The document introduces the SmartEDA package and how it can help you to build exploratory data analysis.
SmartEDA includes multiple custom functions to perform initial exploratory analysis on any input data describing the structure and the relationships present in the data. The generated output can be obtained in both summary and graphical form. The graphical form or charts can also be exported as reports.
सर्वस्य लोचनं शास्त्रं
Science is the only eye
अनेकसंशयोच्छेदि, परोक्षार्थस्य दर्शक|
सर्वस्य लोचनं शास्त्रं, यस्य नास्त्यन्ध एव सः ||
It blasts many doubts, foresees what is not obvious |
Science is the eye of everyone, one who hasnt got it, is like a blind ||SmartEDA package helps you to construct a good base of data understanding. The capabilities and functionalities are listed below
SmartEDA package will make you capable of applying different types of EDA without having to
No need to categorize the variables into Character, Numeric, Factor etc. SmartEDA functions automatically categorize all the features into the right data type (Character, Numeric, Factor etc.) based on the input data.
ggplot2 functions are used for graphical presentation of data
Rmarkdown and knitr functions were used for build HTML reports
To summarize, SmartEDA package helps in getting the complete exploratory data analysis just by running the function instead of writing lengthy r code.
In this vignette, we will be using a simulated data set containing sales of child car seats at 400 different stores.
Data Source ISLR package.
Install the package “ISLR” to get the example data set.
#install.packages("ISLR")
library("ISLR")
#install.packages("SmartEDA")
library("SmartEDA")
## Load sample dataset from ISLR pacakge
Carseats= ISLR::CarseatsUnderstanding the dimensions of the dataset, variable names, overall missing summary and data types of each variables
# Overview of the data - Type = 1
ExpData(data=Carseats,type=1)
# Structure of the data - Type = 2
ExpData(data=Carseats,type=2)| Descriptions | Value | 
|---|---|
| Sample size (nrow) | 400 | 
| No. of variables (ncol) | 11 | 
| No. of numeric/interger variables | 8 | 
| No. of factor variables | 3 | 
| No. of text variables | 0 | 
| No. of logical variables | 0 | 
| No. of identifier variables | 0 | 
| No. of date variables | 0 | 
| No. of zero variance variables (uniform) | 0 | 
| %. of variables having complete cases | 100% (11) | 
| %. of variables having >0% and <50% missing cases | 0% (0) | 
| %. of variables having >=50% and <90% missing cases | 0% (0) | 
| %. of variables having >=90% missing cases | 0% (0) | 
| Index | Variable_Name | Variable_Type | Sample_n | Missing_Count | Per_of_Missing | No_of_distinct_values | 
|---|---|---|---|---|---|---|
| 1 | Sales | numeric | 400 | 0 | 0 | 336 | 
| 2 | CompPrice | numeric | 400 | 0 | 0 | 73 | 
| 3 | Income | numeric | 400 | 0 | 0 | 98 | 
| 4 | Advertising | numeric | 400 | 0 | 0 | 28 | 
| 5 | Population | numeric | 400 | 0 | 0 | 275 | 
| 6 | Price | numeric | 400 | 0 | 0 | 101 | 
| 7 | ShelveLoc | factor | 400 | 0 | 0 | 3 | 
| 8 | Age | numeric | 400 | 0 | 0 | 56 | 
| 9 | Education | numeric | 400 | 0 | 0 | 9 | 
| 10 | Urban | factor | 400 | 0 | 0 | 2 | 
| 11 | US | factor | 400 | 0 | 0 | 2 | 
# Metadata Information with additional statistics like mean, median and variance
ExpData(data=Carseats,type=2, fun = c("mean", "median", "var"))| Index | Variable_Name | Variable_Type | Sample_n | Missing_Count | Per_of_Missing | No_of_distinct_values | mean | median | var | 
