Package ‘StatsTFLValR’

January 29, 2026
Type Package

Title Utilities for Validation of Clinical Trial 'SDTM', 'ADaM' and
"TFL' Outputs

Version 1.0.0

Description Provides utility functions for validation and quality control of
clinical trial datasets and outputs across 'SDTM', 'ADaM' and "TFL' workflows.
The package supports dataset loading, metadata inspection, frequency and
summary calculations, table-ready aggregations, and compare-style dataset
review similar to 'SAS' 'PROC COMPARE'. Functions are designed to support
reproducible execution, transparent review, and independent verification of
statistical programming results. Dataset comparisons may leverage 'arsenal’
<https://cran.r-project.org/package=arsenal>.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3
Depends R (>=4.2.0)

Imports dplyr, tidyr, tibble, rlang, haven, readxl, tidyselect, purrr,
arsenal, data.table

Suggests knitr, rmarkdown, testthat (>= 3.0.0), gt, gtsummary, withr
Config/testthat/edition 3

URL https://github.com/kalsem/StatsTFLValR

BugReports https://github.com/kalsem/StatsTFLValR/issues
NeedsCompilation no

Author Mangesh Kalsekar [aut, cre]

Maintainer Mangesh Kalsekar <kalsekar.mangesh@gmail.com>
Repository CRAN

Date/Publication 2026-01-29 19:00:02 UTC

https://cran.r-project.org/package=arsenal
https://github.com/kalsem/StatsTFLValR
https://github.com/kalsem/StatsTFLValR/issues

2 ATCbyDrug

Contents
ATCbyDrug e 2
freq by e e 5
freq_by_line 8
generate_compare_TepPOrt e 10
get_column_info 13
get_data e 15
mean_by e e 16
sas_round e e e 18
SOCbYPT 19
SOCbyPT_Grade e e 23

Index 29

ATCbyDrug Fully Nested ATC2 — ATC4 — Drug (CMDECOD) Table by Treat-
ment (wide)
Description

Builds a three-level nested summary table of concomitant medications (or similar data), grouped as
ATC2 — ATC4 — Drug (CMDECOD), with counts and percentages by treatment arm. Outputs
a wide data frame where each treatment column contains n (pct).

Two indent modes are supported for the display label column stat:
¢ RTF mode (default): If atc4_spaces and cmdecod_spaces are both NULL, and rtf_safe =

TRUE, stat will include the provided RTF indent strings (atc4_rtf, cmdecod_rtf) before the
label text.

* SAS blanks mode: If atc4_spaces or cmdecod_spaces is provided (non-NULL), stat will
use only blank spaces (no RTF codes) as visual indents (SAS-style), regardless of rtf_safe.
Sorting can be controlled by sort_by:
* "count” (default): within each level, sort descending by counts for the column n__<trtan_coln>
(e.g., n__21), then alphabetically.
* "alpha": alphabetical ascending order at each level.

Rows where all three levels are "UNCODED" (case-insensitive) are pushed to the very end of the
table (after all other rows), preserving the nested order.

Usage

ATCbyDrug(
indata,
dmdata,
group_vars,
trtan_coln,

ATCbyDrug 3

rtf_safe = TRUE,

sort_by = c("count”, "alpha"),
atc4_spaces = NULL,

cmdecod_spaces = NULL,

atcd_rtf = "(*ESC*x)R/RTF\"\\1i180 \"",
cmdecod_rtf = "(*ESCx)R/RTF\"\\1i360 \""

)
Arguments
indata A data frame containing medication/event records. Must include: USUBJID and
the variables named in group_vars.
dmdata A data frame with one row per subject (for denominators). Must include USUBJID
and the main treatment grouping variable (first element of group_vars).
group_vars Character vector of length 4 specifying, in order: c(main_group, atc2, atc4,
meddecod).
* main_group = treatment/grouping variable used for columns (e.g., "TRTAN").
* atc2, atc4, meddecod = the three nested display levels.
trtan_coln Character scalar giving the column-level of interest used for count-based sort-
ing, i.e., the suffix in n__<trtan_coln>. Example: "21" makes the function
look for n__21 to drive "count” sorting.
rtf_safe Logical; if TRUE, RTF strings will be used in stat when both atc4_spaces and
cmdecod_spaces are NULL. If either spaces argument is provided, stat will not
include RTF strings.
sort_by One of c("count”,"alpha"). See Details.

atc4_spaces, cmdecod_spaces
NULL or non-negative integer specifying the number of blank spaces to prepend
for ATC4 and Drug (CMDECOD) labels in stat. If either is non-NULL, the function
uses SAS blanks mode (no RTF codes).

atc4_rtf, cmdecod_rtf

Character RTF indent strings used only when both atc4_spaces and cmdecod_spaces
are NULL and rtf_safe = TRUE. Defaults: (*ESCx)R/RTF"\\1i180 " for ATC4,
(*ESC*)R/RTF”"\\1i360@ " for Drug (CMDECOD).

Details

Denominator (N) is computed from dmdata as distinct USUBJID per main_group. For each level
(ATC2, ATC4 within ATC2, Drug/CMDECOD within ATC4), the function computes distinct-
subject counts by main_group, the percentage w.r.t. N, and forms "n (pct)”. The wide result
has:

* stat = display label with indent (RTF or blanks, depending on mode).
e trt<value>columns (e.g., trt21, trt22,...): "n (pct)" per treatment value.
* n__<value> columns mirroring raw counts (useful for custom sorting or QC).

* Ordering columns: sec_ord, psec_ord, sort_ord (help keep nested order).

