
Package ‘bayestestR’
October 17, 2024

Type Package

Title Understand and Describe Bayesian Models and Posterior
Distributions

Version 0.15.0

Maintainer Dominique Makowski <dom.makowski@gmail.com>

Description Provides utilities to describe posterior
distributions and Bayesian models. It includes point-estimates such as
Maximum A Posteriori (MAP), measures of dispersion (Highest Density
Interval - HDI; Kruschke, 2015 <doi:10.1016/C2012-0-00477-2>) and
indices used for null-hypothesis testing (such as ROPE percentage, pd
and Bayes factors). References: Makowski et al. (2021) <doi:10.21105/joss.01541>.

Depends R (>= 3.6)

Imports insight (>= 0.20.5), datawizard (>= 0.13.0), graphics,
methods, stats, utils

Suggests BayesFactor (>= 0.9.12-4.4), bayesQR, bayesplot, betareg, BH,
blavaan, bridgesampling, brms, collapse, curl, effectsize,
emmeans, gamm4, ggdist, ggplot2, glmmTMB, httr2, KernSmooth,
knitr, lavaan, lme4, logspline (>= 2.1.21), marginaleffects (>=
0.21.0), MASS, mclust, mediation, modelbased, ordbetareg,
parameters, patchwork, performance, quadprog, posterior,
RcppEigen, rmarkdown, rstan, rstanarm, see (>= 0.8.5),
testthat, tweedie, withr

License GPL-3

URL https://easystats.github.io/bayestestR/

BugReports https://github.com/easystats/bayestestR/issues

VignetteBuilder knitr

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

Config/testthat/edition 3

1

https://doi.org/10.1016/C2012-0-00477-2
https://doi.org/10.21105/joss.01541
https://easystats.github.io/bayestestR/
https://github.com/easystats/bayestestR/issues

2 Contents

Config/testthat/parallel true

Config/rcmdcheck/ignore-inconsequential-notes true

Config/Needs/website easystats/easystatstemplate

Config/Needs/check stan-dev/cmdstanr

NeedsCompilation no

Author Dominique Makowski [aut, cre] (<https://orcid.org/0000-0001-5375-9967>),
Daniel Lüdecke [aut] (<https://orcid.org/0000-0002-8895-3206>),
Mattan S. Ben-Shachar [aut] (<https://orcid.org/0000-0002-4287-4801>),
Indrajeet Patil [aut] (<https://orcid.org/0000-0003-1995-6531>),
Micah K. Wilson [aut] (<https://orcid.org/0000-0003-4143-7308>),
Brenton M. Wiernik [aut] (<https://orcid.org/0000-0001-9560-6336>),
Paul-Christian Bürkner [rev],
Tristan Mahr [rev] (<https://orcid.org/0000-0002-8890-5116>),
Henrik Singmann [ctb] (<https://orcid.org/0000-0002-4842-3657>),
Quentin F. Gronau [ctb] (<https://orcid.org/0000-0001-5510-6943>),
Sam Crawley [ctb] (<https://orcid.org/0000-0002-7847-0411>)

Repository CRAN

Date/Publication 2024-10-17 11:40:02 UTC

Contents
area_under_curve . 3
as.data.frame.density . 4
as.numeric.map_estimate . 5
bayesfactor . 5
bayesfactor_inclusion . 7
bayesfactor_models . 9
bayesfactor_parameters . 13
bayesfactor_restricted . 19
bci . 24
bic_to_bf . 27
check_prior . 28
ci . 29
contr.equalprior . 32
convert_bayesian_as_frequentist . 35
density_at . 36
describe_posterior . 37
describe_prior . 41
diagnostic_draws . 43
diagnostic_posterior . 43
disgust . 45
distribution . 46
effective_sample . 48
equivalence_test . 50
estimate_density . 53
eti . 56

https://orcid.org/0000-0001-5375-9967
https://orcid.org/0000-0002-8895-3206
https://orcid.org/0000-0002-4287-4801
https://orcid.org/0000-0003-1995-6531
https://orcid.org/0000-0003-4143-7308
https://orcid.org/0000-0001-9560-6336
https://orcid.org/0000-0002-8890-5116
https://orcid.org/0000-0002-4842-3657
https://orcid.org/0000-0001-5510-6943
https://orcid.org/0000-0002-7847-0411

area_under_curve 3

hdi . 59
map_estimate . 63
mcse . 65
mediation . 66
model_to_priors . 69
overlap . 70
pd_to_p . 71
point_estimate . 72
p_direction . 75
p_map . 81
p_rope . 84
p_significance . 86
p_to_bf . 88
reshape_iterations . 90
rope . 91
rope_range . 95
sensitivity_to_prior . 96
sexit . 97
sexit_thresholds . 100
si . 101
simulate_correlation . 106
simulate_prior . 107
simulate_simpson . 108
spi . 109
weighted_posteriors . 111

Index 116

area_under_curve Area under the Curve (AUC)

Description

Based on the DescTools AUC function. It can calculate the area under the curve with a naive algo-
rithm or a more elaborated spline approach. The curve must be given by vectors of xy-coordinates.
This function can handle unsorted x values (by sorting x) and ties for the x values (by ignoring
duplicates).

Usage

area_under_curve(x, y, method = c("trapezoid", "step", "spline"), ...)

auc(x, y, method = c("trapezoid", "step", "spline"), ...)

4 as.data.frame.density

Arguments

x Vector of x values.

y Vector of y values.

method Method to compute the Area Under the Curve (AUC). Can be "trapezoid" (de-
fault), "step" or "spline". If "trapezoid", the curve is formed by connecting
all points by a direct line (composite trapezoid rule). If "step" is chosen then
a stepwise connection of two points is used. For calculating the area under a
spline interpolation the splinefun function is used in combination with integrate.

... Arguments passed to or from other methods.

See Also

DescTools

Examples

library(bayestestR)
posterior <- distribution_normal(1000)

dens <- estimate_density(posterior)
dens <- dens[dens$x > 0,]
x <- dens$x
y <- dens$y

area_under_curve(x, y, method = "trapezoid")
area_under_curve(x, y, method = "step")
area_under_curve(x, y, method = "spline")

as.data.frame.density Coerce to a Data Frame

Description

Coerce to a Data Frame

Usage

S3 method for class 'density'
as.data.frame(x, ...)

Arguments

x any R object.

... additional arguments to be passed to or from methods.

as.numeric.map_estimate 5

as.numeric.map_estimate

Convert to Numeric

Description

Convert to Numeric

Usage

S3 method for class 'map_estimate'
as.numeric(x, ...)

S3 method for class 'p_direction'
as.numeric(x, ...)

S3 method for class 'p_map'
as.numeric(x, ...)

S3 method for class 'p_significance'
as.numeric(x, ...)

Arguments

x object to be coerced or tested.

... further arguments passed to or from other methods.

bayesfactor Bayes Factors (BF)

Description

This function compte the Bayes factors (BFs) that are appropriate to the input. For vectors or single
models, it will compute BFs for single parameters(), or is hypothesis is specified, BFs for
restricted models(). For multiple models, it will return the BF corresponding to comparison
between models() and if a model comparison is passed, it will compute the inclusion BF().

For a complete overview of these functions, read the Bayes factor vignette.

https://easystats.github.io/bayestestR/articles/bayes_factors.html

6 bayesfactor

Usage

bayesfactor(
...,
prior = NULL,
direction = "two-sided",
null = 0,
hypothesis = NULL,
effects = c("fixed", "random", "all"),
verbose = TRUE,
denominator = 1,
match_models = FALSE,
prior_odds = NULL

)

Arguments

... A numeric vector, model object(s), or the output from bayesfactor_models.

prior An object representing a prior distribution (see ’Details’).

direction Test type (see ’Details’). One of 0, "two-sided" (default, two tailed), -1,
"left" (left tailed) or 1, "right" (right tailed).

null Value of the null, either a scalar (for point-null) or a range (for a interval-null).

hypothesis A character vector specifying the restrictions as logical conditions (see examples
below).

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

verbose Toggle off warnings.

denominator Either an integer indicating which of the models to use as the denominator, or a
model to be used as a denominator. Ignored for BFBayesFactor.

match_models See details.

prior_odds Optional vector of prior odds for the models. See BayesFactor::priorOdds<-.

Value

Some type of Bayes factor, depending on the input. See bayesfactor_parameters(), bayesfactor_models()
or bayesfactor_inclusion()

Note

There is also a plot()-method implemented in the see-package.

Examples

Not run:
library(bayestestR)

prior <- distribution_normal(1000, mean = 0, sd = 1)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

bayesfactor_inclusion 7

posterior <- distribution_normal(1000, mean = 0.5, sd = 0.3)

bayesfactor(posterior, prior = prior, verbose = FALSE)

rstanarm models

model <- suppressWarnings(rstanarm::stan_lmer(extra ~ group + (1 | ID), data = sleep))
bayesfactor(model, verbose = FALSE)

Frequentist models

m0 <- lm(extra ~ 1, data = sleep)
m1 <- lm(extra ~ group, data = sleep)
m2 <- lm(extra ~ group + ID, data = sleep)

comparison <- bayesfactor(m0, m1, m2)
comparison

bayesfactor(comparison)

End(Not run)

bayesfactor_inclusion Inclusion Bayes Factors for testing predictors across Bayesian models

Description

The bf_* function is an alias of the main function.

For more info, see the Bayes factors vignette.

Usage

bayesfactor_inclusion(models, match_models = FALSE, prior_odds = NULL, ...)

bf_inclusion(models, match_models = FALSE, prior_odds = NULL, ...)

Arguments

models An object of class bayesfactor_models() or BFBayesFactor.

match_models See details.

prior_odds Optional vector of prior odds for the models. See BayesFactor::priorOdds<-.

... Arguments passed to or from other methods.

https://easystats.github.io/bayestestR/articles/bayes_factors.html

8 bayesfactor_inclusion

Details

Inclusion Bayes factors answer the question: Are the observed data more probable under models
with a particular effect, than they are under models without that particular effect? In other words,
on average - are models with effect X more likely to have produced the observed data than models
without effect X?