|---|---|---|---|---|---|---|---|---|---|
| 1 | Sales | numeric | 400 | 0 | 0 | 336 | 7.50 | 7.49 | 7.98 | 
| 2 | CompPrice | numeric | 400 | 0 | 0 | 73 | 124.97 | 125.00 | 235.15 | 
| 3 | Income | numeric | 400 | 0 | 0 | 98 | 68.66 | 69.00 | 783.22 | 
| 4 | Advertising | numeric | 400 | 0 | 0 | 28 | 6.64 | 5.00 | 44.23 | 
| 5 | Population | numeric | 400 | 0 | 0 | 275 | 264.84 | 272.00 | 21719.81 | 
| 6 | Price | numeric | 400 | 0 | 0 | 101 | 115.80 | 117.00 | 560.58 | 
| 7 | ShelveLoc | factor | 400 | 0 | 0 | 3 | NA | NA | NA | 
| 8 | Age | numeric | 400 | 0 | 0 | 56 | 53.32 | 54.50 | 262.45 | 
| 9 | Education | numeric | 400 | 0 | 0 | 9 | 13.90 | 14.00 | 6.87 | 
| 10 | Urban | factor | 400 | 0 | 0 | 2 | NA | NA | NA | 
| 11 | US | factor | 400 | 0 | 0 | 2 | NA | NA | NA | 
# Derive Quantile 
quantile_10 = function(x){
  quantile_10 = quantile(x, na.rm = TRUE, 0.1)
}
quantile_90 = function(x){
  quantile_90 = quantile(x, na.rm = TRUE, 0.9)
}
output_e1 <- ExpData(data=Carseats, type=2, fun=c("quantile_10", "quantile_90"))| Index | Variable_Name | Variable_Type | Sample_n | Missing_Count | Per_of_Missing | No_of_distinct_values | quantile_10 | quantile_90 | 
|---|---|---|---|---|---|---|---|---|
| 1 | Sales | numeric | 400 | 0 | 0 | 336 | 4.12 | 11.3 | 
| 2 | CompPrice | numeric | 400 | 0 | 0 | 73 | 106.00 | 145.0 | 
| 3 | Income | numeric | 400 | 0 | 0 | 98 | 30.00 | 107.0 | 
| 4 | Advertising | numeric | 400 | 0 | 0 | 28 | 0.00 | 16.0 | 
| 5 | Population | numeric | 400 | 0 | 0 | 275 | 58.90 | 467.0 | 
| 6 | Price | numeric | 400 | 0 | 0 | 101 | 87.00 | 146.0 | 
| 7 | ShelveLoc | factor | 400 | 0 | 0 | 3 | NA | NA | 
| 8 | Age | numeric | 400 | 0 | 0 | 56 | 30.00 | 76.0 | 
| 9 | Education | numeric | 400 | 0 | 0 | 9 | 10.00 | 17.1 | 
| 10 | Urban | factor | 400 | 0 | 0 | 2 | NA | NA | 
| 11 | US | factor | 400 | 0 | 0 | 2 | NA | NA | 
This function shows the EDA output for 3 different cases
Summary of all numerical variables
ExpNumStat(Carseats,by="A",gp=NULL,Qnt=seq(0,1,0.1),MesofShape=2,Outlier=TRUE,round=2,Nlim=10)carseat = ISLR::Carseats
## Compute random weight
carseat$wt = stats::runif( nrow(carseat), 0.5, 1.5 )
wt_summary = ExpNumStat(carseat,by="A",gp=NULL,round=2,Nlim=10, weight = "wt")
wt_summary[,c("Vname","TN","W_count","mean", "W_Mean", "SD","W_Sd")]##         Vname  TN W_count   mean W_Mean     SD   W_Sd
## 4 Advertising 400  403.38   6.64   6.58   6.65   6.62
## 7         Age 400  403.38  53.32  53.60  16.20  16.23
## 2   CompPrice 400  403.38 124.97 125.01  15.33  15.39
## 3      Income 400  403.38  68.66  68.14  27.99  28.22
## 5  Population 400  403.38 264.84 265.13 147.38 145.64
## 6       Price 400  403.38 115.80 115.69  23.68  23.22
## 1       Sales 400  403.38   7.50   7.48   2.82   2.80## With group by statement
wt_summary = ExpNumStat(carseat,by="GA",gp="ShelveLoc",round=2,Nlim=10, weight = "wt")
wt_summary[,c("Vname","Group","TN","W_count","mean", "W_Mean", "SD","W_Sd")]##          Vname            Group  TN W_count   mean W_Mean     SD   W_Sd