Indent modes:

4 ATCbyDrug

* RTF mode: Use when you want RTF control words in the output for direct RTF rendering. Do
not set atc4_spaces/cmdecod_spaces; keep rtf_safe = TRUE.

* SAS blanks mode: Provide atc4_spaces and/or cmdecod_spaces to indent using blanks only
(friendly for plain-text outputs or RTF pipelines that inject formatting later).

UNCODED handling: Rows are considered UNCODED only if all three of ATC2, ATC4, and Drug
(CMDECOD) equal "UNCODED" (case-insensitive, leading/trailing space ignored). Such rows are as-
signed to the end of the table after sorting.

Value
A tibble with nested rows containing:
* stat (indented label),
* treatment columns trt* (string "n (pct)"),
e raw-count columns n__x%,

* helper ordering columns (sec_ord, psec_ord, sort_ord).

Examples

library(dplyr)

cm <- tibble::tribble(

~USUBJID, ~TRTAN, ~ATC2, ~ATCA4, ~CMDECOD,
01", 21, "A - Alim.”, "AQ1A", "CHLORHEXIDINE"
"1, 21, "A - Alim.”, "AQ1A", "CHLORHEXIDINE",
92", 21, "A - Alim.”, "AQ1A", "NYSTATIN",
03", 22, "A - Alim.”, "AQ1A", "NYSTATIN",

"Q4" 22, "I - Anti.”, "JeiC", "AMOXICILLIN",
"g5", 21, "J - Anti.”, "JeiC", "AMOXICILLIN",
"06" 22, "UNCODED”, "UNCODED", "UNCODED”

dm <- tibble::tribble(
~USUBJID, ~TRTAN,

"o1", 21,
"02", 21,
"Q5", 21,
"03", 22,
"04", 22,
"06", 22

)

out_rtf <- ATCbyDrug(
indata = cm,
dmdata = dm,
group_vars = c("TRTAN", "ATC2", "ATC4", "CMDECOD"),
trtan_coln = "21",

rtf_safe = TRUE,

freq_by 5

sort_by = "count”

)

out_rtf

out_spaces <- ATCbyDrug(

indata = cm,
dmdata = dm,
group_vars = c("TRTAN", "ATC2", "ATC4", "CMDECOD"),
trtan_coln = "21",
sort_by = "count”,
atc4_spaces =2,
cmdecod_spaces = 4
)
out_spaces

out_alpha <- ATCbyDrug(

indata = cm,
dmdata = dm,
group_vars = c("TRTAN", "ATC2", "ATC4", "CMDECOD"),
trtan_coln = "21",
sort_by = "alpha",
rtf_safe = FALSE

)

out_alpha

freq_by Frequency Table by Group (wide): n (%) with flexible ordering and
formats
Description

freq_by() produces a one-level frequency table by treatment (wide layout) where each row is a
category of last_group (e.g., a bucketed lab value), and each treatment column shows n (%) using
distinct subject counts.

New: If fmt is not provided (NULL), labels are derived from the unique values present in datal[last_group]]
(post na_to_code mapping, if used).

It supports:

* SAS-style rounding (use_sas_round = TRUE) for the percent.

6 freq_by

* Format mapping via either a named vector or a tibble/data.frame with columns value
(codes) and raw (labels).

* Ordering by the numeric value of last_group found in the data, or optionally the union of
format + data codes (include_all_fmt_levels).

* Counting NA under a chosen code/label using na_to_code (e.g., code "4" = "MISSING").

* Auto-detecting the subject ID column when id_var is not provided.

Usage

freq_by(
data,
denom_data = NULL,
main_group,
last_group,
label,
sec_ord,
fmt = NULL,
use_sas_round = FALSE,
indent = 2,
id_var = "USUBJID",
include_all_fmt_levels = TRUE,
na_to_code = NULL

)
Arguments

data A data frame containing at least main_group, last_group, and an ID column.

denom_data Optional data frame used to derive denominators (N per treatment). Defaults to
data.

main_group Character scalar. The treatment or grouping variable name (columns in output),
e.g., "TRTAN".

last_group Character scalar. The categorical code variable to tabulate (rows). Numeric or
character are both accepted; converted to character for display/ordering.

label Character scalar. A header row displayed on top (unindented).

sec_ord Integer scalar carried through for downstream table sorting.

fmt Optional. Either:

* a named character vector like c("1"="<1","2"="1-<4" . ..) (names =
codes, values = labels), or

 a data.frame/tibble with columns value (codes) and raw (labels), or
* a string naming an object (in parent frame) that resolves to either of the
above. If NULL (default), labels are derived from unique values of datal[[last_group]].

use_sas_round Logical; if TRUE, percent is rounded with SAS-compatible “round halves away
from zero” via sas_round(). Default FALSE.

indent Integer number of leading spaces applied to all category rows (the first label
row is not indented). Default 2.

freq_by 7

id_var Character; the subject identifier column. If not found in data, the function tries
common alternatives (e.g., USUBJID, SUBJID, etc.).

include_all_fmt_levels
Logical; if TRUE (default), the row order is built from the union of format codes
and data codes (numeric sort). When fmt = NULL, this effectively reduces to
observed data codes only.

na_to_code Optional character scalar (e.g., "4"). If supplied, NA values in last_group are
counted under that code before tabulation.

Details
e Counting uses n_distinct(id_var) within each (main_group, last_group) cell.
* Percent is 100 * n / N where N = distinct subjects in denom_data by main_group.

e When fmt = NULL, both codes and labels are taken from the observed values of last_group
(after applying na_to_code mapping), ordered numerically where possible.

* Output treatment columns are normalized to trtXX if original names start with digits.

» Missing treatment arms are added as "0".