Match Models: If match_models=FALSE (default), Inclusion BFs are computed by comparing
all models with a term against all models without that term. If TRUE, comparison is restricted
to models that (1) do not include any interactions with the term of interest; (2) for interaction
terms, averaging is done only across models that containe the main effect terms from which the
interaction term is comprised.

Value

a data frame containing the prior and posterior probabilities, and log(BF) for each effect (Use
as.numeric() to extract the non-log Bayes factors; see examples).

Interpreting Bayes Factors

A Bayes factor greater than 1 can be interpreted as evidence against the null, at which one con-
vention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the
null (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the
null-model) (Wetzels et al. 2011).

Note

Random effects in the lmer style are converted to interaction terms: i.e., (X|G) will become the
terms 1:G and X:G.

Author(s)

Mattan S. Ben-Shachar

References

• Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E. (2019, March 25). A
conceptual introduction to Bayesian Model Averaging. doi:10.31234/osf.io/wgb64

• Clyde, M. A., Ghosh, J., & Littman, M. L. (2011). Bayesian adaptive sampling for variable
selection and model averaging. Journal of Computational and Graphical Statistics, 20(1), 80-
101.

• Mathot, S. (2017). Bayes like a Baws: Interpreting Bayesian Repeated Measures in JASP.
Blog post.

See Also

weighted_posteriors() for Bayesian parameter averaging.

https://doi.org/10.31234/osf.io/wgb64
https://www.cogsci.nl/blog/interpreting-bayesian-repeated-measures-in-jasp

bayesfactor_models 9

Examples

library(bayestestR)

Using bayesfactor_models:

mo0 <- lm(Sepal.Length ~ 1, data = iris)
mo1 <- lm(Sepal.Length ~ Species, data = iris)
mo2 <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
mo3 <- lm(Sepal.Length ~ Species * Petal.Length, data = iris)

BFmodels <- bayesfactor_models(mo1, mo2, mo3, denominator = mo0)
(bf_inc <- bayesfactor_inclusion(BFmodels))

as.numeric(bf_inc)

BayesFactor

BF <- BayesFactor::generalTestBF(len ~ supp * dose, ToothGrowth, progress = FALSE)
bayesfactor_inclusion(BF)

compare only matched models:
bayesfactor_inclusion(BF, match_models = TRUE)

bayesfactor_models Bayes Factors (BF) for model comparison

Description

This function computes or extracts Bayes factors from fitted models.

The bf_* function is an alias of the main function.

Usage

bayesfactor_models(..., denominator = 1, verbose = TRUE)

bf_models(..., denominator = 1, verbose = TRUE)

Default S3 method:
bayesfactor_models(..., denominator = 1, verbose = TRUE)

S3 method for class 'bayesfactor_models'
update(object, subset = NULL, reference = NULL, ...)

S3 method for class 'bayesfactor_models'
as.matrix(x, ...)

10 bayesfactor_models

Arguments

... Fitted models (see details), all fit on the same data, or a single BFBayesFactor
object (see ’Details’). Ignored in as.matrix(), update(). If the following
named arguments are present, they are passed to insight::get_loglikelihood()
(see details):

• estimator (defaults to "ML")
• check_response (defaults to FALSE)

denominator Either an integer indicating which of the models to use as the denominator, or a
model to be used as a denominator. Ignored for BFBayesFactor.

verbose Toggle off warnings.

object, x A bayesfactor_models() object.

subset Vector of model indices to keep or remove.

reference Index of model to reference to, or "top" to reference to the best model, or
"bottom" to reference to the worst model.

Details

If the passed models are supported by insight the DV of all models will be tested for equality (else
this is assumed to be true), and the models’ terms will be extracted (allowing for follow-up analysis
with bayesfactor_inclusion).

• For brmsfit or stanreg models, Bayes factors are computed using the bridgesampling pack-
age.

– brmsfit models must have been fitted with save_pars = save_pars(all = TRUE).
– stanreg models must have been fitted with a defined diagnostic_file.

• For BFBayesFactor, bayesfactor_models() is mostly a wraparound BayesFactor::extractBF().

• For all other model types, Bayes factors are computed using the BIC approximation. Note that
BICs are extracted from using insight::get_loglikelihood, see documentation there for options
for dealing with transformed responses and REML estimation.

In order to correctly and precisely estimate Bayes factors, a rule of thumb are the 4 P’s: Proper
Priors and Plentiful Posteriors. How many? The number of posterior samples needed for testing
is substantially larger than for estimation (the default of 4000 samples may not be enough in many
cases). A conservative rule of thumb is to obtain 10 times more samples than would be required for
estimation (Gronau, Singmann, & Wagenmakers, 2017). If less than 40,000 samples are detected,
bayesfactor_models() gives a warning.

See also the Bayes factors vignette.

Value

A data frame containing the models’ formulas (reconstructed fixed and random effects) and their
log(BF)s (Use as.numeric() to extract the non-log Bayes factors; see examples), that prints
nicely.

https://CRAN.R-project.org/package=bridgesampling
https://easystats.github.io/bayestestR/articles/bayes_factors.html

bayesfactor_models 11

Interpreting Bayes Factors

A Bayes factor greater than 1 can be interpreted as evidence against the null, at which one con-
vention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the
null (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the
null-model) (Wetzels et al. 2011).

Note

There is also a plot()-method implemented in the see-package.

Author(s)

Mattan S. Ben-Shachar

References

• Gronau, Q. F., Singmann, H., & Wagenmakers, E. J. (2017). Bridgesampling: An R package
for estimating normalizing constants. arXiv preprint arXiv:1710.08162.

• Kass, R. E., and Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical
Association, 90(430), 773-795.

• Robert, C. P. (2016). The expected demise of the Bayes factor. Journal of Mathematical
Psychology, 72, 33–37.

• Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psy-
chonomic bulletin & review, 14(5), 779-804.

• Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., and Wagenmakers, E.-J.
(2011). Statistical Evidence in Experimental Psychology: An Empirical Comparison Using
855 t Tests. Perspectives on Psychological Science, 6(3), 291–298. doi:10.1177/1745691611406923

Examples

With lm objects:

lm1 <- lm(mpg ~ 1, data = mtcars)
lm2 <- lm(mpg ~ hp, data = mtcars)
lm3 <- lm(mpg ~ hp + drat, data = mtcars)
lm4 <- lm(mpg ~ hp * drat, data = mtcars)
(BFM <- bayesfactor_models(lm1, lm2, lm3, lm4, denominator = 1))
bayesfactor_models(lm2, lm3, lm4, denominator = lm1) # same result
bayesfactor_models(lm1, lm2, lm3, lm4, denominator = lm1) # same result

update(BFM, reference = "bottom")
as.matrix(BFM)
as.numeric(BFM)

lm2b <- lm(sqrt(mpg) ~ hp, data = mtcars)
Set check_response = TRUE for transformed responses
bayesfactor_models(lm2b, denominator = lm2, check_response = TRUE)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.1177/1745691611406923

12 bayesfactor_models

With lmerMod objects:

lmer1 <- lme4::lmer(Sepal.Length ~ Petal.Length + (1 | Species), data = iris)
lmer2 <- lme4::lmer(Sepal.Length ~ Petal.Length + (Petal.Length | Species), data = iris)
lmer3 <- lme4::lmer(

Sepal.Length ~ Petal.Length + (Petal.Length | Species) + (1 | Petal.Width),
data = iris

)
bayesfactor_models(lmer1, lmer2, lmer3,

denominator = 1,
estimator = "REML"

)

rstanarm models

(note that a unique diagnostic_file MUST be specified in order to work)
stan_m0 <- suppressWarnings(rstanarm::stan_glm(Sepal.Length ~ 1,

data = iris,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df0.csv")

))
stan_m1 <- suppressWarnings(rstanarm::stan_glm(Sepal.Length ~ Species,

data = iris,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df1.csv")

))
stan_m2 <- suppressWarnings(rstanarm::stan_glm(Sepal.Length ~ Species + Petal.Length,

data = iris,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df2.csv")

))
bayesfactor_models(stan_m1, stan_m2, denominator = stan_m0, verbose = FALSE)

brms models

(note the save_pars MUST be set to save_pars(all = TRUE) in order to work)
brm1 <- brms::brm(Sepal.Length ~ 1, data = iris, save_pars = save_pars(all = TRUE))
brm2 <- brms::brm(Sepal.Length ~ Species, data = iris, save_pars = save_pars(all = TRUE))
brm3 <- brms::brm(

Sepal.Length ~ Species + Petal.Length,
data = iris,
save_pars = save_pars(all = TRUE)

)

bayesfactor_models(brm1, brm2, brm3, denominator = 1, verbose = FALSE)

BayesFactor

data(puzzles)
BF <- BayesFactor::anovaBF(RT ~ shape * color + ID,

data = puzzles,

bayesfactor_parameters 13

whichRandom = "ID", progress = FALSE
)
BF
bayesfactor_models(BF) # basically the same

bayesfactor_parameters

Bayes Factors (BF) for a Single Parameter

Description

This method computes Bayes factors against the null (either a point or an interval), based on prior
and posterior samples of a single parameter. This Bayes factor indicates the degree by which the
mass of the posterior distribution has shifted further away from or closer to the null value(s) (rela-
tive to the prior distribution), thus indicating if the null value has become less or more likely given
the observed data.

When the null is an interval, the Bayes factor is computed by comparing the prior and posterior
odds of the parameter falling within or outside the null interval (Morey & Rouder, 2011; Liao et
al., 2020); When the null is a point, a Savage-Dickey density ratio is computed, which is also an
approximation of a Bayes factor comparing the marginal likelihoods of the model against a model
in which the tested parameter has been restricted to the point null (Wagenmakers et al., 2010; Heck,
2019).

Note that the logspline package is used for estimating densities and probabilities, and must be
installed for the function to work.

bayesfactor_pointnull() and bayesfactor_rope() are wrappers around bayesfactor_parameters
with different defaults for the null to be tested against (a point and a range, respectively). Aliases
of the main functions are prefixed with bf_*, like bf_parameters() or bf_pointnull().

