13,099.36 13,115.15
BIC –26,121.04 –26,124.09 –26,139.10

Table 8: Maximum likelihood estimates for the S&P 500 index with nonaffine jump-diffusion
models.

standard discrete-time stochastic volatility model with leverage and jumps often performs
better when compared to other models studied for different periods of S&P 500 return data.

In Table 7, we observe a similar pattern. As with the discrete-time models, the more complex
continuous-time models better capture the dynamics of the S&P 500 return data in terms of
BIC. For the models with jumps, we find around two to four jumps annually and negative
return jumps, on average. The return jumps are less frequent than those for the model of
Pitt, Malik, and Doucet (2014), but larger in magnitude for both the model of Bates (1996)
and Duffie, Pan, and Singleton (2000). The jump parameter estimates resemble those found
in the literature (see, e.g., Hurn, Lindsay, and McClelland 2015; Jacobs and Liu 2018).

For the model of Duffie, Pan, and Singleton (2000), we estimate µ̂ = −0.001. Although
not statistically significant, this parameter is not usually negative as this would indicate a
negative return drift. However, the constants in return drift function remain positive in this
case due to the jump compensator. Indeed, the annualized constant terms in the return drift
are estimated to be

µ̂ − ω̂ α̂ = −0.001 − (2.824 × −0.021) = 0.058,

which is similar to the drift estimated for the model of Heston (1993). This also explains why
we get µ̂ = −0.029 in Table 8 for the CEV version of the model of Duffie, Pan, and Singleton
(2000).

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 31

In Table 8, we find, once again, that adding return and volatility jumps improves model
performance in terms of BIC. For the nonaffine jump-diffusion models, the estimated CEV
parameter β is around 0.75, which is in the same range as values found in the literature (see,
e.g., Aït-Sahalia and Kimmel 2007; Kaeck and Alexander 2012).

Across the model families considered, we find that BIC improves when adding jumps. This
confirms previous results on the importance of jumps to capture market behaviour during
times of financial turmoil in the literature (see, e.g., Bates 1996; Eraker, Johannes, and
Polson 2003; Eraker 2004). Additionally, we find that the BIC favours nonaffine jump-diffusion
models over the discrete-time models, which are favored over the affine jump-diffusion models.

We can easily visualize the difference between affine and nonaffine volatility dynamics using
the extractVolPerc function. We extract the median filtering distribution from the non-
affine version of the model of Duffie, Pan, and Singleton (2000) and the model of Heston
(1993) that were fit with the S&P 500 data for comparison.

R> DPS_vol <- extractVolPerc(optim_DPS_CEV)[-1]

R> Hest_vol <- extractVolPerc(optim_Heston_SP500)[-1]

R> plot(x = index(SP500), y = (DPS_vol - Hest_vol), type ='l',

+ ylab = "Difference in volatility", xlab = 'Date')

2010 2015 2020

−
0.

05
0.

05
0.

10
0.

15
0.

20
0.

25

Date

D
iff

er
en

ce
 in

 v
ol

at
ili

ty

Figure 9: Plot of the difference between the filtering distribution estimates for S&P 500 daily
returns from the model of Heston (1993) and a non-affine version of the model of Duffie, Pan,
and Singleton (2000).

The plot of the difference of the filtering distribution medians appears in Figure 9 and shows
that the volatilities for both models are usually near one another except during the 2008

32 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

financial crisis and the 2020 stock market crash caused by the Covid-19 pandemic. The
extractVolPerc function for other fitted models and quickly compare the impact of selecting
a different SV model on the filtering distribution’s median volatility estimate.

In Figure 10, we plot the two filtering distribution medians and add the average volatility
computed via Monte Carlo simulation from the predict function. The graph shows that
despite having a lower long-run volatility value θ (0.037 versus 0.049), the nonaffine model
with jumps still yields a slightly higher average simulated volatility. This showcases the ability
of the nonaffine model with jumps to keep a lower long-run value and yet to spike up and
capture extreme volatility values.

2010 2015 2020

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Date

V
ol

at
ili

ty
 fa

ct
or

Figure 10: Plot of the filtering distribution estimates for S&P 500 daily returns from the
model of Heston (1993) (in black) and a non-affine version of the model of Duffie, Pan, and
Singleton (2000) (in red) with average forecast values (after grey line).

6.2. CAPM-SV parameter estimates for individual equities

We now estimate the parameters of the CAPM-SV (i.e., Model 7) for the three largest publicly
traded equities. At the time of writing, these are: Microsoft, Apple Inc., and Nvidia. The
returns data from the S&P 500 will serve as a proxy for overall market returns and the 3-
month constant maturity U.S. Treasuries will serve as the risk-free rate (i.e., they will be Rm

t

and Rf
t , respectively).

We first obtain the risk-free rate proxy, extracting its values at the dates when the market is
open, and filling NAs values using the previous observation carried forward.

R> getSymbols('DGS3MO', src = "FRED", subset = "2007/20221107")

R> r_f = DGS3MO["2007/20221107"] / (100 * 252)

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 33

R> r_f <- r_f[index(SP500)]

R> r_f[is.na(r_f)] <- r_f[which(is.na(r_f)) - 1]

The excess returns from investing in the market and in Microsoft are computed below.

getSymbols("MSFT", src = "yahoo")

MSFT <- periodReturn(MSFT, period = "daily", subset = "2007/20221107")

r_excess <- as.vector(SP500 - r_f)

MSFT_excess <- MSFT - r_f

We then create a models dynamics object for the CAPM-SV, select initial parameters for the
optimizer.