Value
A tibble with:
* stat (character), sort_ord (integer), sec_ord (integer),

* One column per treatment arm (e.g., trt1, trt2,...), with "n (pct)"” or "@".

Examples

set.seed(1)

toy_adsl <- tibble::tibble(
USUBJID = sprintf("ID%03d", 1:60),

TRTAN = sample(c(1, 2), size = 60, replace = TRUE),
AGE = sample(18:85, size = 60, replace = TRUE),
SEX = sample(c("Male"”, "Female"), size = 60, replace = TRUE),

ETHNIC = sample(
c("Hispanic or Latino”,
"Not Hispanic or Latino”,
"Unknown",
NA_character_),
size = 60, replace = TRUE
)
) 1>
dplyr: :mutate(
AGEGR1 = dplyr::case_when(

AGE < 65 ~ "<65 years”,
AGE >= 65 & AGE < 75 ~ "65-<75 years",
AGE >= 75 ~ ">=75 years"

toy_dm <- toy_adsl |>
dplyr::select(USUBJID, TRTAN)

freq_by(
data toy_adsl,
denom_data = toy_dm,
main_group = "TRTAN",
last_group = "AGEGR1",
label "Age group, n (%)",
sec_ord 1,
fmt NULL,
na_to_code = NULL
)
freq_by(
data toy_adsl,
denom_data = toy_dm,
main_group = "TRTAN",
last_group = "SEX",
label "Sex, n (%)",
sec_ord 2,
fmt NULL,
na_to_code "99"
)
fmt_ethnic <- c(
"Hispanic or Latino” = "Hispanic or Latino”,
"Not Hispanic or Latino” = "Not Hispanic or Latino”,
"Unknown" = "Unknown",
"99" = "Missing”
)
freq_by(
data toy_adsl,
denom_data = toy_dm,
main_group = "TRTAN",
last_group = "ETHNIC",
label = "Ethnic group, n (%)",
sec_ord 3,
fmt fmt_ethnic,

include_all
na_to_code =

fmt_levels = TRUE,

119911

freq_by_line

freq_by_line

One-Line Frequency Summary by Treatment Group

freq_by_line 9

Description

Generates a single-row frequency summary table across treatment groups, reporting counts and
percentages of subjects meeting a filter condition.

Usage

freq_by_line(data, id_var, trt_var, filter_expr, label, denom_data = NULL)

Arguments
data A data.frame containing subject-level data.
id_var Unquoted subject ID variable (e.g., USUBJID).
trt_var Unquoted treatment variable (e.g., TRTO1P).
filter_expr A logical filter expression (unquoted), e.g., SAFFL == "Y" & AGE >= 65.
label Character string for the row label in the output (e.g., "SAF population”).
denom_data Optional. A data.frame used to calculate denominators per treatment group.

Defaults to data.

Details

This function calculates the number and percentage of unique subjects per treatment group (trt_var)
satisfying a given filter condition (filter_expr). The result is formatted as "n (pct)” and re-
turned in a single-row tibble, labeled by the provided label. An optional denominator dataset
(denom_data) can be specified to override the default denominator population (used to calculate
percentages).

Useful for producing compact summary rows (e.g., "SAF Population”, "Subjects >= 65") in clinical
tables.

Value

A one-row tibble containing "n (pct)"” summaries per treatment group.

Examples

set.seed(123)
adsl <- data.frame(
USUBJID = paste@("SUBJ", 1:100),
TRTO1P = sample(c("0@", "54", "100"), 100, replace = TRUE),
SAFFL = sample(c("Y", "N"), 100, replace = TRUE),
AGE = sample(18:80, 100, replace = TRUE)

freqg_by_line(adsl, USUBJID, TRTQ1P, SAFFL == "Y", label = "SAF population”)

saf <- adsl[adsl$SAFFL == "Y",]

10

freq_by_line(
adsl, USUBJID, TRTOIP,
AGE >= 65,
label = "Age >=65 in SAF",
denom_data = saf

)

generate_compare_report

generate_compare_report

Compare DEV vs VAL datasets (PROC COMPARE-style) with robust

file detection

Description

generate_compare_report() compares a developer (DEV) dataset and a validation (VAL) dataset

for a given domain and produces outputs similar to SAS PROC COMPARE.

This function is intended for ADaM/SDTM/TFL validation workflows and supports:

* Directory-driven inputs: DEV and VAL locations are provided via dev_dir and val_dir.

* Case-insensitive domain matching: domain = "ADAE" will match files like adae. *.

* VAL prefix flexibility: resolves prefix_val variants such as v_, v-, and v (no separator).

¢ Automatic extension detection for DEV and VAL files: .sas7bdat, .xpt, .csv, .rds.

Usage

generate_compare_report(
domain,
dev_dir,
val_dir,
by_vars = c("STUDYID",
vars_to_check = NULL,
report_dir = NULL,
prefix_val = "v_",
max_print = 50,
write_csv = FALSE,
run_comparedf = TRUE,
filter_expr = NULL,
study_id = NULL,
author = NULL

Optional filtering using filter_expr prior to comparison.

Optional PROC COMPARE-style CSV output with BASE, COMPARE, and DIF triplets.