For more info, in particular on specifying correct priors for factors with more than 2 levels,
see the Bayes factors vignette.

Usage

bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
...,
verbose = TRUE

)

https://easystats.github.io/bayestestR/articles/bayes_factors.html

14 bayesfactor_parameters

bayesfactor_pointnull(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
...,
verbose = TRUE

)

bayesfactor_rope(
posterior,
prior = NULL,
direction = "two-sided",
null = rope_range(posterior, verbose = FALSE),
...,
verbose = TRUE

)

bf_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
...,
verbose = TRUE

)

bf_pointnull(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
...,
verbose = TRUE

)

bf_rope(
posterior,
prior = NULL,
direction = "two-sided",
null = rope_range(posterior, verbose = FALSE),
...,
verbose = TRUE

)

S3 method for class 'numeric'
bayesfactor_parameters(
posterior,

bayesfactor_parameters 15

prior = NULL,
direction = "two-sided",
null = 0,
...,
verbose = TRUE

)

S3 method for class 'stanreg'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
effects = c("fixed", "random", "all"),
component = c("conditional", "location", "smooth_terms", "sigma", "zi",
"zero_inflated", "all"),

parameters = NULL,
...,
verbose = TRUE

)

S3 method for class 'brmsfit'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
effects = c("fixed", "random", "all"),
component = c("conditional", "location", "smooth_terms", "sigma", "zi",
"zero_inflated", "all"),

parameters = NULL,
...,
verbose = TRUE

)

S3 method for class 'blavaan'
bayesfactor_parameters(
posterior,
prior = NULL,
direction = "two-sided",
null = 0,
...,
verbose = TRUE

)

S3 method for class 'data.frame'
bayesfactor_parameters(
posterior,

16 bayesfactor_parameters

prior = NULL,
direction = "two-sided",
null = 0,
rvar_col = NULL,
...,
verbose = TRUE

)

Arguments

posterior A numerical vector, stanreg / brmsfit object, emmGrid or a data frame - rep-
resenting a posterior distribution(s) from (see ’Details’).

prior An object representing a prior distribution (see ’Details’).

direction Test type (see ’Details’). One of 0, "two-sided" (default, two tailed), -1,
"left" (left tailed) or 1, "right" (right tailed).

null Value of the null, either a scalar (for point-null) or a range (for a interval-null).

... Arguments passed to and from other methods. (Can be used to pass arguments
to internal logspline::logspline().)

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

Details

This method is used to compute Bayes factors based on prior and posterior distributions.

One-sided & Dividing Tests (setting an order restriction): One sided tests (controlled by
direction) are conducted by restricting the prior and posterior of the non-null values (the "al-
ternative") to one side of the null only (Morey & Wagenmakers, 2014). For example, if we have
a prior hypothesis that the parameter should be positive, the alternative will be restricted to the
region to the right of the null (point or interval). For example, for a Bayes factor comparing the
"null" of 0-0.1 to the alternative >0.1, we would set bayesfactor_parameters(null = c(0,
0.1), direction = ">").

It is also possible to compute a Bayes factor for dividing hypotheses - that is, for a null and alter-
native that are complementary, opposing one-sided hypotheses (Morey & Wagenmakers, 2014).
For example, for a Bayes factor comparing the "null" of <0 to the alternative >0, we would set
bayesfactor_parameters(null = c(-Inf, 0)).

bayesfactor_parameters 17

Value

A data frame containing the (log) Bayes factor representing evidence against the null (Use as.numeric()
to extract the non-log Bayes factors; see examples).

Setting the correct prior

For the computation of Bayes factors, the model priors must be proper priors (at the very least they
should be not flat, and it is preferable that they be informative); As the priors for the alternative
get wider, the likelihood of the null value(s) increases, to the extreme that for completely flat priors
the null is infinitely more favorable than the alternative (this is called the Jeffreys-Lindley-Bartlett
paradox). Thus, you should only ever try (or want) to compute a Bayes factor when you have an
informed prior.

(Note that by default, brms::brm() uses flat priors for fixed-effects; See example below.)

It is important to provide the correct prior for meaningful results, to match the posterior-type
input:

• A numeric vector - prior should also be a numeric vector, representing the prior-estimate.

• A data frame - prior should also be a data frame, representing the prior-estimates, in match-
ing column order.

– If rvar_col is specified, prior should be the name of an rvar column that represents the
prior-estimates.

• Supported Bayesian model (stanreg, brmsfit, etc.)
– prior should be a model an equivalent model with MCMC samples from the priors only.

See unupdate().
– If prior is set to NULL, unupdate() is called internally (not supported for brmsfit_multiple

model).

• Output from a {marginaleffects} function - prior should also be an equivalent output
from a {marginaleffects} function based on a prior-model (See unupdate()).

• Output from an {emmeans} function
– prior should also be an equivalent output from an {emmeans} function based on a prior-

model (See unupdate()).
– prior can also be the original (posterior) model, in which case the function will try to

"unupdate" the estimates (not supported if the estimates have undergone any transforma-
tions – "log", "response", etc. – or any regriding).

Interpreting Bayes Factors

A Bayes factor greater than 1 can be interpreted as evidence against the null, at which one con-
vention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the
null (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the
null-model) (Wetzels et al. 2011).

Note

There is also a plot()-method implemented in the see-package.

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

18 bayesfactor_parameters

Author(s)

Mattan S. Ben-Shachar

References

• Wagenmakers, E. J., Lodewyckx, T., Kuriyal, H., and Grasman, R. (2010). Bayesian hypothe-
sis testing for psychologists: A tutorial on the Savage-Dickey method. Cognitive psychology,
60(3), 158-189.

• Heck, D. W. (2019). A caveat on the Savage–Dickey density ratio: The case of computing
Bayes factors for regression parameters. British Journal of Mathematical and Statistical Psy-
chology, 72(2), 316-333.

• Morey, R. D., & Wagenmakers, E. J. (2014). Simple relation between Bayesian order-restricted
and point-null hypothesis tests. Statistics & Probability Letters, 92, 121-124.

• Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hy-
potheses. Psychological methods, 16(4), 406.

• Liao, J. G., Midya, V., & Berg, A. (2020). Connecting and contrasting the Bayes factor and
a modified ROPE procedure for testing interval null hypotheses. The American Statistician,
1-19.

• Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., and Wagenmakers, E.-J.
(2011). Statistical Evidence in Experimental Psychology: An Empirical Comparison Using
855 t Tests. Perspectives on Psychological Science, 6(3), 291–298. doi:10.1177/1745691611406923

Examples

library(bayestestR)
prior <- distribution_normal(1000, mean = 0, sd = 1)
posterior <- distribution_normal(1000, mean = .5, sd = .3)
(BF_pars <- bayesfactor_parameters(posterior, prior, verbose = FALSE))

as.numeric(BF_pars)

rstanarm models

contrasts(sleep$group) <- contr.equalprior_pairs # see vingette
stan_model <- suppressWarnings(stan_lmer(

extra ~ group + (1 | ID),
data = sleep,
refresh = 0

))
bayesfactor_parameters(stan_model, verbose = FALSE)
bayesfactor_parameters(stan_model, null = rope_range(stan_model))

emmGrid objects

group_diff <- pairs(emmeans(stan_model, ~group, data = sleep))
bayesfactor_parameters(group_diff, prior = stan_model, verbose = FALSE)

https://doi.org/10.1177/1745691611406923

bayesfactor_restricted 19

Or
group_diff_prior <- pairs(emmeans(unupdate(stan_model), ~group))
bayesfactor_parameters(group_diff, prior = group_diff_prior, verbose = FALSE)

brms models

Not run:
contrasts(sleep$group) <- contr.equalprior_pairs # see vingette
my_custom_priors <-

set_prior("student_t(3, 0, 1)", class = "b") +
set_prior("student_t(3, 0, 1)", class = "sd", group = "ID")

brms_model <- suppressWarnings(brm(extra ~ group + (1 | ID),
data = sleep,
prior = my_custom_priors,
refresh = 0

))
bayesfactor_parameters(brms_model, verbose = FALSE)

End(Not run)

bayesfactor_restricted

Bayes Factors (BF) for Order Restricted Models

Description

This method computes Bayes factors for comparing a model with an order restrictions on its param-
eters with the fully unrestricted model. Note that this method should only be used for confirmatory
analyses.

The bf_* function is an alias of the main function.

For more info, in particular on specifying correct priors for factors with more than 2 levels,
see the Bayes factors vignette.

Usage

bayesfactor_restricted(posterior, ...)

bf_restricted(posterior, ...)

S3 method for class 'stanreg'
bayesfactor_restricted(
posterior,
hypothesis,

https://easystats.github.io/bayestestR/articles/bayes_factors.html

20 bayesfactor_restricted

prior = NULL,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
...

)

S3 method for class 'brmsfit'
bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
...

)

S3 method for class 'blavaan'
bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
verbose = TRUE,
...

)

S3 method for class 'emmGrid'
bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
bayesfactor_restricted(
posterior,
hypothesis,
prior = NULL,
rvar_col = NULL,
...

)

S3 method for class 'bayesfactor_restricted'
as.logical(x, which = c("posterior", "prior"), ...)

bayesfactor_restricted 21

Arguments

posterior A stanreg / brmsfit object, emmGrid or a data frame - representing a posterior
distribution(s) from (see Details).

... Currently not used.

hypothesis A character vector specifying the restrictions as logical conditions (see examples
below).

prior An object representing a prior distribution (see Details).

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

x An object of class bayesfactor_restricted

which Should the logical matrix be of the posterior or prior distribution(s)?

Details

This method is used to compute Bayes factors for order-restricted models vs un-restricted models by
setting an order restriction on the prior and posterior distributions (Morey & Wagenmakers, 2013).

(Though it is possible to use bayesfactor_restricted() to test interval restrictions, it is more
suitable for testing order restrictions; see examples).

Value

A data frame containing the (log) Bayes factor representing evidence against the un-restricted
model (Use as.numeric() to extract the non-log Bayes factors; see examples). (A bool_results
attribute contains the results for each sample, indicating if they are included or not in the hypothe-
sized restriction.)