R> CAPM_dyn <- dynamicsSVM(model = "CAPM_SV")

R> init_par = c(0.1, 1, 0.98, -8, 0.3)

We now specify the design matrix in the Ftc
⊤ term in Model 7. We set the first column of

this matrix to 1 to multiply the intercept term c0 and the second column to be the excess
market returns, which are multiplied by c1.

R> factor_mat <- cbind(rep(1, times = length(r_excess)), r_excess))

R> MSFT_opt = DNFOptim(data = MSFT_excess, dynamics = CAPM_dyn, tol = 1,

factors = factor_mat, par = init_par, hessian = TRUE)

MSFT AAPL NVDA

c0 × 100 0.015 0.051 0.016
(0.013) (0.017) (0.027)

c1 1.062 1.085 1.486
(0.014) (0.017) (0.027)

ϕ 0.801 0.867 0.800
(0.025) (0.019) (0.028)

θ −9.498 −8.933 −8.053
(0.057) (0.066) (0.056)

σ 0.626 0.504 0.611
(0.041) (0.039) (0.045)

Log-likelihood 12,730.42 11,672.36 9,862.16
BIC –25,419.39 –23,303.26 –19,682.86

Table 9: Maximum likelihood estimates of the CAPM-SV model parameters for the three
largest equities in the S&P 500 by market capitalization.

Table 9 displays the results of repeating this exercise for Apple Inc. and Nvidia. We find
that Nvidia has the highest long-run log-volatility θ of the three stocks, while Microsoft has
the lowest. Apple Inc. boasts the highest average excess market returns parameter c0 with
similar systemic risk c1 to Microsoft, both of which are lower than Nvidia’s.

As models with jumps better fit the S&P 500 index data, we create a custom model that
follows the dynamics of Model 7, the CAPM-SV model, but with Gaussian return jumps that
arrive following a Bernoulli distribution. This is the capital asset pricing model with yield
jumps or CAPM-SVYJ. We define its drift and diffusion functions below.

34 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

R> phi <- 0.9; theta <- -9; sigma <- 0.3

R> alpha <- -0.05; p <- 0.025; delta <- 0.025

R> coefs <- c(0, 1)

R> mu_y_capm <- function(x, dummy) {

+ return(0)

+ }

R> mu_y_params <- list()

R> sigma_y_capm <- function(x, dummy) {

+ return(exp(x / 2))

+ }

R> sigma_y_params <- list(0)

R> mu_x_capm <- function(x, phi, theta) {

+ return(theta + phi * (x - theta))

+ }

R> mu_x_params <- list(phi, theta)

R> sigma_x_capm <- function(x, sigma) {

+ return(sigma)

+ }

R> sigma_x_params <- list(sigma)

Next, we set the return jump distribution.

R> jump_density <- function(x, p) {

+ return(dbinom(x, 1, p))

+ }

R> jump_dist <- rbinom

R> jump_params <- p

Finally, we can create the CAPM-SVYJ model by passing the drift functions, diffusion func-
tions, jump distribution, and parameters to the dynamicsSVM function.

R> custom_CAPMSVM <- dynamicsSVM(

+ model = "Custom", mu_y = mu_y_capm, sigma_y = sigma_y_capm,

+ rho = 0, rho_z = 0, nu = 0, alpha = alpha, delta = delta, coefs = coefs,

+ mu_x = mu_x_capm, sigma_x = sigma_x_capm, jump_density = jump_density,

+ jump_dist = jump_dist, jump_params = jump_params,

+ mu_y_params = mu_y_params, sigma_y_params = sigma_y_params,

+ mu_x_params = mu_x_params, sigma_x_params = sigma_x_params)

As we are working with a custom model, we must construct a quadrature point grid. To this
end, we follow the procedure for discrete models in Section 3.

R> mean <- theta

R> sd <- sqrt((sigma^2) / (1 - phi^2))

R> N <- 50

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 35

R> var_mid_points <- seq(from = 0, to = sqrt((3 + log(N)) * sd),

+ length = floor(N / 2 + 1))^2

R> var_mid_points <- (sort(c(-var_mid_points[2:N],

+ var_mid_points)) + mean)[1:N]

R> j_nums <- c(0, 1)

R> jump_mid_points <- 0

R> cap_grid <- list(var_mid_points = var_mid_points, j_nums = j_nums,

+ jump_mid_points = jump_mid_points)

After setting an initial parameter vector, we run the DNFOptim function and print the param-
eter MLEs and model BIC.