## 4  Advertising    ShelveLoc:All 400  403.38   6.64   6.58   6.65   6.62
## 11 Advertising    ShelveLoc:Bad  96   97.55   6.22   6.08   6.46   6.31
## 18 Advertising   ShelveLoc:Good  85   81.12   7.35   7.53   6.80   6.95
## 25 Advertising ShelveLoc:Medium 219  224.71   6.54   6.46   6.68   6.62
## 7          Age    ShelveLoc:All 400  403.38  53.32  53.60  16.20  16.23
## 14         Age    ShelveLoc:Bad  96   97.55  52.05  52.03  17.41  17.32
## 21         Age   ShelveLoc:Good  85   81.12  52.61  53.18  15.43  15.56
## 28         Age ShelveLoc:Medium 219  224.71  54.16  54.44  15.97  15.99
## 2    CompPrice    ShelveLoc:All 400  403.38 124.97 125.01  15.33  15.39
## 9    CompPrice    ShelveLoc:Bad  96   97.55 124.01 124.15  15.18  15.32
## 16   CompPrice   ShelveLoc:Good  85   81.12 125.75 125.85  14.98  14.98
## 23   CompPrice ShelveLoc:Medium 219  224.71 125.10 125.09  15.58  15.62
## 3       Income    ShelveLoc:All 400  403.38  68.66  68.14  27.99  28.22
## 10      Income    ShelveLoc:Bad  96   97.55  72.24  72.86  26.91  27.65
## 17      Income   ShelveLoc:Good  85   81.12  67.98  66.39  28.31  27.80
## 24      Income ShelveLoc:Medium 219  224.71  67.35  66.73  28.31  28.51
## 5   Population    ShelveLoc:All 400  403.38 264.84 265.13 147.38 145.64
## 12  Population    ShelveLoc:Bad  96   97.55 275.29 273.45 147.23 144.95
## 19  Population   ShelveLoc:Good  85   81.12 267.05 272.08 127.25 128.14
## 26  Population ShelveLoc:Medium 219  224.71 259.40 259.01 154.88 152.05
## 6        Price    ShelveLoc:All 400  403.38 115.80 115.69  23.68  23.22
## 13       Price    ShelveLoc:Bad  96   97.55 114.27 114.14  23.78  23.22
## 20       Price   ShelveLoc:Good  85   81.12 117.88 117.14  25.13  24.69
## 27       Price ShelveLoc:Medium 219  224.71 115.65 115.84  23.10  22.75
## 1        Sales    ShelveLoc:All 400  403.38   7.50   7.48   2.82   2.80
## 8        Sales    ShelveLoc:Bad  96   97.55   5.52   5.58   2.36   2.37
## 15       Sales   ShelveLoc:Good  85   81.12  10.21  10.30   2.50   2.43
## 22       Sales ShelveLoc:Medium 219  224.71   7.31   7.29   2.27   2.25Graphical representation of all numeric features
# Note: Variable excluded (if unique value of variable which is less than or eaual to 10 [nlim=10])
plot1 <- ExpNumViz(Carseats,target=NULL,nlim=10,Page=c(2,2),sample=4)
plot1[[1]]ExpCTable(Carseats,Target=NULL,margin=1,clim=10,nlim=3,round=2,bin=NULL,per=T)| Variable | Valid | Frequency | Percent | CumPercent | 
|---|---|---|---|---|
| ShelveLoc | Bad | 96 | 24.00 | 24.00 | 
| ShelveLoc | Good | 85 | 21.25 | 45.25 | 
| ShelveLoc | Medium | 219 | 54.75 | 100.00 | 
| ShelveLoc | TOTAL | 400 | NA | NA | 
| Urban | No | 118 | 29.50 | 29.50 | 
| Urban | Yes | 282 | 70.50 | 100.00 | 
| Urban | TOTAL | 400 | NA | NA | 
| US | No | 142 | 35.50 | 35.50 | 
| US | Yes | 258 | 64.50 | 100.00 | 
| US | TOTAL | 400 | NA | NA | 
NAis Not Applicable
plot2 <- ExpCatViz(Carseats,target=NULL,col ="slateblue4",clim=10,margin=2,Page = c(2,2),sample=4)
plot2[[1]]Summary of continuous dependent variable
summary(Carseats[,"Price"])##      Price      
##  Min.   : 24.0  
##  1st Qu.:100.0  
##  Median :117.0  
##  Mean   :115.8  
##  3rd Qu.:131.0  
##  Max.   :191.0Summary statistics when dependent variable is continuous Price.
ExpNumStat(Carseats,by="A",gp="Price",Qnt=seq(0,1,0.1),MesofShape=1,Outlier=TRUE,round=2)If Target variable is continuous, summary statistics will add the correlation column (Correlation between Target variable vs all independent variables)
Graphical representation of all numeric variables
Scatter plot between all numeric variables and target variable Price. This plot help to examine how well a target variable is correlated with dependent variables.