"UsSUBJID"),

Optional LST-like report using arsenal: : comparedf () for summarized differences.

generate_compare_report 11

Arguments
domain Character scalar domain name (e.g., "adsl”, "adae”, "rt-ae-sum”). Matching
is case-insensitive.
dev_dir DEYV dataset directory path.
val_dir VAL dataset directory path.
by_vars Character vector of key variables used to match records (e.g., c("STUDYID", "USUBJID")

or c("STUDYID","USUBJID", "AESEQ")).

vars_to_check Optional character vector of variables to compare. If NULL, compares all com-
mon variables (excluding key handling remains as per implementation).

report_dir Output directory for report files. Created if missing.

prefix_val Character prefix for validation datasets (default "v_"). The resolver also sup-
ports variants like v- and v (no separator).

max_print Maximum number of lines printed in the .1st report for summaries/diffs.
write_csv Logical; if TRUE, writes PROC COMPARE-style CSV to report_dir as compare_<domain>.csv.
run_comparedf Logical; if TRUE, uses arsenal: : comparedf () to generate a . 1st report.

filter_expr Optional filter expression string evaluated within each dataset (e.g., "SAFFL ==
"Y' & TRTEMFL == "Y"'").

study_id Optional study identifier included in the . 1st header.
author Optional author name included in the .1st header.
Details

The function looks for exactly one matching domain file per directory:

* DEV: <domain>.<ext>
* VAL: <prefix><domain>.<ext> where <prefix>is prefix_val plus common variants sup-
porting underscore/hyphen/no-separator forms (e.g., v_, v-, v).
Supported extensions (priority order) are: sas7bdat, xpt, csv, rds.

If multiple matches exist for the same domain in a directory (e.g., adae.csv and adae.xpt), the
function stops with an ambiguous match error to prevent accidental comparisons.

PROC COMPARE-style CSV behavior When write_csv = TRUE, the output includes:
* _TYPE_ with values BASE, COMPARE, DIF
* _OBS_ sequence within each BY key
¢ For numeric variables, DIF = DEV - VAL

¢ For Date variables, DIF is integer day difference (as.integer (DEV - VAL))

For POSIXct variables, DIF is seconds difference (as.numeric(DEV - VAL))

* For other types, DIF is a character mask (X indicates difference)

12 generate_compare_report

Value

Invisibly returns a list with:

* only_in_dev: rows present only in DEV (set-difference result)
* only_in_val: rows present only in VAL (set-difference result)

* comparedf: arsenal: :comparedf object (or NULL if run_comparedf = FALSE)

See Also

comparedf, fsetdiff, fintersect

Examples

td <- tempdir()

dev_dir <- file.path(td, "dev")

val_dir <- file.path(td, "val")

rpt_dir <- file.path(td, "rpt")
dir.create(dev_dir, showWarnings = FALSE)
dir.create(val_dir, showWarnings = FALSE)
dir.create(rpt_dir, showWarnings = FALSE)

dev <- data.frame(
STUDYID = "STDY1",
USUBJID = c("01", "02"),
AESEQ = c(1, 1),
AETERM = c("HEADACHE", "NAUSEA"),
stringsAsFactors = FALSE
)
val <- dev
val$AETERM[2] <- "VOMITING”

utils::write.csv(dev, file.path(dev_dir, "adae.csv"), row.names = FALSE)
utils::write.csv(val, file.path(val_dir, "v-adae.csv"), row.names = FALSE)

generate_compare_report(

domain = "adae",
dev_dir = dev_dir,
val_dir = val_dir,
by_vars = c("STUDYID","USUBJID", "AESEQ"),
report_dir = rpt_dir,
write_csv = TRUE,
run_comparedf = FALSE

)

generate_compare_report(
domain = "ADAE",
dev_dir = dev_dir,

val_dir = val_dir,

get_column_info 13

by_vars = c("STUDYID","USUBJID", "AESEQ"),
report_dir = rpt_dir,

write_csv = FALSE,

run_comparedf = FALSE

generate_compare_report(

domain = "adae",
dev_dir = dev_dir,
val_dir = val_dir,
by_vars = ¢("STUDYID","USUBJID", "AESEQ"),
report_dir = rpt_dir,
filter_expr = "USUBJID == '@2'",
write_csv = TRUE,
run_comparedf = FALSE
)
get_column_info Extract Column Metadata from a Data Frame
Description

Inspects a data frame and returns a summary of metadata for each column, including column name,
label, format, class/type, missingness, uniqueness, and (optionally) SAS-style display for Date vari-
ables (e.g., DATE9 -> 09JUL2012).

Usage
get_column_info(
df,
include_attributes = TRUE,
exclude_attributes = c("class”, "row.names"),

label_attr = c("label”, "var.label”, "labelled”, "Label"),
format_attr = c("format”, "format.sas"”, "Format"”, "displayWidth"),
compute_ranges = TRUE,

sas_date_display = TRUE

Arguments

df A data.frame or tibble. The input dataset whose column metadata should be
extracted.
include_attributes

Logical. If TRUE, includes a list-column of full attributes (after exclusions).
exclude_attributes
Character vector of attribute names to drop from the attributes list.

14 get_column_info

label_attr Character vector of attribute names to check (in order) for a label.
format_attr Character vector of attribute names to check (in order) for a format.

compute_ranges Logical. If TRUE, computes min/max for numeric and date/datetime types.

sas_date_display
Logical. If TRUE, adds SAS-style display columns for Date/POSIXct.

Value

A tibble with one row per column and metadata fields.

e column: Column name

* label: Label attribute (if present)

» format: Format attribute (if present; e.g., DATE9.)

¢ class: Class(es)

¢ typeof: Underlying storage type

* n: Total length

¢ n_missing: Number of NAs

* n_unique: Number of unique values

¢ min_raw/max_raw: Min/max as raw values (Date/numeric)

* min_disp/max_disp: Min/max as display strings (SAS-like for dates when enabled)
» sample_disp: First non-missing value as display string (SAS-like for dates when enabled)
* attribute_names: Comma-separated attribute names (after exclusions)

« attributes: List column of attributes (optional)

Examples

df <- data.frame(
USUBJID = c("01", "@2", "03"),
AGE c(45, 50, NA),
TRTAN = c(1L, 2L, 1L),
ASTDT = as.Date(c("2024-01-01", "2024-01-02", "2024-01-03")),
stringsAsFactors = FALSE
)

get_column_info(df)

get_data 15

get_data Load Data Files of Various Formats

Description

Loads one or more data files from a given directory. Supports multiple file types commonly used in
clinical trials: .sas7bdat, .xpt, .csv, .x1s, and .x1sx.