Setting the correct prior

For the computation of Bayes factors, the model priors must be proper priors (at the very least they
should be not flat, and it is preferable that they be informative); As the priors for the alternative
get wider, the likelihood of the null value(s) increases, to the extreme that for completely flat priors
the null is infinitely more favorable than the alternative (this is called the Jeffreys-Lindley-Bartlett
paradox). Thus, you should only ever try (or want) to compute a Bayes factor when you have an
informed prior.

(Note that by default, brms::brm() uses flat priors for fixed-effects; See example below.)

It is important to provide the correct prior for meaningful results, to match the posterior-type
input:

22 bayesfactor_restricted

• A numeric vector - prior should also be a numeric vector, representing the prior-estimate.

• A data frame - prior should also be a data frame, representing the prior-estimates, in match-
ing column order.

– If rvar_col is specified, prior should be the name of an rvar column that represents the
prior-estimates.

• Supported Bayesian model (stanreg, brmsfit, etc.)
– prior should be a model an equivalent model with MCMC samples from the priors only.

See unupdate().
– If prior is set to NULL, unupdate() is called internally (not supported for brmsfit_multiple

model).

• Output from a {marginaleffects} function - prior should also be an equivalent output
from a {marginaleffects} function based on a prior-model (See unupdate()).

• Output from an {emmeans} function
– prior should also be an equivalent output from an {emmeans} function based on a prior-

model (See unupdate()).
– prior can also be the original (posterior) model, in which case the function will try to

"unupdate" the estimates (not supported if the estimates have undergone any transforma-
tions – "log", "response", etc. – or any regriding).

Interpreting Bayes Factors

A Bayes factor greater than 1 can be interpreted as evidence against the null, at which one con-
vention is that a Bayes factor greater than 3 can be considered as "substantial" evidence against the
null (and vice versa, a Bayes factor smaller than 1/3 indicates substantial evidence in favor of the
null-model) (Wetzels et al. 2011).

References

• Morey, R. D., & Wagenmakers, E. J. (2014). Simple relation between Bayesian order-restricted
and point-null hypothesis tests. Statistics & Probability Letters, 92, 121-124.

• Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval null hy-
potheses. Psychological methods, 16(4), 406.

• Morey, R. D. (Jan, 2015). Multiple Comparisons with BayesFactor, Part 2 – order restrictions.
Retrieved from https://richarddmorey.org/category/order-restrictions/.

Examples

set.seed(444)
library(bayestestR)
prior <- data.frame(

A = rnorm(500),
B = rnorm(500),
C = rnorm(500)

)

posterior <- data.frame(
A = rnorm(500, .4, 0.7),

bayesfactor_restricted 23

B = rnorm(500, -.2, 0.4),
C = rnorm(500, 0, 0.5)

)

hyps <- c(
"A > B & B > C",
"A > B & A > C",
"C > A"

)

(b <- bayesfactor_restricted(posterior, hypothesis = hyps, prior = prior))

bool <- as.logical(b, which = "posterior")
head(bool)

see::plots(
plot(estimate_density(posterior)),
distribution **conditional** on the restrictions
plot(estimate_density(posterior[bool[, hyps[1]],])) + ggplot2::ggtitle(hyps[1]),
plot(estimate_density(posterior[bool[, hyps[2]],])) + ggplot2::ggtitle(hyps[2]),
plot(estimate_density(posterior[bool[, hyps[3]],])) + ggplot2::ggtitle(hyps[3]),
guides = "collect"

)

rstanarm models

data("mtcars")

fit_stan <- rstanarm::stan_glm(mpg ~ wt + cyl + am,
data = mtcars, refresh = 0

)
hyps <- c(

"am > 0 & cyl < 0",
"cyl < 0",
"wt - cyl > 0"

)

bayesfactor_restricted(fit_stan, hypothesis = hyps)

emmGrid objects

replicating http://bayesfactor.blogspot.com/2015/01/multiple-comparisons-with-bayesfactor-2.html
data("disgust")
contrasts(disgust$condition) <- contr.equalprior_pairs # see vignette
fit_model <- rstanarm::stan_glm(score ~ condition, data = disgust, family = gaussian())

24 bci

em_condition <- emmeans::emmeans(fit_model, ~condition, data = disgust)
hyps <- c("lemon < control & control < sulfur")

bayesfactor_restricted(em_condition, prior = fit_model, hypothesis = hyps)
> # Bayes Factor (Order-Restriction)
>
> Hypothesis P(Prior) P(Posterior) BF
> lemon < control & control < sulfur 0.17 0.75 4.49
> ---
> Bayes factors for the restricted model vs. the un-restricted model.

bci Bias Corrected and Accelerated Interval (BCa)

Description

Compute the Bias Corrected and Accelerated Interval (BCa) of posterior distributions.

Usage

bci(x, ...)

bcai(x, ...)

S3 method for class 'numeric'
bci(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'data.frame'
bci(x, ci = 0.95, rvar_col = NULL, verbose = TRUE, ...)

S3 method for class 'MCMCglmm'
bci(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'sim.merMod'
bci(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'sim'
bci(x, ci = 0.95, parameters = NULL, verbose = TRUE, ...)

bci 25

S3 method for class 'emmGrid'
bci(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'slopes'
bci(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'stanreg'
bci(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
bci(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'BFBayesFactor'
bci(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'get_predicted'
bci(x, ci = 0.95, use_iterations = FALSE, verbose = TRUE, ...)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

verbose Toggle off warnings.

26 bci

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

Details

Unlike equal-tailed intervals (see eti()) that typically exclude 2.5% from each tail of the distribu-
tion and always include the median, the HDI is not equal-tailed and therefore always includes the
mode(s) of posterior distributions. While this can be useful to better represent the credibility mass
of a distribution, the HDI also has some limitations. See spi() for details.

The 95% or 89% Credible Intervals (CI) are two reasonable ranges to characterize the uncertainty
related to the estimation (see here for a discussion about the differences between these two values).

The 89% intervals (ci = 0.89) are deemed to be more stable than, for instance, 95% intervals (Kr-
uschke, 2014). An effective sample size of at least 10.000 is recommended if one wants to estimate
95% intervals with high precision (Kruschke, 2014, p. 183ff). Unfortunately, the default number of
posterior samples for most Bayes packages (e.g., rstanarm or brms) is only 4.000 (thus, you might
want to increase it when fitting your model). Moreover, 89 indicates the arbitrariness of interval
limits - its only remarkable property is being the highest prime number that does not exceed the
already unstable 95% threshold (McElreath, 2015).

However, 95% has some advantages too. For instance, it shares (in the case of a normal posterior
distribution) an intuitive relationship with the standard deviation and it conveys a more accurate
image of the (artificial) bounds of the distribution. Also, because it is wider, it makes analyses more
conservative (i.e., the probability of covering 0 is larger for the 95% CI than for lower ranges such
as 89%), which is a good thing in the context of the reproducibility crisis.

A 95% equal-tailed interval (ETI) has 2.5% of the distribution on either side of its limits. It indi-
cates the 2.5th percentile and the 97.5h percentile. In symmetric distributions, the two methods of
computing credible intervals, the ETI and the HDI, return similar results.

This is not the case for skewed distributions. Indeed, it is possible that parameter values in the
ETI have lower credibility (are less probable) than parameter values outside the ETI. This property
seems undesirable as a summary of the credible values in a distribution.

On the other hand, the ETI range does change when transformations are applied to the distribution
(for instance, for a log odds scale to probabilities): the lower and higher bounds of the transformed
distribution will correspond to the transformed lower and higher bounds of the original distribution.
On the contrary, applying transformations to the distribution will change the resulting HDI.

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/blog/posts/bayestestr_95/

bic_to_bf 27

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

References

DiCiccio, T. J. and B. Efron. (1996). Bootstrap Confidence Intervals. Statistical Science. 11(3):
189–212. 10.1214/ss/1032280214

See Also

Other ci: ci(), eti(), hdi(), si(), spi()

Examples

posterior <- rnorm(1000)
bci(posterior)
bci(posterior, ci = c(0.80, 0.89, 0.95))

bic_to_bf Convert BIC indices to Bayes Factors via the BIC-approximation
method.

Description

The difference between two Bayesian information criterion (BIC) indices of two models can be
used to approximate Bayes factors via:

BF10 = e(BIC0−BIC1)/2

Usage

bic_to_bf(bic, denominator, log = FALSE)

Arguments

bic A vector of BIC values.

denominator The BIC value to use as a denominator (to test against).

log If TRUE, return the log(BF).

Value

The Bayes Factors corresponding to the BIC values against the denominator.

28 check_prior

References

Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psycho-
nomic bulletin & review, 14(5), 779-804

Examples

bic1 <- BIC(lm(Sepal.Length ~ 1, data = iris))
bic2 <- BIC(lm(Sepal.Length ~ Species, data = iris))
bic3 <- BIC(lm(Sepal.Length ~ Species + Petal.Length, data = iris))
bic4 <- BIC(lm(Sepal.Length ~ Species * Petal.Length, data = iris))

bic_to_bf(c(bic1, bic2, bic3, bic4), denominator = bic1)

check_prior Check if Prior is Informative

Description

Performs a simple test to check whether the prior is informative to the posterior. This idea, and the
accompanying heuristics, were discussed in Gelman et al. 2017.

Usage

check_prior(model, method = "gelman", simulate_priors = TRUE, ...)

Arguments

model A stanreg, stanfit, brmsfit, blavaan, or MCMCglmm object.

method Can be "gelman" or "lakeland". For the "gelman" method, if the SD of the
posterior is more than 0.1 times the SD of the prior, then the prior is considered
as informative. For the "lakeland" method, the prior is considered as informa-
tive if the posterior falls within the 95% HDI of the prior.

simulate_priors

Should prior distributions be simulated using simulate_prior() (default; faster)
or sampled via unupdate() (slower, more accurate).

... Currently not used.

Value

A data frame with two columns: The parameter names and the quality of the prior (which might be
"informative", "uninformative") or "not determinable" if the prior distribution could not be
determined).