R> init_par <- c(0, 1, 0.9, -9, 0.3, 0.025, -0.05, 0.025)

R> MSFT_SVYJ <- DNFOptim(data = MSFT_excess, dynamics = custom_CAPMSVM,

+ grid = cap_grid, tol = 1, factors = factor_mat, par = init_par,

+ hessian = TRUE, jump_params_list = "p", alpha = "var", delta = "var")

R> summary(MSFT_SVYJ)

Model:

Custom

Coefficients:

Estimate Std Error 2.5 % 97.5 %

c_0: 7.583e-05 0.0001303 -0.0001796 0.0003312

c_1: 1.094e+00 0.0144321 1.0653755 1.1219481

phi 8.673e-01 0.0513138 0.7667364 0.9678828

theta -9.542e+00 0.0607762 -9.6613862 -9.4231479

sigma 4.433e-01 0.1039113 0.2396749 0.6469998

delta 4.605e-02 0.0083327 0.0297134 0.0623768

alpha 4.031e-03 0.0072857 -0.0102484 0.0183108

p 1.365e-02 0.0062032 0.0014872 0.0258034

Log-Likelihood:

'log Lik.' 12752.77 (df=8)

R> BIC(logLik(MSFT_SVYJ))

[1] -25439.2

The parameter MLEs and standard errors for Microsoft, Apple Inc., and Nvidia for the
CAPM-SVYJ model are given in Table 10. Unlike our estimate for the S&P500, we find pos-
itive average jumps sizes α. While the individual equities jump size have similar magnitudes
on average to the those of the S&P 500, they have larger standard deviations δ.

36 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

The estimates of the volatility of the volatility σ are smaller while the persistence parameters
ϕ are higher after adding returns jumps. We find similar values for the estimates of the long-
run log-volatility parameter θ and the slope parameters c1 across both the CAPM-SV and
CAPM-SVYJ models. For each of the three equities, the addition of a return jump component
to the model improves its BIC value.

MSFT AAPL NVDA

c0 × 100 0.008 0.047 0.025
(0.013) (0.018) (0.027)

c1 1.094 1.078 1.478
(0.014) (0.018) (0.028)

ϕ 0.867 0.923 0.987
(0.014) (0.031) (0.004)

θ −9.542 −8.998 −8.090
(0.061) (0.078) (0.149)

σ 0.443 0.338 0.104
(0.104) (0.080) (0.019)

δ 0.046 0.033 0.067
(0.008) (0.005) (0.006)

α 0.004 0.014 0.012
(0.007) (0.007) (0.006)

p 0.014 0.072 0.041
(0.006) (0.009) (0.007)

Log-likelihood 12,752.77 11,699.12 9,939.04
BIC –25,439.20 –23,33‘.90 –19,811.74

Table 10: Maximum likelihood estimates of the CAPM-SVYJ model parameters for the three
largest equities in the S&P 500 by market capitalization.

7. Summary and discussion

This article introduced the SVDNF R package. Namely, we presented the discrete nonlinear
filtering algorithm and a flexible stochastic volatility modelling framework with jumps that is
made available to package users via customized model dynamics. For this general framework,
the package allows users to simulate data, get prediction and filtering distribution estimates,
and obtain maximum likelihood parameter estimates. Given the importance of jumps (and
stochastic volatility), this R package fills an important gap in the literature by enabling users
in finance, financial econometrics, and risk management to integrate jumps while studying a
wide range of stochastic volatility model dynamics.

Furthermore, we gave examples of each of the functions. The DNF algorithm was applied
to both simulated data from built-in and customized models and market data from the S&P
500 index and individual equity daily return data obtained using the quantmod package. We
found that including jumps improves the models’ ability to capture the the financial assets’
behaviour in terms of BIC. This further supports existing evidence that the inclusion of jumps
is important to capture asset return behaviour during periods of financial turmoil. Moreover,
we found that nonaffine volatility dynamics fit S&P 500 market index data better and that
the nonaffine jump-diffusion models outperform the discrete-time models studied. In turn,

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 37

these discrete-time models improve BIC values over the affine jump-diffusion models as long
as they allow for the leverage effect.

Computational details

The results in this paper were obtained using R 4.3.1 with the SVDNF 0.1.10, Rcpp 1.0.11,
xts 0.13.1, and quantmod 0.4.24 packages. R itself and all packages used are available from
the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.

Acknowledgments

The authors gratefully acknowledge the research assistance of Jonathan Grégoire in the early
stages of this research project. This research was made possible, in part, by support pro-
vided by the BC DRI Group and the Digital Research Alliance of Canada (alliancecan.ca).
Arsenault-Mahjoubi is grateful to Simon Fraser University for financial support. Bégin wishes
to acknowledge the financial support of the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), and Simon Fraser University. Boudreault would like to thank the
financial support of NSERC.

References

Aït-Sahalia Y, Kimmel R (2007). “Maximum Likelihood Estimation of Stochastic Volatility
Models.” Journal of Financial Economics, 83(2), 413–452. doi:10.1016/j.jfineco.2005.

10.006.

Amaya D, Bégin JF, Gauthier G (2022). “The Informational Content of High-Frequency
Option Prices.” Management Science, 68(3), 2166–2201. doi:10.1287/mnsc.2020.3949.

Andersen TG, Fusari N, Todorov V (2015). “The Risk Premia Embedded in Index Options.”
Journal of Financial Economics, 117(3), 558–584. doi:10.1016/j.jfineco.2015.06.005.

Andrieu C, Doucet A, Holenstein R (2010). “Particle Markov Chain Monte Carlo Methods.”
Journal of the Royal Statistical Society B, 72(3), 269–342. doi:10.1111/j.1467-9868.

2009.00736.x.

Bardgett C, Gourier E, Leippold M (2019). “Inferring Volatility Dynamics and Risk Premia
from the S&P 500 and VIX Markets.” Journal of Financial Economics, 131(3), 593–618.
doi:10.1016/j.jfineco.2018.09.008.