Dependent variable is Price (continuous).
#Note: sample=8 means randomly selected 8 scatter plots
#Note: nlim=4 means included numeric variable with unique value is more than 4
plot3 <- ExpNumViz(Carseats,target="Price",nlim=4,scatter=FALSE,fname=NULL,col="green",Page=c(2,2),sample=8)
plot3[[1]]#Note: sample=8 means randomly selected 8 scatter plots
#Note: nlim=4 means included numeric variable with unique value is more than 4
plot31 <- ExpNumViz(Carseats,target="US",nlim=4,scatter=TRUE,fname=NULL,Page=c(2,1),sample=4)
plot31[[1]]Summary of categorical variables
##bin=4, descretized 4 categories based on quantiles
ExpCTable(Carseats,Target="Price",margin=1,clim=10,round=2,bin=4,per=F)carseat = ISLR::Carseats
## Compute random weight
carseat$wt = stats::runif( nrow(carseat), 0.5, 1.5 )
wt_summary = ExpCTable(carseat,margin=1,clim=10,round=2,bin=4,per=F, weight = "wt")
wt_summary##     Variable  Valid Frequency Percent CumPercent
## 1  ShelveLoc    Bad        91   23.04      23.04
## 2  ShelveLoc   Good        85   21.57      44.61
## 3  ShelveLoc Medium       219   55.40     100.01
## 4  ShelveLoc  TOTAL       395      NA         NA
## 5      Urban     No       118   29.83      29.83
## 6      Urban    Yes       278   70.17     100.00
## 7      Urban  TOTAL       396      NA         NA
## 8         US     No       141   35.68      35.68
## 9         US    Yes       255   64.32     100.00
## 10        US  TOTAL       396      NA         NA
## 11 Education     10        45   11.40      11.40
## 12 Education     11        47   11.82      23.22
## 13 Education     12        46   11.65      34.87
## 14 Education     13        42   10.52      45.39
## 15 Education     14        42   10.50      55.89
## 16 Education     15        36    9.10      64.99
## 17 Education     16        48   12.11      77.10
## 18 Education     17        49   12.49      89.59
## 19 Education     18        41   10.41     100.00
## 20 Education  TOTAL       396      NA         NA| Urban | Frequency | Descriptions | 
|---|---|---|
| No | 118 | Store location | 
| Yes | 282 | Store location | 
Summary of all numeric variables
ExpNumStat(Carseats,by="GA",gp="Urban",Qnt=seq(0,1,0.1),MesofShape=2,Outlier=TRUE,round=2)Boxplot for all the numeric attributes by each category of Urban
plot4 <- ExpNumViz(Carseats,target="Urban",type=1,nlim=3,fname=NULL,col=c("darkgreen","springgreen3","springgreen1"),Page=c(2,2),sample=8)
plot4[[1]]Cross tabulation with target variable
ExpCTable(Carseats,Target="Urban",margin=1,clim=10,nlim=3,round=2,bin=NULL,per=F)| VARIABLE | CATEGORY | Urban:No | Urban:Yes | TOTAL | 
|---|---|---|---|---|
| ShelveLoc | Bad | 22 | 74 | 96 | 
| ShelveLoc | Good | 28 | 57 | 85 | 
| ShelveLoc | Medium | 68 | 151 | 219 | 
| ShelveLoc | TOTAL | 118 | 282 | 400 | 
| US | No | 46 | 96 | 142 | 
| US | Yes | 72 | 186 | 258 | 
| US | TOTAL | 118 | 282 | 400 | 
Information Value
ExpCatStat(Carseats,Target="Urban",result = "IV",clim=10,nlim=5,bins=10,Pclass="Yes",plot=FALSE,top=20,Round=2)| Variable | Class | Out_1 | Out_0 | TOTAL | Per_1 | Per_0 | Odds | WOE | IV | Ref_1 | Ref_0 | Target | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ShelveLoc.1 | Bad | 74 | 22 | 96 | 0.26 | 0.19 | 1.55 | 0.31 | 0.02 | Yes | No | Urban | 