References

Gelman, A., Simpson, D., and Betancourt, M. (2017). The Prior Can Often Only Be Understood in
the Context of the Likelihood. Entropy, 19(10), 555. doi:10.3390/e19100555

https://doi.org/10.3390/e19100555

ci 29

Examples

library(bayestestR)
model <- rstanarm::stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)
check_prior(model, method = "gelman")
check_prior(model, method = "lakeland")

An extreme example where both methods diverge:
model <- rstanarm::stan_glm(mpg ~ wt,

data = mtcars[1:3,],
prior = normal(-3.3, 1, FALSE),
prior_intercept = normal(0, 1000, FALSE),
refresh = 0

)
check_prior(model, method = "gelman")
check_prior(model, method = "lakeland")
can provide visual confirmation to the Lakeland method
plot(si(model, verbose = FALSE))

ci Confidence/Credible/Compatibility Interval (CI)

Description

Compute Confidence/Credible/Compatibility Intervals (CI) or Support Intervals (SI) for Bayesian
and frequentist models. The Documentation is accessible for:

Usage

ci(x, ...)

S3 method for class 'numeric'
ci(x, ci = 0.95, method = "ETI", verbose = TRUE, BF = 1, ...)

S3 method for class 'data.frame'
ci(x, ci = 0.95, method = "ETI", BF = 1, rvar_col = NULL, verbose = TRUE, ...)

S3 method for class 'sim.merMod'
ci(
x,
ci = 0.95,
method = "ETI",
effects = c("fixed", "random", "all"),
parameters = NULL,
verbose = TRUE,
...

30 ci

)

S3 method for class 'sim'
ci(x, ci = 0.95, method = "ETI", parameters = NULL, verbose = TRUE, ...)

S3 method for class 'stanreg'
ci(
x,
ci = 0.95,
method = "ETI",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
BF = 1,
...

)

S3 method for class 'brmsfit'
ci(
x,
ci = 0.95,
method = "ETI",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
BF = 1,
...

)

S3 method for class 'BFBayesFactor'
ci(x, ci = 0.95, method = "ETI", verbose = TRUE, BF = 1, ...)

S3 method for class 'MCMCglmm'
ci(x, ci = 0.95, method = "ETI", verbose = TRUE, ...)

Arguments

x A stanreg or brmsfit model, or a vector representing a posterior distribution.

... Currently not used.

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to 0.95 (95%).

method Can be "ETI" (default), "HDI", "BCI", "SPI" or "SI".

verbose Toggle off warnings.

BF The amount of support required to be included in the support interval.

ci 31

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

Details

• Bayesian models

• Frequentist models

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

Note

When it comes to interpretation, we recommend thinking of the CI in terms of an "uncertainty"
or "compatibility" interval, the latter being defined as "Given any value in the interval and the
background assumptions, the data should not seem very surprising" (Gelman & Greenland 2019).

There is also a plot()-method implemented in the see-package.

References

Gelman A, Greenland S. Are confidence intervals better termed "uncertainty intervals"? BMJ
2019;l5381. 10.1136/bmj.l5381

See Also

Other ci: bci(), eti(), hdi(), si(), spi()

Examples

library(bayestestR)

posterior <- rnorm(1000)
ci(posterior, method = "ETI")

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/parameters/reference/ci.default.html
https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

32 contr.equalprior

ci(posterior, method = "HDI")

df <- data.frame(replicate(4, rnorm(100)))
ci(df, method = "ETI", ci = c(0.80, 0.89, 0.95))
ci(df, method = "HDI", ci = c(0.80, 0.89, 0.95))

model <- suppressWarnings(
stan_glm(mpg ~ wt, data = mtcars, chains = 2, iter = 200, refresh = 0)

)
ci(model, method = "ETI", ci = c(0.80, 0.89))
ci(model, method = "HDI", ci = c(0.80, 0.89))

bf <- ttestBF(x = rnorm(100, 1, 1))
ci(bf, method = "ETI")
ci(bf, method = "HDI")

model <- emtrends(model, ~1, "wt", data = mtcars)
ci(model, method = "ETI")
ci(model, method = "HDI")

contr.equalprior Contrast Matrices for Equal Marginal Priors in Bayesian Estimation

Description

Build contrasts for factors with equal marginal priors on all levels. The 3 functions give the same
orthogonal contrasts, but are scaled differently to allow different prior specifications (see ’Details’).
Implementation from Singmann & Gronau’s bfrms, following the description in Rouder, Morey,
Speckman, & Province (2012, p. 363).

Usage

contr.equalprior(n, contrasts = TRUE, sparse = FALSE)

contr.equalprior_pairs(n, contrasts = TRUE, sparse = FALSE)

contr.equalprior_deviations(n, contrasts = TRUE, sparse = FALSE)

Arguments

n a vector of levels for a factor, or the number of levels.

contrasts a logical indicating whether contrasts should be computed.

sparse logical indicating if the result should be sparse (of class dgCMatrix), using pack-
age Matrix.

https://github.com/bayesstuff/bfrms/
https://CRAN.R-project.org/package=Matrix

contr.equalprior 33

Details

When using stats::contr.treatment, each dummy variable is the difference between each level
and the reference level. While this is useful if setting different priors for each coefficient, it should
not be used if one is trying to set a general prior for differences between means, as it (as well as
stats::contr.sum and others) results in unequal marginal priors on the means the the difference
between them.

library(brms)

data <- data.frame(
group = factor(rep(LETTERS[1:4], each = 3)),
y = rnorm(12)

)

contrasts(data$group) # R's default contr.treatment
#> B C D
#> A 0 0 0
#> B 1 0 0
#> C 0 1 0
#> D 0 0 1

model_prior <- brm(
y ~ group, data = data,
sample_prior = "only",
Set the same priors on the 3 dummy variable
(Using an arbitrary scale)
prior = set_prior("normal(0, 10)", coef = c("groupB", "groupC", "groupD"))

)

est <- emmeans::emmeans(model_prior, pairwise ~ group)

point_estimate(est, centr = "mean", disp = TRUE)
#> Point Estimate
#>
#> Parameter | Mean | SD
#> -------------------------
#> A | -0.01 | 6.35
#> B | -0.10 | 9.59
#> C | 0.11 | 9.55
#> D | -0.16 | 9.52
#> A - B | 0.10 | 9.94
#> A - C | -0.12 | 9.96
#> A - D | 0.15 | 9.87
#> B - C | -0.22 | 14.38
#> B - D | 0.05 | 14.14
#> C - D | 0.27 | 14.00

We can see that the priors for means aren’t all the same (A having a more narrow prior), and likewise

34 contr.equalprior

for the pairwise differences (priors for differences from A are more narrow).

The solution is to use one of the methods provided here, which do result in marginally equal priors
on means differences between them. Though this will obscure the interpretation of parameters,
setting equal priors on means and differences is important for they are useful for specifying equal
priors on all means in a factor and their differences correct estimation of Bayes factors for contrasts
and order restrictions of multi-level factors (where k>2). See info on specifying correct priors for
factors with more than 2 levels in the Bayes factors vignette.

NOTE: When setting priors on these dummy variables, always:

1. Use priors that are centered on 0! Other location/centered priors are meaningless!

2. Use identically-scaled priors on all the dummy variables of a single factor!

contr.equalprior returns the original orthogonal-normal contrasts as described in Rouder, Morey,
Speckman, & Province (2012, p. 363). Setting contrasts = FALSE returns the In − 1

n matrix.

contr.equalprior_pairs:
Useful for setting priors in terms of pairwise differences between means - the scales of the priors
defines the prior distribution of the pair-wise differences between all pairwise differences (e.g., A
- B, B - C, etc.).

contrasts(data$group) <- contr.equalprior_pairs
contrasts(data$group)
#> [,1] [,2] [,3]
#> A 0.0000000 0.6123724 0.0000000
#> B -0.1893048 -0.2041241 0.5454329
#> C -0.3777063 -0.2041241 -0.4366592
#> D 0.5670111 -0.2041241 -0.1087736

model_prior <- brm(
y ~ group, data = data,
sample_prior = "only",
Set the same priors on the 3 dummy variable
(Using an arbitrary scale)
prior = set_prior("normal(0, 10)", coef = c("group1", "group2", "group3"))

)

est <- emmeans(model_prior, pairwise ~ group)

point_estimate(est, centr = "mean", disp = TRUE)
#> Point Estimate
#>
#> Parameter | Mean | SD
#> -------------------------
#> A | -0.31 | 7.46
#> B | -0.24 | 7.47
#> C | -0.34 | 7.50
#> D | -0.30 | 7.25
#> A - B | -0.08 | 10.00
#> A - C | 0.03 | 10.03

https://easystats.github.io/bayestestR/articles/bayes_factors.html

convert_bayesian_as_frequentist 35

#> A - D | -0.01 | 9.85
#> B - C | 0.10 | 10.28
#> B - D | 0.06 | 9.94
#> C - D | -0.04 | 10.18

All means have the same prior distribution, and the distribution of the differences matches the
prior we set of "normal(0, 10)". Success!

contr.equalprior_deviations:
Useful for setting priors in terms of the deviations of each mean from the grand mean - the scales
of the priors defines the prior distribution of the distance (above, below) the mean of one of the
levels might have from the overall mean. (See examples.)

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if contrasts is FALSE.

References

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for
ANOVA designs. Journal of Mathematical Psychology, 56(5), 356-374. https://doi.org/10.1016/j.jmp.2012.08.001

Examples

contr.equalprior(2) # Q_2 in Rouder et al. (2012, p. 363)

contr.equalprior(5) # equivalent to Q_5 in Rouder et al. (2012, p. 363)

check decomposition
Q3 <- contr.equalprior(3)
Q3 %*% t(Q3) ## 2/3 on diagonal and -1/3 on off-diagonal elements

convert_bayesian_as_frequentist

Convert (refit) a Bayesian model to frequentist

Description

Refit Bayesian model as frequentist. Can be useful for comparisons.

Usage

convert_bayesian_as_frequentist(model, data = NULL, REML = TRUE)

bayesian_as_frequentist(model, data = NULL, REML = TRUE)

36 density_at

Arguments

model A Bayesian model.

data Data used by the model. If NULL, will try to extract it from the model.