Bates DS (1996). “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in
Deutsche Mark Options.” Review of Financial Studies, 9(1), 69–107. doi:10.1093/rfs/

9.1.69.

Bégin JF, Amaya D, Gauthier G, Malette ME (2020). “On the Estimation of Jump-Diffusion
Models Using Intraday Data: A Filtering-Based Approach.” SIAM Journal on Financial
Mathematics, 11(4), 1168–1208. doi:10.1137/19M1266915.

https://CRAN.R-project.org/
https://doi.org/10.1016/j.jfineco.2005.10.006
https://doi.org/10.1016/j.jfineco.2005.10.006
https://doi.org/10.1287/mnsc.2020.3949
https://doi.org/10.1016/j.jfineco.2015.06.005
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1016/j.jfineco.2018.09.008
https://doi.org/10.1093/rfs/9.1.69
https://doi.org/10.1093/rfs/9.1.69
https://doi.org/10.1137/19M1266915

38 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

Bégin JF, Boudreault M (2021). “Likelihood Evaluation of Jump-Diffusion Models Using
Deterministic Nonlinear Filters.” Journal of Computational and Graphical Statistics, 30(2),
452–466. doi:10.1080/10618600.2020.1840995.

Bollerslev T (1986). “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of
Econometrics, 31(3), 307–327. doi:10.1016/0304-4076(86)90063-1.

Bos CS (2012). “Relating Stochastic Volatility Estimation Methods.” In Handbook of Volatility
Models and Their Applications, pp. 147–174. John Wiley & Sons, New York, NY, United
States of America. doi:10.1002/9781118272039.ch6.

Brown TR (2020). “A Short Introduction to PF: A C++ Library for Particle Filtering.”
Journal of Open Source Software, 5(54), 2599. doi:10.21105/joss.02599.

Byrd RH, Lu P, Nocedal J, Zhu C (1995). “A Limited Memory Algorithm for Bound Con-
strained Optimization.” SIAM Journal on Scientific Computing, 16(5), 1190–1208. doi:

10.1137/0916069.

Chacko G, Viceira LM (2003). “Spectral GMM Estimation of Continuous-Time Processes.”
Journal of Econometrics, 116(1-2), 259–292. doi:10.1016/S0304-4076(03)00109-X.

Chen L, Lee C, Budhiraja A, Mehra RK (2007). “PFLib: An Object-Oriented MATLAB

Toolbox for Particle Filtering.” In Signal Processing, Sensor Fusion, and Target Recognition
XVI, volume 6567, pp. 335–342. SPIE. doi:10.1117/12.719951.

Christoffersen P, Jacobs K, Mimouni K (2010). “Volatility Dynamics for the S&P500: Ev-
idence from Realized Volatility, Daily Returns, and Option Prices.” Review of Financial
Studies, 23(8), 3141–3189. doi:10.1093/rfs/hhq032.

Clements A, Hurn S, White S (2006). “Estimating Stochastic Volatility Models Using a
Discrete Non-linear Filter.” Working Paper.

Cont R (2001). “Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues.”
Quantitative Finance, 1(2), 223–236. doi:10.1080/713665670.

Creal D (2012). “A Survey of Sequential Monte Carlo Methods for Economics and Finance.”
Econometric Reviews, 31(3), 245–296. doi:10.1080/07474938.2011.607333.

de Zea Bermudez P, Marín JM, Rue H, Veiga H (2021). “Integrated Nested Laplace Ap-
proximations for Threshold Stochastic Volatility Models.” Econometrics and Statistics,
Forthcoming. doi:10.1016/j.ecosta.2021.08.006.

Dufays A, Jacobs K, Liu Y, Rombouts J (2023). “Fast Filtering with Large Option Panels:
Implications for Asset Pricing.” Journal of Financial and Quantitative Analysis, pp. 1–32.
doi:10.1017/S0022109023000753.

Duffie D, Pan J, Singleton K (2000). “Transform Analysis and Asset Pricing for Affine Jump-
Diffusions.” Econometrica, 68(6), 1343–1376. doi:10.1111/1468-0262.00164.

Durham GB (2013). “Risk-Neutral Modeling With Affine and Nonaffine Models.” Journal of
Financial Econometrics, 11(4), 650–681. doi:10.1093/jjfinec/nbt009.

https://doi.org/10.1080/10618600.2020.1840995
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1002/9781118272039.ch6
https://doi.org/10.21105/joss.02599
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1016/S0304-4076(03)00109-X
https://doi.org/10.1117/12.719951
https://doi.org/10.1093/rfs/hhq032
https://doi.org/10.1080/713665670
https://doi.org/10.1080/07474938.2011.607333
https://doi.org/10.1016/j.ecosta.2021.08.006
https://doi.org/10.1017/S0022109023000753
https://doi.org/10.1111/1468-0262.00164
https://doi.org/10.1093/jjfinec/nbt009

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 39

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Engle RF (1982). “Autoregressive Conditional Heteroscedasticity With Estimates of the
Variance of United Kingdom Inflation.” Econometrica, 50(4), 987–1007. doi:10.2307/

1912773.

Eraker B (2001). “MCMC Analysis of Diffusion Models With Application to Finance.” Journal
of Business & Economic Statistics, 19(2), 177–191. doi:10.1198/073500101316970403.