Usage

get_data(dir, file_names = NULL)

Arguments
dir Character. Path to the directory containing data files.
file_names Character vector. Optional base names (with or without extensions) to load; if
NULL, loads all supported files from the directory.
Details

Automatically detects file extensions and returns each dataset using its base file name (e.g., "ads1l.xpt”
becomes adsl).

If multiple files with the same base name but different extensions exist (e.g., adsl.csv and adsl. sas7bdat),
the function stops and reports the duplicates to avoid ambiguity.

Value

If exactly one file is loaded, returns the dataset. If multiple files are loaded, returns a named list of
datasets.

Examples

Not run:
adsl <- get_data("path/to/adam”, "adsl")
ds <- get_data("path/to/adam")

adsl <- ds$adsl

End(Not run)

16

mean_by

mean_by

Summary Table: Mean and Related Statistics by Group

Description

This function calculates common summary statistics (N, Mean, SD, Median, Q1, Q3, Min, Max)
for a numeric variable, grouped by a treatment or category variable. It supports optional SAS-style
rounding (round half away from zero) and formats the results for table-ready display. Missing
treatment groups are automatically added with zero values.

Usage

mean_by (
data,
group_var,
uniq_var,
label,
sec_ord,

precision_override = NULL,

indent = 3,

use_sas_round = FALSE,
id_var = "USUBJID"

Arguments

data

group_var

unig_var

label

sec_ord

A data frame or tibble containing the input data.

The grouping variable (e.g., treatment arm). Can be unquoted (tidy evaluation)
or a string.

The numeric variable to summarise. Can be unquoted (tidy evaluation) or a
string.

Character string: table section label for the output (e.g., "BMI (WEIGHT [KG]/
HEIGHT [M21)").

Integer: section order value (for downstream table ordering).

precision_override

indent

use_sas_round

id_var

Optional integer to manually set decimal precision; if NULL, the function infers
precision from the data.

Integer: number of leading spaces in statistic labels (default = 3).

Logical: if TRUE, applies SAS-compatible rounding (round half away from zero).
Default is FALSE.

Character: name of subject ID variable (default = "USUBJID"). If not found,
function attempts to auto-detect common ID variable names.

mean_by 17

Details

The function:
Auto-detects precision if precision_override is NULL.
Calculates N, mean, SD, quartiles, min, max.

Applies SAS-style rounding if use_sas_round = TRUE.

Converts statistics into a display format suitable for RTF or text output.

A S e

Ensures all treatment columns appear in output, filling missing ones with "0".

SAS-style rounding logic: Values exactly halfway between two increments are rounded away from
zero (e.g., 1.25 — 1.3, -1.25 — -1.3 with 1 decimal place).

Value

A tibble with the following columns:

e stats: internal statistic code (n1, mn, sd, etc.)
e stat : display label (" N", " MEAN", etc.)

* sort_ord : row ordering number

* sec_ord : section ordering number (from input)

* Treatment columns (trt1, trt2, ...): formatted values per treatment group

Examples

library(dplyr)

df <- tibble::tibble(
USUBJID = rep(1:6, each = 1),

TRTAN =c(1, 1, 2, 2, 3, 3),
BMIBL = c(25.1, 26.3, 24.8, NA, 23.4, 27.6)
)
mean_by (
data = df,
group_var = TRTAN,
unig_var = BMIBL,
label = "BMI (kg/m"2)",
sec_ord =1
)
mean_by (
data = df,
group_var = TRTAN,
uniqg_var = BMIBL,
label = "BMI (kg/m"2)",
sec_ord =1,

precision_override = 2

18 sas_round

mean_by (
data = df,
group_var = TRTAN,
unig_var = BMIBL,
label = "BMI (kg/m"2)",
sec_ord =1,
use_sas_round = TRUE

)

df2 <- tibble::tibble(
USUBJID = c(1, 2, 3, 4),
TRTAN =c(1, 1, 3, 3),

BMIBL = c(25.1, 26.3, 23.4, 27.6)
)
mean_by (

data = df2,

group_var = TRTAN,
unig_var = BMIBL,

label = "BMI (kg/m*2)",
sec_ord =1
)
sas_round SAS-Compatible Rounding
Description

Performs rounding in the same manner as SAS, where values exactly halfway between two integers
are always rounded away from zero. This differs from R’s default rounding (IEC 60559), which
rounds to the nearest even number ("bankers’ rounding").

Usage

sas_round(x, digits = @)

Arguments

X A numeric vector to be rounded.

digits Integer indicating the number of decimal places to round to. Default is 0.
Details

In SAS, values like 1.5 or -2.5 are rounded to 2 and -3 respectively. This function emulates that
behavior by manually adjusting and checking the fractional component of the value before applying
rounding.

SOCbyPT

Value

A numeric vector with values rounded using SAS-compatible logic.