REML For mixed effects, should models be estimated using restricted maximum likeli-
hood (REML) (TRUE, default) or maximum likelihood (FALSE)?

Examples

Rstanarm ----------------------
Simple regressions
model <- rstanarm::stan_glm(Sepal.Length ~ Species,

data = iris, chains = 2, refresh = 0
)
bayesian_as_frequentist(model)

model <- rstanarm::stan_glm(vs ~ mpg,
family = "binomial",
data = mtcars, chains = 2, refresh = 0

)
bayesian_as_frequentist(model)

Mixed models
model <- rstanarm::stan_glmer(

Sepal.Length ~ Petal.Length + (1 | Species),
data = iris, chains = 2, refresh = 0

)
bayesian_as_frequentist(model)

model <- rstanarm::stan_glmer(vs ~ mpg + (1 | cyl),
family = "binomial",
data = mtcars, chains = 2, refresh = 0

)
bayesian_as_frequentist(model)

density_at Density Probability at a Given Value

Description

Compute the density value at a given point of a distribution (i.e., the value of the y axis of a value x
of a distribution).

Usage

density_at(posterior, x, precision = 2^10, method = "kernel", ...)

describe_posterior 37

Arguments

posterior Vector representing a posterior distribution.

x The value of which to get the approximate probability.

precision Number of points of density data. See the n parameter in density.

method Density estimation method. Can be "kernel" (default), "logspline" or "KernSmooth".

... Currently not used.

Examples

library(bayestestR)
posterior <- distribution_normal(n = 10)
density_at(posterior, 0)
density_at(posterior, c(0, 1))

describe_posterior Describe Posterior Distributions

Description

Compute indices relevant to describe and characterize the posterior distributions.

Usage

describe_posterior(posterior, ...)

S3 method for class 'numeric'
describe_posterior(
posterior,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,
BF = 1,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
describe_posterior(
posterior,
centrality = "median",

38 describe_posterior

dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,
BF = 1,
rvar_col = NULL,
verbose = TRUE,
...

)

S3 method for class 'stanreg'
describe_posterior(
posterior,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,
bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
priors = FALSE,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
BF = 1,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
describe_posterior(
posterior,
centrality = "median",
dispersion = FALSE,
ci = 0.95,
ci_method = "eti",
test = c("p_direction", "rope"),
rope_range = "default",
rope_ci = 0.95,
keep_iterations = FALSE,

describe_posterior 39

bf_prior = NULL,
diagnostic = c("ESS", "Rhat"),
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all", "location",
"distributional", "auxiliary"),

parameters = NULL,
BF = 1,
priors = FALSE,
verbose = TRUE,
...

)

Arguments

posterior A vector, data frame or model of posterior draws. bayestestR supports a wide
range of models (see methods("describe_posterior")) and not all of those
are documented in the ’Usage’ section, because methods for other classes mostly
resemble the arguments of the .numeric method.

... Additional arguments to be passed to or from methods.

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" (see map_estimate()),
"trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively). Dispersion is not available for
"MAP" or "mode" centrality indices.

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to 0.95 (95%).

ci_method The type of index used for Credible Interval. Can be "ETI" (default, see eti()),
"HDI" (see hdi()), "BCI" (see bci()), "SPI" (see spi()), or "SI" (see si()).

test The indices of effect existence to compute. Character (vector) or list with one or
more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test"
(or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For
each "test", the corresponding bayestestR function is called (e.g. rope() or
p_direction()) and its results included in the summary output.

rope_range ROPE’s lower and higher bounds. Should be a vector of two values (e.g.,
c(-0.1, 0.1)), "default" or a list of numeric vectors of the same length as
numbers of parameters. If "default", the bounds are set to x +- 0.1*SD(response).

rope_ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

keep_iterations

If TRUE, will keep all iterations (draws) of bootstrapped or Bayesian models.
They will be added as additional columns named iter_1, iter_2, You
can reshape them to a long format by running reshape_iterations().

bf_prior Distribution representing a prior for the computation of Bayes factors / SI. Used
if the input is a posterior, otherwise (in the case of models) ignored.

BF The amount of support required to be included in the support interval.

40 describe_posterior

verbose Toggle off warnings.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

diagnostic Diagnostic metrics to compute. Character (vector) or list with one or more of
these options: "ESS", "Rhat", "MCSE" or "all".

priors Add the prior used for each parameter.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

One or more components of point estimates (like posterior mean or median), intervals and tests can
be omitted from the summary output by setting the related argument to NULL. For example, test =
NULL and centrality = NULL would only return the HDI (or CI).

References

• Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D. (2019). Indices of Effect
Existence and Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767.
doi:10.3389/fpsyg.2019.02767

• Region of Practical Equivalence (ROPE)

• Bayes factors

Examples

library(bayestestR)

if (require("logspline")) {
x <- rnorm(1000)
describe_posterior(x, verbose = FALSE)
describe_posterior(x,
centrality = "all",
dispersion = TRUE,
test = "all",
verbose = FALSE

)
describe_posterior(x, ci = c(0.80, 0.90), verbose = FALSE)

df <- data.frame(replicate(4, rnorm(100)))
describe_posterior(df, verbose = FALSE)
describe_posterior(

https://doi.org/10.3389/fpsyg.2019.02767
https://easystats.github.io/bayestestR/articles/region_of_practical_equivalence.html
https://easystats.github.io/bayestestR/articles/bayes_factors.html

describe_prior 41

df,
centrality = "all",
dispersion = TRUE,
test = "all",
verbose = FALSE

)
describe_posterior(df, ci = c(0.80, 0.90), verbose = FALSE)

df <- data.frame(replicate(4, rnorm(20)))
head(reshape_iterations(

describe_posterior(df, keep_iterations = TRUE, verbose = FALSE)
))

}

rstanarm models

if (require("rstanarm") && require("emmeans")) {

model <- suppressWarnings(
stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)

)
describe_posterior(model)
describe_posterior(model, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(model, ci = c(0.80, 0.90))
describe_posterior(model, rope_range = list(c(-10, 5), c(-0.2, 0.2), "default"))

emmeans estimates

describe_posterior(emtrends(model, ~1, "wt"))

}

BayesFactor objects

if (require("BayesFactor")) {

bf <- ttestBF(x = rnorm(100, 1, 1))
describe_posterior(bf)
describe_posterior(bf, centrality = "all", dispersion = TRUE, test = "all")
describe_posterior(bf, ci = c(0.80, 0.90))

}

describe_prior Describe Priors

Description

Returns a summary of the priors used in the model.

Usage

describe_prior(model, ...)

42 describe_prior

S3 method for class 'brmsfit'
describe_prior(
model,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all", "location",
"distributional", "auxiliary"),

parameters = NULL,
...

)

Arguments

model A Bayesian model.
... Currently not used.
effects Should results for fixed effects, random effects or both be returned? Only applies

to mixed models. May be abbreviated.
component Should results for all parameters, parameters for the conditional model or the

zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Examples

library(bayestestR)

rstanarm models

if (require("rstanarm")) {

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
describe_prior(model)

}

brms models

if (require("brms")) {

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
describe_prior(model)

}

BayesFactor objects

if (require("BayesFactor")) {

bf <- ttestBF(x = rnorm(100, 1, 1))
describe_prior(bf)

}

diagnostic_draws 43

diagnostic_draws Diagnostic values for each iteration

Description

Returns the accumulated log-posterior, the average Metropolis acceptance rate, divergent transi-
tions, treedepth rather than terminated its evolution normally.

Usage

diagnostic_draws(posterior, ...)

Arguments

posterior A stanreg, stanfit, brmsfit, or blavaan object.

... Currently not used.

Examples

set.seed(333)

if (require("brms", quietly = TRUE)) {
model <- suppressWarnings(brm(mpg ~ wt * cyl * vs,

data = mtcars,
iter = 100, control = list(adapt_delta = 0.80),
refresh = 0

))
diagnostic_draws(model)

}

diagnostic_posterior Posteriors Sampling Diagnostic

Description

Extract diagnostic metrics (Effective Sample Size (ESS), Rhat and Monte Carlo Standard Error
MCSE).

44 diagnostic_posterior

Usage

diagnostic_posterior(posterior, ...)

Default S3 method:
diagnostic_posterior(posterior, diagnostic = c("ESS", "Rhat"), ...)

S3 method for class 'stanreg'
diagnostic_posterior(
posterior,
diagnostic = "all",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'brmsfit'
diagnostic_posterior(
posterior,
diagnostic = "all",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

Arguments

posterior A stanreg, stanfit, brmsfit, or blavaan object.

... Currently not used.

diagnostic Diagnostic metrics to compute. Character (vector) or list with one or more of
these options: "ESS", "Rhat", "MCSE" or "all".

effects Should parameters for fixed effects, random effects or both be returned? Only
applies to mixed models. May be abbreviated.

component Should all predictor variables, predictor variables for the conditional model, the
zero-inflated part of the model, the dispersion term or the instrumental variables
be returned? Applies to models with zero-inflated and/or dispersion formula, or
to models with instrumental variable (so called fixed-effects regressions). May
be abbreviated. Note that the conditional component is also called count or
mean component, depending on the model.

parameters Regular expression pattern that describes the parameters that should be returned.

Details

Effective Sample (ESS) should be as large as possible, although for most applications, an effective
sample size greater than 1000 is sufficient for stable estimates (Bürkner, 2017). The ESS corre-

disgust 45

sponds to the number of independent samples with the same estimation power as the N autocorre-
lated samples. It is is a measure of "how much independent information there is in autocorrelated
chains" (Kruschke 2015, p182-3).

Rhat should be the closest to 1. It should not be larger than 1.1 (Gelman and Rubin, 1992) or 1.01
(Vehtari et al., 2019). The split Rhat statistic quantifies the consistency of an ensemble of Markov
chains.

Monte Carlo Standard Error (MCSE) is another measure of accuracy of the chains. It is defined
as standard deviation of the chains divided by their effective sample size (the formula for mcse()
is from Kruschke 2015, p. 187). The MCSE "provides a quantitative suggestion of how big the
estimation noise is".