Eraker B (2004). “Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot
and Option Prices.” Journal of Finance, 59(3), 1367–1403. doi:10.1111/j.1540-6261.

2004.00666.x.

Eraker B, Johannes M, Polson N (2003). “The Impact of Jumps in Volatility and Returns.”
Journal of Finance, 58(3), 1269–1300. doi:10.1111/1540-6261.00566.

Fama E, French K (1992). “The Cross-Section of Expected Stock Returns.” Journal of
Finance, 47(2), 427–465. doi:10.1111/j.1540-6261.1992.tb04398.x.

Fama EF, French KR (2015). “A Five-Factor Asset Pricing Model.” Journal of Financial
Economics, 116(1), 1–22. doi:10.1016/j.jfineco.2014.10.010.

Fridman M, Harris L (1998). “A Maximum Likelihood Approach for Non-Gaussian Stochastic
Volatility Models.” Journal of Business & Economic Statistics, 16(3), 284–291. doi:

10.1080/07350015.1998.10524767.

Gallant AR, Hsu CT, Tauchen G (1999). “Using Daily Range Data to Calibrate Volatil-
ity Diffusions and Extract the Forward Integrated Variance.” Review of Economics and
Statistics, 81(4), 617–631. doi:10.1162/003465399558481.

Gordon NJ, Salmond DJ, Smith AF (1993). “Novel Approach to Nonlinear/Non-Gaussian
Bayesian State Estimation.” In IEEE Proceedings F: Radar and Signal Processing, volume
140, pp. 107–113. doi:10.1049/ip-f-2.1993.0015.

Heston SL (1993). “A Closed-Form Solution for Options With Stochastic Volatility With
Applications to Bond and Currency Options.” Review of Financial Studies, 6(2), 327–343.
doi:10.1093/rfs/6.2.327.

Hosszejni D, Kastner G (2021). “Modeling Univariate and Multivariate Stochastic Volatility
in R with stochvol and factorstochvol.” Journal of Statistical Software, 100, 1–34. doi:

10.18637/jss.v100.i12.

Hurn AS, Lindsay KA, McClelland AJ (2015). “Estimating the Parameters of Stochastic
Volatility Models Using Option Price Data.” Journal of Business & Economic Statistics,
33(4), 579–594. doi:10.1080/07350015.2014.981634.

Ignatieva K, Rodrigues P, Seeger N (2015). “Empirical Analysis of Affine Versus Nonaffine
Variance Specifications in Jump-Diffusion Models for Equity Indices.” Journal of Business
& Economic Statistics, 33(1), 68–75. doi:10.1080/07350015.2014.922471.

Jacobs K, Liu Y (2018). “Estimation and Filtering with Big Option Data.” Working Paper.

https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.2307/1912773
https://doi.org/10.2307/1912773
https://doi.org/10.1198/073500101316970403
https://doi.org/10.1111/j.1540-6261.2004.00666.x
https://doi.org/10.1111/j.1540-6261.2004.00666.x
https://doi.org/10.1111/1540-6261.00566
https://doi.org/10.1111/j.1540-6261.1992.tb04398.x
https://doi.org/10.1016/j.jfineco.2014.10.010
https://doi.org/10.1080/07350015.1998.10524767
https://doi.org/10.1080/07350015.1998.10524767
https://doi.org/10.1162/003465399558481
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1093/rfs/6.2.327
https://doi.org/10.18637/jss.v100.i12
https://doi.org/10.18637/jss.v100.i12
https://doi.org/10.1080/07350015.2014.981634
https://doi.org/10.1080/07350015.2014.922471

40 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

Jacquier E, Polson NG, Rossi PE (1994). “Bayesian Analysis of Stochastic Volatility Models.”
Journal of Business & Economic Statistics, 12(4). doi:10.2307/1392199.

Johannes M, Polson N, Stroud J (2009). “Optimal Filtering of Jump Diffusions: Extracting
Latent States From Asset Prices.” Review of Financial Studies, 22(7), 2759–2799. doi:

10.1093/rfs/hhn110.

Johansen AM (2009). “SMCTC: Sequential Monte Carlo in C++.” Journal of Statistical
Software, 30, 1–41. doi:10.18637/jss.v030.i06.

Jones CS (2003). “The Dynamics of Stochastic Volatility: Evidence from Underlying
and Options Markets.” Journal of Econometrics, 116(1-2), 181–224. doi:10.1016/

S0304-4076(03)00107-6.

Kaeck A, Alexander C (2012). “Volatility Dynamics for the S&P 500: Further Evidence
From Non-affine, Multi-Factor Jump Diffusions.” Journal of Banking & Finance, 36(11),
3110–3121. doi:10.1016/j.jbankfin.2012.07.012.

Kastner G (2016). “Dealing With Stochastic Volatility in Time Series Using the R Package
stochvol.” Journal of Statistical Software, 69(5), 1–30. doi:10.18637/jss.v069.i05.

Kastner G, Frühwirth-Schnatter S (2014). “Ancillarity-Sufficiency Interweaving Strategy
(ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models.” Computational
Statistics & Data Analysis, 76, 408–423. doi:10.1016/j.csda.2013.01.002.

Kim S, Shephard N, Chib S (1998). “Stochastic Volatility: Likelihood Inference and
Comparison With ARCH Models.” Review of Economic Studies, 65(3), 361–393. doi:

10.1111/1467-937X.00050.