Examples

sas_round(c(1.5, 2.5, 3.5, -1.5, -2.5, -3.5))

sas_round(c(1.25, 1.35, -1.25, -1.35), digits = 1)

sas_round(c(1

sas_round(c(1.2345, 1.2355), digits = 3)

sas_round(c(1.23445, 1.23455), digits = 4)

sas_round(c(1.234445, 1.234455), digits = 5)

.235, 1.245, -1.235, -1.245), digits = 2)

19

SOCbyPT SOC — PT summary by treatment (wide), with optional BY-grouping,
SOC totals, UNCODED positioning, BY-specific Big-N, and optional
Big-N printing
Description

Build a System Organ Class (SOC) — Preferred Term (PT) summary by treatment in a wide layout
suitable for clinical TLFs. Optionally stratify the display by a BY variable from the AE dataset, or-
der BY groups by a separate key, add TOTAL rows, control UNCODED placement, and optionally
calculate percentages using BY-specific denominators.

Usage

SOCbyPT(

indata,

dmdata,

pop_data = NULL,

group_vars,

trtan_coln,

by_var = NULL,

by_sort_var = NULL,

by_sort_numeric = TRUE,

id_var = "USUBJID",

rtf_safe = TRUE,

indent_str = "(*ESCx)R/RTF\"\\1i360 \"",
use_sas_round = FALSE,

header_blank = FALSE,

soc_totals = FALSE,

total_label = "TOTAL SUBJECTS WITH AN EVENT",

20 SOCbyPT

uncoded_position = c("count”, "last"),
bigN_by = NULL,
print_bigN = FALSE

)
Arguments

indata AE-like input with at least: subject id, SOC, PT, and the main treatment column.
If BY is used, by_var (and by_sort_var if different) must exist in indata.

dmdata Working denominator dataset (e.g., filtered ADSL) with at least: subject id and
the main treatment column. If bigN_by = "YES" and BY is used, dndata must
also contain by_var to compute BY-specific denominators.

pop_data Master population dataset (e.g., full ADSL) used to define the set/order of treat-
ment arms. If NULL, defaults to dmdata.

group_vars Character vector of length 3: c(main_treatment, SOC, PT).

trtan_coln Treatment level value (e.g., "12" or 12) that drives sorting (descending count,
then alpha).

by_var Optional BY column name (quoted or unquoted) from indata used to split the
table into groups.

by_sort_var Optional column (quoted or unquoted) used to order BY groups. Defaults to

by_var.

by_sort_numeric
If TRUE, BY groups ordered by as.numeric(by_sort_var); else lexicographic.

id_var Subject identifier column name. Default "USUBJID".
rtf_safe If TRUE, PT labels are prefixed by indent_str. Default TRUE.
indent_str Prefix added to PT labels when rtf_safe = TRUE.

use_sas_round If TRUE, use SAS-style rounding (ties away from zero). Default FALSE.

header_blank If TRUE, blank treatment cells on SOC header rows (TOTAL rows remain popu-
lated). Default FALSE.

soc_totals If TRUE, SOC header rows are retained/populated (default behavior). Included
for API parity.

total_label Label for TOTAL row(s). Default "TOTAL SUBJECTS WITH AN EVENT".

uncoded_position
Where to place UNCODED: "count” (default behavior by counts) or "last”
(push to bottom).

bigN_by Flag controlling denominator behavior when BY is used:

* NULL / "NO" (default): denominators are by treatment only (not stratified by
BY)

* "YES": denominators are by BY x treatment (requires by_var in dmdata)

print_bigN If TRUE, prints denominators (Big-N) used for percent calculations to console/log.

SOCbyPT

Value
A tibble with columns:

s stat

e trtx treatment columns

e sort_ord, sec_ord

e by_var, by_sort_var (when BY used)

Examples

library(dplyr)

adae <- tibble::tribble(
~USUBJID, ~TRTAN, ~AEBODSYS,

01", 11, "GASTROINTESTINAL”,
"ol 11, "GASTROINTESTINAL”,
92", 11, "NERVOUS SYSTEM",
03", 12, "GASTROINTESTINAL”,
"Q4" 12, "NERVOUS SYSTEM”,
"g5" 12, "UNCODED”",

)

adsl <- tibble::tribble(
~USUBJID, ~TRTAN,
"o1", 11,

~AEDECOD,
"NAUSEA” ,
"VOMITING”
"HEADACHE"
"NAUSEA” ,
"DIZZINESS”,
"UNCODED”

"02", 11,
"03", 12,
"04" 12,
"05", 12
)
out1 <- SOCbyPT(
indata = adae,
dmdata = adsl,
group_vars = c("TRTAN", "AEBODSYS", "AEDECOD"),
trtan_coln = "12" # reference arm for sorting
)
outl

out2 <- SOChbyPT(

indata = adae,
dmdata = adsl,
group_vars = c("TRTAN", "AEBODSYS", "AEDECOD"),
trtan_coln = "12",
rtf_safe = FALSE,

header_blank = TRUE

21

22

SOCbyPT

~AEDECOD,
"NAUSEA"
"VOMITING”
"HEADACHE"
"DIZZINESS",
"UNCODED”

)
out2
adae_sex <- tibble::tribble(
~USUBJID, ~TRTAN, ~SEX, ~AEBODSYS,
"01", 11, "M", "GASTROINTESTINAL",
"Q2", 11, "F", "GASTROINTESTINAL",
"03", 12, "M", "NERVOUS SYSTEM",
"04", 12, "F", "NERVOUS SYSTEM",
"Q5", 12, "F", "UNCODED",
)
adsl_sex <- tibble::tribble(
~USUBJID, ~TRTAN, ~SEX,
"01", 11, "M",
"02", 11, "F",
"03", 12, "M",
"04", 12, "F",
"@5", 12, "F"
)
out3 <- SOCbyPT(
indata = adae_sex,
dmdata = adsl_sex,
group_vars = c("TRTAN", "AEBODSYS", "AEDECOD"),
trtan_coln = "12",
by_var = "SEX",
by_sort_var = "SEX",
by_sort_numeric = FALSE,
uncoded_position = "last”
)
out3
out4 <- SOCbyPT(
indata = adae_sex,
dmdata = adsl_sex,
group_vars = c("TRTAN", "AEBODSYS", "AEDECOD"),
trtan_coln = "12",
by_var = "SEX",
bigN_by = "YES",
print_bigN = TRUE
)
out4