References

• Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple se-
quences. Statistical science, 7(4), 457-472.

• Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., and Bürkner, P. C. (2019). Rank-
normalization, folding, and localization: An improved Rhat for assessing convergence of
MCMC. arXiv preprint arXiv:1903.08008.

• Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Aca-
demic Press.

Examples

rstanarm models

model <- suppressWarnings(
rstanarm::stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)

)
diagnostic_posterior(model)

brms models

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
diagnostic_posterior(model)

disgust Moral Disgust Judgment

Description

A sample (simulated) dataset, used in tests and some examples.

46 distribution

Format

A data frame with 500 rows and 5 variables:

score Score on the questionnaire, which ranges from 0 to 50 with higher scores representing harsher
moral judgment

condition one of three conditions, differing by the odor present in the room: a pleasant scent
associated with cleanliness (lemon), a disgusting scent (sulfur), and a control condition in
which no unusual odor is present

data("disgust")
head(disgust, n = 5)
#> score condition
#> 1 13 control
#> 2 26 control
#> 3 30 control
#> 4 23 control
#> 5 34 control

Author(s)

Richard D. Morey

distribution Empirical Distributions

Description

Generate a sequence of n-quantiles, i.e., a sample of size n with a near-perfect distribution.

Usage

distribution(type = "normal", ...)

distribution_custom(n, type = "norm", ..., random = FALSE)

distribution_beta(n, shape1, shape2, ncp = 0, random = FALSE, ...)

distribution_binomial(n, size = 1, prob = 0.5, random = FALSE, ...)

distribution_binom(n, size = 1, prob = 0.5, random = FALSE, ...)

distribution_cauchy(n, location = 0, scale = 1, random = FALSE, ...)

distribution_chisquared(n, df, ncp = 0, random = FALSE, ...)

distribution_chisq(n, df, ncp = 0, random = FALSE, ...)

distribution 47

distribution_gamma(n, shape, scale = 1, random = FALSE, ...)

distribution_mixture_normal(n, mean = c(-3, 3), sd = 1, random = FALSE, ...)

distribution_normal(n, mean = 0, sd = 1, random = FALSE, ...)

distribution_gaussian(n, mean = 0, sd = 1, random = FALSE, ...)

distribution_nbinom(n, size, prob, mu, phi, random = FALSE, ...)

distribution_poisson(n, lambda = 1, random = FALSE, ...)

distribution_student(n, df, ncp, random = FALSE, ...)

distribution_t(n, df, ncp, random = FALSE, ...)

distribution_student_t(n, df, ncp, random = FALSE, ...)

distribution_tweedie(n, xi = NULL, mu, phi, power = NULL, random = FALSE, ...)

distribution_uniform(n, min = 0, max = 1, random = FALSE, ...)

rnorm_perfect(n, mean = 0, sd = 1)

Arguments

type Can be any of the names from base R’s Distributions, like "cauchy", "pois" or
"beta".

... Arguments passed to or from other methods.

n the number of observations

random Generate near-perfect or random (simple wrappers for the base R r* functions)
distributions.

shape1, shape2 non-negative parameters of the Beta distribution.

ncp non-centrality parameter.

size number of trials (zero or more).

prob probability of success on each trial.

location, scale location and scale parameters.

df degrees of freedom (non-negative, but can be non-integer).

shape Shape parameter.

mean vector of means.

sd vector of standard deviations.

mu the mean

phi Corresponding to glmmTMB’s implementation of nbinom distribution, where size=mu/phi.

48 effective_sample

lambda vector of (non-negative) means.

xi For tweedie distributions, the value of xi such that the variance is var(Y) = phi
* mu^xi.

power Alias for xi.

min, max lower and upper limits of the distribution. Must be finite.

Details

When random = FALSE, these function return q*(ppoints(n), ...).

Examples

library(bayestestR)
x <- distribution(n = 10)
plot(density(x))

x <- distribution(type = "gamma", n = 100, shape = 2)
plot(density(x))

effective_sample Effective Sample Size (ESS)

Description

This function returns the effective sample size (ESS).

Usage

effective_sample(model, ...)

S3 method for class 'brmsfit'
effective_sample(
model,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

S3 method for class 'stanreg'
effective_sample(
model,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

effective_sample 49

Arguments

model A stanreg, stanfit, brmsfit, blavaan, or MCMCglmm object.

... Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

Effective Sample (ESS) should be as large as possible, altough for most applications, an effective
sample size greater than 1,000 is sufficient for stable estimates (Bürkner, 2017). The ESS corre-
sponds to the number of independent samples with the same estimation power as the N autocorre-
lated samples. It is is a measure of “how much independent information there is in autocorrelated
chains” (Kruschke 2015, p182-3).

Value

A data frame with two columns: Parameter name and effective sample size (ESS).

References

• Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Aca-
demic Press.

• Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal
of Statistical Software, 80(1), 1-28

Examples

library(rstanarm)
model <- suppressWarnings(

stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
)
effective_sample(model)

50 equivalence_test

equivalence_test Test for Practical Equivalence

Description

Perform a Test for Practical Equivalence for Bayesian and frequentist models.

Usage

equivalence_test(x, ...)

Default S3 method:
equivalence_test(x, ...)

S3 method for class 'data.frame'
equivalence_test(
x,
range = "default",
ci = 0.95,
rvar_col = NULL,
verbose = TRUE,
...

)

S3 method for class 'stanreg'
equivalence_test(
x,
range = "default",
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
equivalence_test(
x,
range = "default",
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

equivalence_test 51

)

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.

range ROPE’s lower and higher bounds. Should be "default" or depending on the
number of outcome variables a vector or a list. For models with one response,
range can be:

• a vector of length two (e.g., c(-0.1, 0.1)),
• a list of numeric vector of the same length as numbers of parameters (see

’Examples’).
• a list of named numeric vectors, where names correspond to parameter

names. In this case, all parameters that have no matching name in range
will be set to "default".

In multivariate models, range should be a list with a numeric vectors for each
response variable. Vector names should correspond to the name of the response
variables. If "default" and input is a vector, the range is set to c(-0.1, 0.1).
If "default" and input is a Bayesian model, rope_range() is used.

ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

Documentation is accessible for:

• Bayesian models

• Frequentist models

For Bayesian models, the Test for Practical Equivalence is based on the "HDI+ROPE decision
rule" (Kruschke, 2014, 2018) to check whether parameter values should be accepted or rejected
against an explicitly formulated "null hypothesis" (i.e., a ROPE). In other words, it checks the

https://easystats.github.io/bayestestR/reference/equivalence_test.html
https://easystats.github.io/parameters/reference/equivalence_test.lm.html

52 equivalence_test

percentage of the 89% HDI that is the null region (the ROPE). If this percentage is sufficiently low,
the null hypothesis is rejected. If this percentage is sufficiently high, the null hypothesis is accepted.

Using the ROPE and the HDI, Kruschke (2018) suggests using the percentage of the 95% (or 89%,
considered more stable) HDI that falls within the ROPE as a decision rule. If the HDI is completely
outside the ROPE, the "null hypothesis" for this parameter is "rejected". If the ROPE completely
covers the HDI, i.e., all most credible values of a parameter are inside the region of practical equiv-
alence, the null hypothesis is accepted. Else, it’s undecided whether to accept or reject the null
hypothesis. If the full ROPE is used (i.e., 100% of the HDI), then the null hypothesis is rejected or
accepted if the percentage of the posterior within the ROPE is smaller than to 2.5% or greater than
97.5%. Desirable results are low proportions inside the ROPE (the closer to zero the better).

Some attention is required for finding suitable values for the ROPE limits (argument range). See
’Details’ in rope_range() for further information.

Multicollinearity: Non-independent covariates

When parameters show strong correlations, i.e. when covariates are not independent, the joint
parameter distributions may shift towards or away from the ROPE. In such cases, the test for prac-
tical equivalence may have inappropriate results. Collinearity invalidates ROPE and hypothesis
testing based on univariate marginals, as the probabilities are conditional on independence. Most
problematic are the results of the "undecided" parameters, which may either move further towards
"rejection" or away from it (Kruschke 2014, 340f).

equivalence_test() performs a simple check for pairwise correlations between parameters, but
as there can be collinearity between more than two variables, a first step to check the assumptions
of this hypothesis testing is to look at different pair plots. An even more sophisticated check is the
projection predictive variable selection (Piironen and Vehtari 2017).

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the HDI.

• ROPE_low, ROPE_high The limits of the ROPE. These values are identical for all parameters.

• ROPE_Percentage The proportion of the HDI that lies inside the ROPE.

• ROPE_Equivalence The "test result", as character. Either "rejected", "accepted" or "unde-
cided".

• HDI_low , HDI_high The lower and upper HDI limits for the parameters.

Note

There is a print()-method with a digits-argument to control the amount of digits in the output,
and there is a plot()-method to visualize the results from the equivalence-test (for models only).

https://easystats.github.io/see/articles/bayestestR.html

estimate_density 53

References

• Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation.
Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi:10.1177/
2515245918771304

• Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.
Academic Press

• Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model
selection. Statistics and Computing, 27(3), 711–735. doi:10.1007/s112220169649y

Examples

library(bayestestR)

equivalence_test(x = rnorm(1000, 0, 0.01), range = c(-0.1, 0.1))
equivalence_test(x = rnorm(1000, 0, 1), range = c(-0.1, 0.1))
equivalence_test(x = rnorm(1000, 1, 0.01), range = c(-0.1, 0.1))
equivalence_test(x = rnorm(1000, 1, 1), ci = c(.50, .99))

print more digits
test <- equivalence_test(x = rnorm(1000, 1, 1), ci = c(.50, .99))
print(test, digits = 4)

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
equivalence_test(model)
multiple ROPE ranges - asymmetric, symmetric, default
equivalence_test(model, range = list(c(10, 40), c(-5, -4), "default"))
named ROPE ranges
equivalence_test(model, range = list(wt = c(-5, -4), `(Intercept)` = c(10, 40)))

plot result
test <- equivalence_test(model)
plot(test)

equivalence_test(emmeans::emtrends(model, ~1, "wt", data = mtcars))

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
equivalence_test(model)

bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
equivalence_test(bf)

estimate_density Density Estimation

https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1007/s11222-016-9649-y

54 estimate_density

Description

This function is a wrapper over different methods of density estimation. By default, it uses the base
R density with by default uses a different smoothing bandwidth ("SJ") from the legacy default
implemented the base R density function ("nrd0"). However, Deng and Wickham suggest that
method = "KernSmooth" is the fastest and the most accurate.