Kitagawa G (1987). “Non-Gaussian State-Space Modeling of Nonstationary Time Series.”
Journal of the American Statistical Association, 82(400), 1032–1041. doi:10.2307/

2289375.

Knaus P, Bitto-Nemling A, Cadonna A, Frühwirth-Schnatter S (2021). “Shrinkage in the
Time-Varying Parameter Model Framework Using the R Package shrinkTVP.” Journal of
Statistical Software, 100(13), 1–32. doi:10.18637/jss.v100.i13.

Koopman SJ, Hol Uspensky E (2002). “The Stochastic Volatility in Mean Model: Empirical
Evidence from International Stock Markets.” Journal of Applied Econometrics, 17(6), 667–
689. doi:10.1002/jae.652.

Krueger F (2015). bvarsv: Bayesian Analysis of a Vector Autoregressive Model with Stochastic
Volatility and Time-Varying Parameters. R package version 1.1, URL https://CRAN.

R-project.org/package=bvarsv.

Langrock R, MacDonald IL, Zucchini W (2012). “Some Nonstandard Stochastic Volatility
Models and their Estimation Using Structured Hidden Markov Models.” Journal of Em-
pirical Finance, 19(1), 147–161. doi:10.1016/j.jempfin.2011.09.003.

Lewis A (2000). Option Valuation Under Stochastic Volatility (1st Edition). Finance Press,
Newport Beach, CA, United States of America.

https://doi.org/10.2307/1392199
https://doi.org/10.1093/rfs/hhn110
https://doi.org/10.1093/rfs/hhn110
https://doi.org/10.18637/jss.v030.i06
https://doi.org/10.1016/S0304-4076(03)00107-6
https://doi.org/10.1016/S0304-4076(03)00107-6
https://doi.org/10.1016/j.jbankfin.2012.07.012
https://doi.org/10.18637/jss.v069.i05
https://doi.org/10.1016/j.csda.2013.01.002
https://doi.org/10.1111/1467-937X.00050
https://doi.org/10.1111/1467-937X.00050
https://doi.org/10.2307/2289375
https://doi.org/10.2307/2289375
https://doi.org/10.18637/jss.v100.i13
https://doi.org/10.1002/jae.652
https://CRAN.R-project.org/package=bvarsv
https://CRAN.R-project.org/package=bvarsv
https://doi.org/10.1016/j.jempfin.2011.09.003

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 41

Lord R, Koekkoek R, Dijk DV (2010). “A Comparison of Biased Simulation Schemes
for Stochastic Volatility Models.” Quantitative Finance, 10(2), 177–194. doi:10.1080/

14697680802392496.

Malik S, Pitt MK (2011). “Particle Filters for Continuous Likelihood Evaluation and Max-
imisation.” Journal of Econometrics, 165(2), 190–209. doi:10.1016/j.jeconom.2011.

07.006.

Martino S, Aas K, Lindqvist O, Neef LR, Rue H (2011). “Estimating Stochastic Volatility
Models Using Integrated Nested Laplace Approximations.” European Journal of Finance,
17(7), 487–503. doi:10.1080/1351847X.2010.495475.

McCausland WJ, Miller S, Pelletier D (2011). “Simulation Smoothing for State–Space Models:
A Computational Efficiency Analysis.” Computational Statistics & Data Analysis, 55(1),
199–212. doi:10.1016/j.csda.2010.07.009.

Michaud N, de Valpine P, Turek D, Paciorek CJ, Nguyen D (2021). “Sequential Monte Carlo
Methods in the nimble and nimbleSMC R Packages.” Journal of Statistical Software, 100,
1–39. doi:10.18637/jss.v100.i03.

Nelder JA, Mead R (1965). “A Simplex Method for Function Minimization.” Computer
Journal, 7(4), 308–313. doi:https://doi.org/10.1093/comjnl/7.4.308.

Nordh J (2017). “pyParticleEst: A Python Framework for Particle-Based Estimation Meth-
ods.” Journal of Statistical Software, 78, 1–25. doi:10.18637/jss.v078.i03.

Omori Y (2022). ASV: Stochastic Volatility Models With or Without Leverage. R package
version 1.1.1, URL https://CRAN.R-project.org/package=ASV.

Omori Y, Chib S, Shephard N, Nakajima J (2007). “Stochastic Volatility with Leverage:
Fast and Efficient Likelihood Inference.” Journal of Econometrics, 140(2), 425–449. doi:

10.1016/j.jeconom.2006.07.008.

Pitt MK, Malik S, Doucet A (2014). “Simulated Likelihood Inference for Stochastic Volatility
Models Using Continuous Particle Filtering.” Annals of the Institute of Statistical Mathe-
matics, 66(3), 527–552. doi:10.1007/s10463-014-0456-y.

R Core Team (2019). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ryan JA, Ulrich JM (2022). quantmod: Quantitative Financial Modelling Framework. R

package version 0.4.20, URL https://CRAN.R-project.org/package=quantmod.

Ryan JA, Ulrich JM (2024). xts: Extensible time series. R package version 0.14.0, URL
https://cran.r-project.org/package=xts.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464. doi:10.1214/aos/1176344136.