| ShelveLoc.2 | Good | 57 | 28 | 85 | 0.20 | 0.24 | 0.81 | -0.19 | 0.01 | Yes | No | Urban | 
| ShelveLoc.3 | Medium | 151 | 68 | 219 | 0.54 | 0.58 | 0.85 | -0.07 | 0.00 | Yes | No | Urban | 
| US.1 | No | 96 | 46 | 142 | 0.34 | 0.39 | 0.81 | -0.14 | 0.01 | Yes | No | Urban | 
| US.2 | Yes | 186 | 72 | 258 | 0.66 | 0.61 | 1.24 | 0.08 | 0.00 | Yes | No | Urban | 
| Sales.1 | [0,4.11] | 29 | 11 | 40 | 0.10 | 0.09 | 1.11 | 0.10 | 0.00 | Yes | No | Urban | 
| Sales.2 | (4.11,5.05] | 29 | 11 | 40 | 0.10 | 0.09 | 1.11 | 0.10 | 0.00 | Yes | No | Urban | 
| Sales.3 | (5.05,5.86] | 26 | 14 | 40 | 0.09 | 0.12 | 0.75 | -0.29 | 0.01 | Yes | No | Urban | 
| Sales.4 | (5.86,6.59] | 30 | 10 | 40 | 0.11 | 0.08 | 1.29 | 0.32 | 0.01 | Yes | No | Urban | 
| Sales.5 | (6.59,7.49] | 32 | 9 | 41 | 0.11 | 0.08 | 1.55 | 0.32 | 0.01 | Yes | No | Urban | 
| Sales.6 | (7.49,8.07] | 30 | 9 | 39 | 0.11 | 0.08 | 1.44 | 0.32 | 0.01 | Yes | No | Urban | 
| Sales.7 | (8.07,8.8] | 24 | 16 | 40 | 0.09 | 0.14 | 0.59 | -0.45 | 0.02 | Yes | No | Urban | 
| Sales.8 | (8.8,9.71] | 26 | 14 | 40 | 0.09 | 0.12 | 0.75 | -0.29 | 0.01 | Yes | No | Urban | 
| Sales.9 | (9.71,11.28] | 26 | 14 | 40 | 0.09 | 0.12 | 0.75 | -0.29 | 0.01 | Yes | No | Urban | 
| Sales.10 | (11.28,16.27] | 30 | 10 | 40 | 0.11 | 0.08 | 1.29 | 0.32 | 0.01 | Yes | No | Urban | 
Statistical test
et4 <- ExpCatStat(Carseats,Target="Urban",result = "Stat",clim=10,nlim=5,bins=10,Pclass="Yes",plot=FALSE,top=20,Round=2)| Variable | Target | Unique | Chi-squared | p-value | df | IV Value | Cramers V | Degree of Association | Predictive Power | 
|---|---|---|---|---|---|---|---|---|---|
| ShelveLoc | Urban | 3 | 2.738 | 0.258 | NA | 0.03 | 0.08 | Very Weak | Not Predictive | 
| US | Urban | 2 | 0.887 | 0.362 | NA | 0.01 | 0.05 | Very Weak | Not Predictive | 
| Sales | Urban | 10 | 6.696 | 0.676 | NA | 0.09 | 0.13 | Weak | Somewhat Predictive | 
| CompPrice | Urban | 10 | 4.543 | 0.885 | NA | 0.03 | 0.11 | Weak | Not Predictive | 
| Income | Urban | 10 | 8.428 | 0.495 | NA | 0.08 | 0.15 | Weak | Not Predictive | 
| Advertising | Urban | 7 | 5.565 | 0.473 | NA | 0.06 | 0.12 | Weak | Not Predictive | 
| Population | Urban | 10 | 10.560 | 0.295 | NA | 0.14 | 0.16 | Weak | Somewhat Predictive | 
| Price | Urban | 10 | 11.143 | 0.269 | NA | 0.14 | 0.17 | Weak | Somewhat Predictive | 
| Age | Urban | 10 | 8.414 | 0.508 | NA | 0.08 | 0.15 | Weak | Not Predictive | 
| Education | Urban | 8 | 5.122 | 0.653 | NA | 0.05 | 0.11 | Weak | Not Predictive | 
Variable importance based on Information value
varimp <- ExpCatStat(Carseats,Target="Urban",result = "Stat",clim=10,nlim=5,bins=10,Pclass="Yes",plot=TRUE,top=10,Round=2)Stacked bar plot with vertical or horizontal bars for all categorical variables
plot5 <- ExpCatViz(Carseats,target="Urban",fname=NULL,clim=5,col=c("slateblue4","slateblue1"),margin=2,Page = c(2,1),sample=2)
plot5[[1]]Function definition:
ExpOutQQ (data,nlim=3,fname=NULL,Page=NULL,sample=NULL)
data    : Input dataframe or data.table