outd_trtN <- SOCbyPT(

SOCbyPT_Grade

indata
dmdata
group_vars
trtan_coln
by_var
bigN_by
print_bigN
)

out4_trtN

adae_sex,
adsl_sex,

c("TRTAN", "AEBODSYS", "AEDECOD"),

"2,
"SEX",
"NO",
TRUE

pop_adsl <- tibble::tribble(
~USUBJID, ~TRTAN,

"o1",

"02",

"03",

"04",

"05",
)

11,
11,
12,
12,
13

out5 <- SOCbyPT(

indata
dmdata
pop_data
group_vars
trtan_coln

adae,
adsl,
pop_adsl,

c("TRTAN", "AEBODSYS", "AEDECOD"),

nqon

23

SOCbyPT_Grade

SOC — PT summary by treatment with Grade split (wide)

Description

Summarises AEs by System Organ Class (SOC) — Preferred Term (PT) per treatment arm and
splits each arm into Grade buckets (1-5 + NOT REPORTED). The table includes a first TOTAL
SUBJECTS WITH AN EVENT row, optional SOC subtotal rows, and RTF-safe indenting for PT
lines. The SOC/PT block order can be driven by a reference arm (e.g., TRTAN = 12) and a specific
grade via sort_grade (default 5).

Usage

SOCbyPT_Grade(

indata,
dmdata,
pop_data =

NULL,

24 SOCbyPT_Grade

group_vars,

trtan_coln,

grade_num = "AETOXGRN",

grade_char = NULL,

by_var = NULL,

by_sort_var = NULL,

by_sort_numeric = TRUE,

bigN_by = NULL,

print_bigN = FALSE,

id_var = "USUBJID",

rtf_safe = TRUE,

indent_str = "(*ESC*)R/RTF\"\\1i360 \"",

use_sas_round = FALSE,

header_blank = TRUE,

soc_totals = FALSE,

total_label = "TOTAL SUBJECTS WITH AN EVENT”,

nr_char_values = c("NOT REPORTED"”, "NOT_REPORTED", "NOTREPORTED", "NOT REPRTED", "NR",
"N, "NAMY,

sort_grade = 5,

debug = FALSE,

uncoded_position = c("count”, "last")
)
Arguments

indata data.frame. AE-like data containing USUBJID, treatment, SOC, PT, and Grade
variables.

dmdata data.frame. ADSL-like data containing denominators per arm (must include
USUBJID and the same treatment column as in indata).

pop_data data. frame or NULL. Optional master population for arm Ns (defaults to dmdata).

group_vars Character vector of length 3: c(main_trt, soc, pt). Example: c("TRTAN", "AEBODSYS", "AEDECOD").

trtan_coln Character or numeric. The reference treatment code used for ordering SOC/PT
blocks (e.g., "12").

grade_num Character. Name of numeric grade column (default "AETOXGRN"). Values 1-5
are treated as valid grades; others are ignored in numeric logic.

grade_char Character or NULL. Optional character grade column name (e.g., "AETOCGR"/"AETOXGR").
If NULL, the function auto-detects "AETOCGR" then "AETOXGR" if present.

by_var Character or NULL. Optional BY variable (from AE dataset) to generate stratified
outputs and sort independently per stratum.

by_sort_var Character or NULL. Optional helper column to order BY strata; defaults to by_var

when NULL.

by_sort_numeric
Logical. If TRUE (default), order BY strata by as.numeric(by_sort_var), else
use character order.

bigN_by Flag controlling denominator behavior when BY is used:

SOCbyPT_Grade 25

e NULL / "NO" (default): denominators are by treatment only (not stratified by

BY)
* "YES": denominators are by BY X treatment (requires by_var in dmdata or
pop_data)
print_bigN If TRUE, prints denominators (Big-N) used for percent calculations to console/log.
id_var Character. Subject ID column (default "USUBJID").
rtf_safe Logical. If TRUE (default), prefix PT rows with indent_str.
indent_str Character. The RTF literal for indentation of PT lines (default (*xESC*)R/RTF\"\\1i360 \").

use_sas_round Logical. If TRUE, use SAS-style rounding for percentages; else base R round().

header_blank Logical. If TRUE (default) and soc_totals = FALSE, grade columns on SOC
header rows are blanked.

soc_totals Logical. If TRUE, include SOC subtotal rows using the same grade logic as PT
TOWS.

total_label Character. Label for the top row (default "TOTAL SUBJECTS WITH AN EVENT").

nr_char_values Character vector. Values in grade_char that are considered "Not Reported".
Default includes multiple NR encodings.

sort_grade Integer or character. Grade used for ordering within the reference arm (default
5). Use "NOT REPORTED" (or any synonym in nr_char_values) to sort by NR
instead.

debug Logical. If TRUE, prints debug summaries.

uncoded_position
Character. One of c("count”,"”last”). Controls the placement of the UN-
CODED block: "count"” = position by counts (default); "last” = force SOC ==
"UNCODED" to the end (per BY stratum) and PT == "UNCODED" last within that
SOC.

Value

A tibble with columns:

e stat
* For each treatment and each grade bucket: TRT<trt>_GRADE1, ..., TRT<trt>_GRADES5, TRT<trt>_NOT_REPORTED

e sort_ord, sec_ord

Key features

¢ Grades from numeric and/or character sources: Uses grade_num (1-5). If a character
grade column exists (e.g., "AETOCGR"/"AETOXGR"), it is cleaned and mapped, with values in
nr_char_values treated as Not Reported.