Taylor SJ (1986). Modelling Financial Time Series (1st Edition). John Wiley & Sons, New
York, NY, United States of America.

https://doi.org/10.1080/14697680802392496
https://doi.org/10.1080/14697680802392496
https://doi.org/10.1016/j.jeconom.2011.07.006
https://doi.org/10.1016/j.jeconom.2011.07.006
https://doi.org/10.1080/1351847X.2010.495475
https://doi.org/10.1016/j.csda.2010.07.009
https://doi.org/10.18637/jss.v100.i03
https://doi.org/https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.18637/jss.v078.i03
https://CRAN.R-project.org/package=ASV
https://doi.org/10.1016/j.jeconom.2006.07.008
https://doi.org/10.1016/j.jeconom.2006.07.008
https://doi.org/10.1007/s10463-014-0456-y
https://www.R-project.org/
https://CRAN.R-project.org/package=quantmod
https://cran.r-project.org/package=xts
https://doi.org/10.1214/aos/1176344136

42 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

Trolle AB, Schwartz ES (2009). “Unspanned Stochastic Volatility and the Pricing of Com-
modity Derivatives.” Review of Financial Studies, 22(11), 4423–4461. doi:10.1093/rfs/

hhp036.

Wahl J (2020). stochvolTMB: Likelihood Estimation of Stochastic Volatility Models. R package
version 0.2.0, URL https://CRAN.R-project.org/package=stochvolTMB.

Wang X, He X, Zhao Y, Zuo Z (2017). “Parameter estimations of Heston model based
on consistent extended Kalman filter.” IFAC-PapersOnLine, 50(1), 14100–14105. doi:

10.1016/j.ifacol.2017.08.1850.

Watanabe T (1999). “A Non-linear Filtering Approach to Stochastic Volatility Models With
an Application to Daily Stock Returns.” Journal of Applied Econometrics, 14(2), 101–121.
doi:10.1002/(SICI)1099-1255(199903/04)14:2<101::AID-JAE499>3.0.CO;2-A.

Woźniak T (2024). bsvars: Bayesian Estimation of Structural Vector Autoregressive Models.
R package version 3.0, URL https://CRAN.R-project.org/package=bsvars.

Yu Y, Meng XL (2011). “To Center or Not to Center: That Is Not the Question—an
Ancillarity—Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Efficiency.”
Journal of Computational and Graphical Statistics, 20(3), 531–570. doi:10.1198/jcgs.

2011.203main.

Zucchini W, MacDonald IL, Langrock R (2016). Hidden Markov Models for Time Series: An
Introduction Using R (2nd Edition). CRC press.

A. Default parameter initialization

The default parameter initialization algorithm returns a set of initial parameters Θinit in
cases where users do not provide them to the DNFOptim function (i.e., par = NULL) for built-
in models.

The parameters associated with the return drift function µx and the long-run volatility θ are
selected first. Also, rhoz is left at zero during as it is difficult to identify. Concretely, to start,
we set

µinit = y1:T /h, (6)

ρinit
z = 0, and (7)

θinit = s2
y1:T

for the jump-diffusion models (Models 4–6), and (8)

θinit = log(s2
y1:T

), for the discrete-time models (Models 1–3 and 7), (9)

where y1:T and s2
y1:T

are the sample mean and sample variance of y1:T , respectively. For the
CAPM-SV model, that is, Model 7, we fit the simple linear regression

yt = c0 + c1Rm
t + εCAP M

t , t = 1, . . . T, (10)

where εCAP M
t are independent identically distributed normal variables with mean 0 and stan-

dard deviation σCAP M , to get initial estimates cinit
0 and cinit

1 .

https://doi.org/10.1093/rfs/hhp036
https://doi.org/10.1093/rfs/hhp036
https://CRAN.R-project.org/package=stochvolTMB
https://doi.org/10.1016/j.ifacol.2017.08.1850
https://doi.org/10.1016/j.ifacol.2017.08.1850
https://doi.org/10.1002/(SICI)1099-1255(199903/04)14:2<101::AID-JAE499>3.0.CO;2-A
https://CRAN.R-project.org/package=bsvars
https://doi.org/10.1198/jcgs.2011.203main
https://doi.org/10.1198/jcgs.2011.203main

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 43

We then find sets of potential initial parameters Θ(1), Θ(2), . . . , Θ(I) and return Θinit =
arg max1≤i≤I L̂(Θ(i)), the set which yields the highest likelihood. While the parameters set
in Equations (6)–(10) remain constant through the parameter sets {Θ(i)}I

i=1, the remaining
model parameters are updated according to the following process.

The first set Θ(1) has the jump parameters at zero and uses an exponentially weighted moving

average (EWMA) to get estimates X̂
(1)
1:T of the latent variables. The EWMA with weighting

factor w starts with X̂0 ≡ s2
y1:T

and sets

X̂
(1)
t = wX̂

(1)
t−1 + (1 − w)y2

t . (11)

With the estimates X̂
(i)
1:T , we fit the regression

X̂
(i)
t = β0 + β1X̂

(i)
t−1 + ϵSV

t , t = 1, . . . T, (12)

where ϵSV
t are independent identically distributed normal variables with mean zero and stan-

dard deviation σSV for Models 4–6 and

log(X̂
(i)
t) = β0 + β1 log(X̂

(i)
t−1) + ϵSV

t , t = 1, . . . T, (13)

for Models 1–3 and 7.