nlim    : numeric variable limit
fname   : output file name (Output will be in PDF format)
Page    : output pattern. if Page=c(3,2), It will generate 6 plots with 3 rows and 2 columns
sample  : random number of plotsCarseats data from ISLR package:
options(width = 150)
CData = ISLR::Carseats
qqp <- ExpOutQQ(CData,nlim=10,fname=NULL,Page=c(2,2),sample=4)
qqp[[1]]Function definition:
ExpParcoord (data,Group=NULL,Stsize=NULL,Nvar=NULL,Cvar=NULL,scale=NULL)
data    : Input dataframe or data.table
Group   : stratification variables
Stsize  : vector of startum sample sizes
Nvar    : vector of numerice variables, default it will consider all the numeric variable from data
Cvar    : vector of categorical variables, default it will consider all the categorical variable
scale   : scale the variables in the parallel coordinate plot[Default normailized with minimum of the variable is zero and maximum of the variable is one]ExpParcoord(CData,Group=NULL,Stsize=NULL,Nvar=c("Price","Income","Advertising","Population","Age","Education"))ExpParcoord(CData,Group="ShelveLoc",Stsize=c(10,15,20),Nvar=c("Price","Income"),Cvar=c("Urban","US"))ExpParcoord(CData,Group="ShelveLoc",Nvar=c("Price","Income"),Cvar=c("Urban","US"),scale=NULL)std: univariately, subtract mean and divide by standard deviation
ExpParcoord(CData,Group="US",Nvar=c("Price","Income"),Cvar=c("ShelveLoc"),scale="std")ExpParcoord(CData,Group="ShelveLoc",Stsize=c(10,15,20),Nvar=c("Price","Income","Advertising","Population","Age","Education"))ExpParcoord(CData,Group="US",Stsize=c(15,50),Cvar=c("ShelveLoc","Urban"))Used ‘data.table’ package functions
Function definition:
ExpCustomStat(data,Cvar=NULL,Nvar=NULL,stat=NULL,gpby=TRUE,filt=NULL,dcast=FALSE)ExpCustomStat examples
ExpCustomStat(Carseats,Cvar="Urban",Nvar=c("Age","Price"),stat=c("mean","count"),gpby=TRUE,dcast=F)| Urban | Attribute | mean | count | 
|---|---|---|---|
| Yes | Age | 53.62057 | 282 | 
| No | Age | 52.61017 | 118 | 
| Yes | Price | 116.51418 | 282 | 
| No | Price | 114.07627 | 118 | 
ExpCustomStat(Carseats,Cvar="Urban",Nvar=c("Age","Price"),stat=c("mean","count"),gpby=TRUE,dcast=T)| Attribute | mean_No | mean_Yes | count_No | count_Yes | 
|---|---|---|---|---|
| Age | 52.61017 | 53.62057 | 118 | 282 | 
| Price | 114.07627 | 116.51418 | 118 | 282 | 
ExpCustomStat(Carseats,Cvar=c("Urban","ShelveLoc"),Nvar=c("Age","Price","Advertising","Sales"),stat=c("mean"),gpby=FALSE,dcast=T)| Attribute | ShelveLoc_Bad | ShelveLoc_Good | ShelveLoc_Medium | Urban_No | Urban_Yes | 
|---|---|---|---|---|---|
| Advertising | 6.218750 | 7.352941 | 6.538813 | 6.203390 | 6.815603 | 
| Age | 52.052083 | 52.611765 | 54.155251 | 52.610169 | 53.620567 | 
| Price | 114.270833 | 117.882353 | 115.652968 | 114.076271 | 116.514184 | 
| Sales | 5.522917 | 10.214000 | 7.306575 | 7.563559 | 7.468191 | 
In statistics, an outlier is a data point that differs significantly from other observations. An outlier may be due to variability in the measurement or it may indicate experimental error; the latter are sometimes excluded from the data set.An outlier can cause serious problems in statistical analyses.