* NR logic: (a) For PT rows, a subject contributes the max numeric grade among 1-5 (NR
ignored). (b) For the top TOTAL row, if any PT for the subject is NR-only (no numeric
grade), the subject contributes to NOT REPORTED); otherwise to their max numeric grade.

* Ordering: Within SOC/PT, order is determined using counts from the reference arm trtan_coln
filtered to sort_grade (fallback = all grades).

26

SOCbyPT_Grade

BY support: Optional by_var (from AE) adds strata with optional by_sort_var to control
strata ordering (numeric or character).

SOC totals: soc_totals = TRUE adds a SOC subtotal row (max-grade logic).
Denominators: Ns are computed from dmdata (or pop_data, if provided).
Big N behavior with BY: controlled by bigN_by (TRT-only vs BYXTRT).
RTF-safe indent: PT stat values can be indented using indent_str.

SAS-style rounding: Percentages can follow SAS “round half away from zero” via use_sas_round
= TRUE.

UNCODED placement: uncoded_position =c("count”,”last"). With "last", the block
where SOC == "UNCODED" is forced to the very end (per BY stratum), and within that SOC
the PT == "UNCODED" line is forced last. Detection is case-insensitive and robust to extra
spaces/non-breaking spaces.

Examples

library(dplyr)

adae <- tibble::tribble(

~USUBJID, ~TRTAN, ~AEBODSYS, ~AEDECOD, ~AETOXGRN,
01", 11, "GASTROINTESTINAL”, "NAUSEA”, 2,
"01”, 11, "GASTROINTESTINAL", "VOMITING", 3,
"2" 11, "GASTROINTESTINAL”, "NAUSEA”, 5,
03", 12, "NERVOUS SYSTEM", "HEADACHE”" 1,
03", 12, "NERVOUS SYSTEM", "DIZZINESS", 2,
"Q4" 12, "GASTROINTESTINAL", "NAUSEA”, 4

)

adsl <- tibble::tribble(
~USUBJID, ~TRTAN,
"o1", 11,

"02", 11,
"Q3", 12,
"04", 12
)
outl <- SOCbyPT_Grade(
indata = adae,
dmdata = adsl,
group_vars = c("TRTAN", "AEBODSYS", "AEDECOD"),
trtan_coln = "12" # reference arm for ordering
)
out1

out2 <- SOCbyPT_Grade(
indata = adae,
dmdata = adsl,
group_vars = c("TRTAN", "AEBODSYS", "AEDECOD"),

SOCbyPT_Grade

trtan_coln = "12",
soc_totals TRUE,
header_blank = TRUE

out2

adae2 <- tibble::tribble(

~USUBJID, ~TRTAN, ~AEBODSYS, ~AEDECQOD, ~AETOXGRN, ~AETOXGR,
"e1", 11, "GASTROINTESTINAL", "NAUSEA", 2, e
"02", 11, "GASTROINTESTINAL", "NAUSEA", NA, "NR",
"Q3", 12, "NERVOUS SYSTEM", "HEADACHE", 3, NA,
"Q4", 12, "UNCODED", "UNCODED", NA, "NOT REPORTED"
)
out3 <- SOCbyPT_Grade(
indata = adae2,
dmdata = adsl,
group_vars = c("TRTAN", "AEBODSYS", "AEDECOD"),
trtan_coln = "12",
grade_num = "AETOXGRN",
grade_char = "AETOXGR",
sort_grade = "NOT REPORTED”,
rtf_safe = FALSE,
uncoded_position = "last”
)
out3

adae_sex <- tibble::tribble(

~USUBJID, ~TRTAN, ~SEX, ~AEBODSYS, ~AEDECOD, ~AETOXGRN,
"1, 11, "M", "GASTROINTESTINAL”", "NAUSEA”", 2,

92", 11, "F", "GASTROINTESTINAL”", "NAUSEA”, 5,

03", 12, "M", "NERVOUS SYSTEM”, "HEADACHE", 3,

"4 12, "F", "NERVOUS SYSTEM", "DIZZINESS", 1

)

adsl_sex <- tibble::tribble(
~USUBJID, ~TRTAN, ~SEX,

"o1", 11, "M",
"Q2", 11, "F",
"03", 12, "M",
"04", 12, "F"
)
out4_trtN <- SOCbyPT_Grade(
indata = adae_sex,
dmdata = adsl_sex,
group_vars = c("TRTAN", "AEBODSYS", "AEDECOD"),
trtan_coln = "12",

by_var = "SEX",

28

bigN_by = "NO",
print_bigN = TRUE

)

out4_byN <- SOCbyPT_Grade(
indata = adae_sex,
dmdata = adsl_sex,

group_vars = c("TRTAN”, "AEBODSYS", "AEDECOD"),
trtan_coln = "12",

by_var = "SEX",
bigN_by = "YES",
print_bigN = TRUE

)

out4_trtN

out4_byN

SOCbyPT_Grade

Index

ATCbyDrug, 2
comparedf, 12

fintersect, /12
freq_by, 5
freq_by_line, 8
fsetdiff, 12

generate_compare_report, 10
get_column_info, 13
get_data, 15

mean_by, 16

sas_round, 18
SOCbyPT, 19
SOCbyPT_Grade, 23

29

	ATCbyDrug
	freq_by
	freq_by_line
	generate_compare_report
	get_column_info
	get_data
	mean_by
	sas_round
	SOCbyPT
	SOCbyPT_Grade
	Index