The regression of Equations (12) and (13) give the coefficients estimates β̂0, β̂1, and σ̂SV for
the intercept, slope, and standard deviation for the linear model, respectively. For Models
4–7, we set

κ(i) = (1 − β̂1)/h, (14)

σ(i) = σ̂SV /(
√

(θinith), (15)

ε̂y
t =

yt − µinit

√
θinith

, (16)

ε̂x
t =

X̂
(i)
t − (X̂

(i)
t−1 + hκ(i)(θinit − X̂

(i)
t−1))

σ(i)

√

X̂
(i)
t h

, and (17)

ρ(i) = rε̂x
t ,ε̂y

t
, (18)

where rε̂x
t ,ε̂y

t
is the sample correlation between ε̂x

t and ε̂x
t . For Models 1–3 and 7, we apply

the regression model given in Equation (13) and set the parameters as follows:

ϕ(i) = β̂1, (19)

σ(i), = σ̂SV (20)

and, for Models 5 and 6,

ε̂y
t =

yt

exp(X̂
(i)
t−1/2)

, (21)

ε̂x
t =

X̂
(i)
t − (θinit + ϕ(i)(X̂

(i)
t−1 − θinit))

σ(i)
, and (22)

ρ(i) = rε̂x
t ,ε̂y

t
. (23)

44 SVDNF: Estimating Stochastic Volatility Models Using Discrete Nonlinear Filtering

We use the discrete nonlinear filter to obtain L̂(Θ(i)) and take the mean of the filtering

distribution to get X̂
(i+1)
1:T . The next set of volatility dynamic parameters are found using the

regression of Equation (12) or Equation (13), depending on the model used.

When i > 1, we also estimate the jump parameters. We start by constructing 99% confidence
intervals for yt. For Models 5 and 6, this means

CI
(i)
t = µ(init) ± 2.58

√

hX̂
(i)
t , and (24)

CI
(i)
t = 0 ± 2.58 exp (X

(i)
t /2) (25)

for Model 3.

As we expect 1% of returns to fall outside of these intervals, we get

p(i) = max

[

1

T

T
∑

t=1

1
{yt /∈CI

(i)
t }

− 0.01, 0

]

and (26)

ω(i) = p(i)/h. (27)

We then set α(i) and δ(i) to be the mean and standard deviation of {yt : yt /∈ CI
(i)
t }, respec-

tively. Then, ν(i) is the average of {X̂
(i)
t − E

[

Xt | X̂t−1

]

, for t such that yt /∈ CI
(i)
t }. For

Model 6, the only built-in model with volatility factor jumps,

E
[

Xt | X̂
(i)
t−1

]

= X̂
(i)
t−1 + κ(i)(θinit − X̂

(i)
t−1)h.

With these parameters, we run the DNF to obtain X̂
(i+1)
1:T and apply the linear regression

procedure described above to get the set of parameter Θ(i+1).

Algorithm 2 summarizes the steps of the DNFOptim function’s parameter initialization process.
The DNFOptim function uses Algorithm 2 with w = 0.9 and I = 20.

Algorithm 2 Parameter initialization

1: set initial parameters using Equations (6) to (9)

2: obtain X̂
(1)
1:T using the EWMA of Equation (11) with weighting w

3: run linear regression and set volatility parameters using Equations (12) to (23)
4: for i = 1, 2, . . . , I do

5: use the DNF evaluate L̂(Θ(i)) and get mean filtering distribution estimates X̂
(i+1)
1:T

6: run linear regression with X̂
(i+1)
1:T and set parameters Θ(i+1) using Equations (12)–(23)

7: compute the confidence intervals in Equation (24)–(25)

8: set α(i+1) and δ(i+1) to be the mean and standard deviation of {yt : yt /∈ CI
(i)
t }

9: set ν(i+1) to be the mean of {X̂t − E
[

Xt | X̂t−1

]

, for t such that yt /∈ CI
(i)
t }

10: end for

11: return Θinit = arg max1≤i≤I L̂(Θ(i))

Louis Arsenault-Mahjoubi, Jean-François Bégin, Mathieu Boudreault 45

Affiliation:

Louis Arsenault-Mahjoubi
Department of Statistics and Actuarial Science
Simon Fraser University
8888 University Drive
Burnaby, BC, Canada V5A 1S6
E-mail: louis_arsenault-mahjoubi@sfu.ca

Jean-François Bégin
Department of Statistics and Actuarial Science
Simon Fraser University
8888 University Drive
Burnaby, BC, Canada V5A 1S6
E-mail: jbegin@sfu.ca

Mathieu Boudreault
Department of Mathematics
Université du Québec à Montréal
C.P. 8888, Succursale Centre-ville
Montréal, QC, Canada H3C 3P8
E-mail: boudreault.mathieu@uqam.ca

mailto:louis_arsenault-mahjoubi@sfu.ca
mailto:jbegin@sfu.ca
mailto:boudreault.mathieu@uqam.ca

	Introduction
	Stochastic volatility models
	Standard stochastic volatility models
	Stochastic volatility jump-diffusion models
	Factor models with stochastic volatility

	Discrete nonlinear filtering-based method
	Package description and illustration
	Model simulation
	Built-in model dynamics
	Custom model dynamics

	The filtering problem
	Maximum likelihood estimation

	MLE simulation study
	Empirical applications
	Parameter estimation for the Standard and Poor's 500 index
	CAPM-SV parameter estimates for individual equities

	Summary and discussion
	Default parameter initialization