Function ExpOutliers can run univariate outlier analysis
based on boxplot or SD method. The function returns the summary of
oultlier for selected numeric features and adding new features if there
are any outlers
Identifying outliers: There are several methods we can use to
identify outliers. In ExpOutliers used two methods (1)
Boxplot and (2) Standard Deviation
ExpOutliers(Carseats, varlist = c("Sales","CompPrice","Income"), method = "boxplot",  treatment = "mean", capping = c(0.1, 0.9))Summary
| Category | Sales | CompPrice | Income | 
|---|---|---|---|
| Lower cap : 0.1 | 4.119 | 106 | 30 | 
| Upper cap : 0.9 | 11.3 | 145 | 107 | 
| Lower bound | -0.5 | 85 | -29.62 | 
| Upper bound | 15.21 | 165 | 163.38 | 
| Num of outliers | 2 | 2 | 0 | 
| Lower outlier case | 43 | ||
| Upper outlier case | 317,377 | 311 | |
| Mean before | 7.5 | 124.97 | 68.66 | 
| Mean after | 7.45 | 124.97 | 68.66 | 
| Median before | 7.49 | 125 | 69 | 
| Median after | 7.47 | 125 | 69 | 
Output data head view
| Sales | CompPrice | Income | Advertising | Population | Price | ShelveLoc | Age | Education | Urban | US | out_cap_Sales | out_cap_CompPrice | out_imp_Sales | out_imp_CompPrice | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9.50 | 138 | 73 | 11 | 276 | 120 | Bad | 42 | 17 | Yes | Yes | 9.50 | 138 | 9.50 | 138 | 
| 11.22 | 111 | 48 | 16 | 260 | 83 | Good | 65 | 10 | Yes | Yes | 11.22 | 111 | 11.22 | 111 | 
| 10.06 | 113 | 35 | 10 | 269 | 80 | Medium | 59 | 12 | Yes | Yes | 10.06 | 113 | 10.06 | 113 | 
| 7.40 | 117 | 100 | 4 | 466 | 97 | Medium | 55 | 14 | Yes | Yes | 7.40 | 117 | 7.40 | 117 | 
| 4.15 | 141 | 64 | 3 | 340 | 128 | Bad | 38 | 13 | Yes | No | 4.15 | 141 | 4.15 | 141 | 
| 10.81 | 124 | 113 | 13 | 501 | 72 | Bad | 78 | 16 | No | Yes | 10.81 | 124 | 10.81 | 124 | 
ExpOutliers(Carseats, varlist = c("Sales","CompPrice","Income"), method = "3xStDev",  treatment = "medain", capping = c(0.1, 0.9))Summary
| Category | Sales | CompPrice | Income | 
|---|---|---|---|
| Lower cap : 0.1 | 4.119 | 106 | 30 | 
| Upper cap : 0.9 | 11.3 | 145 | 107 | 
| Lower bound | -0.98 | 78.97 | -15.3 | 
| Upper bound | 15.97 | 170.98 | 152.62 | 
| Num of outliers | 1 | 2 | 0 | 
| Lower outlier case | 43 | ||
| Upper outlier case | 377 | 311 | |
| Mean before | 7.5 | 124.97 | 68.66 | 
| Mean after | 7.47 | 124.97 | 68.66 | 
| Median before | 7.49 | 125 | 69 | 
| Median after | 7.49 | 125 | 69 | 
Output data head view
| Sales | CompPrice | Income | Advertising | Population | Price | ShelveLoc | Age | Education | Urban | US | out_cap_Sales | out_cap_CompPrice | out_imp_Sales | out_imp_CompPrice | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9.50 | 138 | 73 | 11 | 276 | 120 | Bad | 42 | 17 | Yes | Yes | 9.50 | 138 | 9.50 | 138 | 
| 11.22 | 111 | 48 | 16 | 260 | 83 | Good | 65 | 10 | Yes | Yes | 11.22 | 111 | 11.22 | 111 | 
| 10.06 | 113 | 35 | 10 | 269 | 80 | Medium | 59 | 12 | Yes | Yes | 10.06 | 113 | 10.06 | 113 | 
| 7.40 | 117 | 100 | 4 | 466 | 97 | Medium | 55 | 14 | Yes | Yes | 7.40 | 117 | 7.40 | 117 | 
| 4.15 | 141 | 64 | 3 | 340 | 128 | Bad | 38 | 13 | Yes | No | 4.15 | 141 | 4.15 | 141 | 
| 10.81 | 124 | 113 | 13 | 501 | 72 | Bad | 78 | 16 | No | Yes | 10.81 | 124 | 10.81 | 124 |