Usage

estimate_density(x, ...)

S3 method for class 'data.frame'
estimate_density(
x,
method = "kernel",
precision = 2^10,
extend = FALSE,
extend_scale = 0.1,
bw = "SJ",
ci = NULL,
select = NULL,
by = NULL,
at = NULL,
rvar_col = NULL,
...

)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

method Density estimation method. Can be "kernel" (default), "logspline" or "KernSmooth".

precision Number of points of density data. See the n parameter in density.

extend Extend the range of the x axis by a factor of extend_scale.

extend_scale Ratio of range by which to extend the x axis. A value of 0.1 means that the x
axis will be extended by 1/10 of the range of the data.

bw See the eponymous argument in density. Here, the default has been changed
for "SJ", which is recommended.

ci The confidence interval threshold. Only used when method = "kernel". This
feature is experimental, use with caution.

select Character vector of column names. If NULL (the default), all numeric variables
will be selected. Other arguments from datawizard::extract_column_names()
(such as exclude) can also be used.

estimate_density 55

by Optional character vector. If not NULL and input is a data frame, density estima-
tion is performed for each group (subsets) indicated by by. See examples.

at Deprecated in favour of by.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

Note

There is also a plot()-method implemented in the see-package.

References

Deng, H., & Wickham, H. (2011). Density estimation in R. Electronic publication.

Examples

library(bayestestR)

set.seed(1)
x <- rnorm(250, mean = 1)

Basic usage
density_kernel <- estimate_density(x) # default method is "kernel"

hist(x, prob = TRUE)
lines(density_kernel$x, density_kernel$y, col = "black", lwd = 2)
lines(density_kernel$x, density_kernel$CI_low, col = "gray", lty = 2)
lines(density_kernel$x, density_kernel$CI_high, col = "gray", lty = 2)
legend("topright",

legend = c("Estimate", "95% CI"),
col = c("black", "gray"), lwd = 2, lty = c(1, 2)

)

Other Methods
density_logspline <- estimate_density(x, method = "logspline")
density_KernSmooth <- estimate_density(x, method = "KernSmooth")
density_mixture <- estimate_density(x, method = "mixture")

hist(x, prob = TRUE)
lines(density_kernel$x, density_kernel$y, col = "black", lwd = 2)
lines(density_logspline$x, density_logspline$y, col = "red", lwd = 2)
lines(density_KernSmooth$x, density_KernSmooth$y, col = "blue", lwd = 2)
lines(density_mixture$x, density_mixture$y, col = "green", lwd = 2)

Extension
density_extended <- estimate_density(x, extend = TRUE)
density_default <- estimate_density(x, extend = FALSE)

hist(x, prob = TRUE)
lines(density_extended$x, density_extended$y, col = "red", lwd = 3)
lines(density_default$x, density_default$y, col = "black", lwd = 3)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

56 eti

Multiple columns
head(estimate_density(iris))
head(estimate_density(iris, select = "Sepal.Width"))

Grouped data
head(estimate_density(iris, by = "Species"))
head(estimate_density(iris$Petal.Width, by = iris$Species))

rstanarm models

library(rstanarm)
model <- suppressWarnings(

stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
)
head(estimate_density(model))

library(emmeans)
head(estimate_density(emtrends(model, ~1, "wt", data = mtcars)))

brms models

library(brms)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
estimate_density(model)

eti Equal-Tailed Interval (ETI)

Description

Compute the Equal-Tailed Interval (ETI) of posterior distributions using the quantiles method.
The probability of being below this interval is equal to the probability of being above it. The ETI
can be used in the context of uncertainty characterisation of posterior distributions as Credible
Interval (CI).

Usage

eti(x, ...)

S3 method for class 'numeric'
eti(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'data.frame'
eti(x, ci = 0.95, rvar_col = NULL, verbose = TRUE, ...)

S3 method for class 'stanreg'
eti(

eti 57

x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
eti(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'get_predicted'
eti(x, ci = 0.95, use_iterations = FALSE, verbose = TRUE, ...)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

verbose Toggle off warnings.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

58 eti

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

Details

Unlike equal-tailed intervals (see eti()) that typically exclude 2.5% from each tail of the distribu-
tion and always include the median, the HDI is not equal-tailed and therefore always includes the
mode(s) of posterior distributions. While this can be useful to better represent the credibility mass
of a distribution, the HDI also has some limitations. See spi() for details.

The 95% or 89% Credible Intervals (CI) are two reasonable ranges to characterize the uncertainty
related to the estimation (see here for a discussion about the differences between these two values).

The 89% intervals (ci = 0.89) are deemed to be more stable than, for instance, 95% intervals (Kr-
uschke, 2014). An effective sample size of at least 10.000 is recommended if one wants to estimate
95% intervals with high precision (Kruschke, 2014, p. 183ff). Unfortunately, the default number of
posterior samples for most Bayes packages (e.g., rstanarm or brms) is only 4.000 (thus, you might
want to increase it when fitting your model). Moreover, 89 indicates the arbitrariness of interval
limits - its only remarkable property is being the highest prime number that does not exceed the
already unstable 95% threshold (McElreath, 2015).

However, 95% has some advantages too. For instance, it shares (in the case of a normal posterior
distribution) an intuitive relationship with the standard deviation and it conveys a more accurate
image of the (artificial) bounds of the distribution. Also, because it is wider, it makes analyses more
conservative (i.e., the probability of covering 0 is larger for the 95% CI than for lower ranges such
as 89%), which is a good thing in the context of the reproducibility crisis.

A 95% equal-tailed interval (ETI) has 2.5% of the distribution on either side of its limits. It indi-
cates the 2.5th percentile and the 97.5h percentile. In symmetric distributions, the two methods of
computing credible intervals, the ETI and the HDI, return similar results.

This is not the case for skewed distributions. Indeed, it is possible that parameter values in the
ETI have lower credibility (are less probable) than parameter values outside the ETI. This property
seems undesirable as a summary of the credible values in a distribution.

On the other hand, the ETI range does change when transformations are applied to the distribution
(for instance, for a log odds scale to probabilities): the lower and higher bounds of the transformed
distribution will correspond to the transformed lower and higher bounds of the original distribution.
On the contrary, applying transformations to the distribution will change the resulting HDI.

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

See Also

Other ci: bci(), ci(), hdi(), si(), spi()

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/blog/posts/bayestestr_95/

hdi 59

Examples

library(bayestestR)

posterior <- rnorm(1000)
eti(posterior)
eti(posterior, ci = c(0.80, 0.89, 0.95))

df <- data.frame(replicate(4, rnorm(100)))
eti(df)
eti(df, ci = c(0.80, 0.89, 0.95))

model <- suppressWarnings(
rstanarm::stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)

)
eti(model)
eti(model, ci = c(0.80, 0.89, 0.95))

eti(emmeans::emtrends(model, ~1, "wt", data = mtcars))

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
eti(model)
eti(model, ci = c(0.80, 0.89, 0.95))

bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
eti(bf)
eti(bf, ci = c(0.80, 0.89, 0.95))

hdi Highest Density Interval (HDI)

Description

Compute the Highest Density Interval (HDI) of posterior distributions. All points within this
interval have a higher probability density than points outside the interval. The HDI can be used in
the context of uncertainty characterisation of posterior distributions as Credible Interval (CI).

Usage

hdi(x, ...)

S3 method for class 'numeric'
hdi(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'data.frame'
hdi(x, ci = 0.95, rvar_col = NULL, verbose = TRUE, ...)

S3 method for class 'stanreg'

60 hdi

hdi(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
hdi(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'get_predicted'
hdi(x, ci = 0.95, use_iterations = FALSE, verbose = TRUE, ...)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

verbose Toggle off warnings.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

hdi 61

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

Details

Unlike equal-tailed intervals (see eti()) that typically exclude 2.5% from each tail of the distribu-
tion and always include the median, the HDI is not equal-tailed and therefore always includes the
mode(s) of posterior distributions. While this can be useful to better represent the credibility mass
of a distribution, the HDI also has some limitations. See spi() for details.

The 95% or 89% Credible Intervals (CI) are two reasonable ranges to characterize the uncertainty
related to the estimation (see here for a discussion about the differences between these two values).

The 89% intervals (ci = 0.89) are deemed to be more stable than, for instance, 95% intervals (Kr-
uschke, 2014). An effective sample size of at least 10.000 is recommended if one wants to estimate
95% intervals with high precision (Kruschke, 2014, p. 183ff). Unfortunately, the default number of
posterior samples for most Bayes packages (e.g., rstanarm or brms) is only 4.000 (thus, you might
want to increase it when fitting your model). Moreover, 89 indicates the arbitrariness of interval
limits - its only remarkable property is being the highest prime number that does not exceed the
already unstable 95% threshold (McElreath, 2015).

However, 95% has some advantages too. For instance, it shares (in the case of a normal posterior
distribution) an intuitive relationship with the standard deviation and it conveys a more accurate
image of the (artificial) bounds of the distribution. Also, because it is wider, it makes analyses more
conservative (i.e., the probability of covering 0 is larger for the 95% CI than for lower ranges such
as 89%), which is a good thing in the context of the reproducibility crisis.

A 95% equal-tailed interval (ETI) has 2.5% of the distribution on either side of its limits. It indi-
cates the 2.5th percentile and the 97.5h percentile. In symmetric distributions, the two methods of
computing credible intervals, the ETI and the HDI, return similar results.

This is not the case for skewed distributions. Indeed, it is possible that parameter values in the
ETI have lower credibility (are less probable) than parameter values outside the ETI. This property
seems undesirable as a summary of the credible values in a distribution.

On the other hand, the ETI range does change when transformations are applied to the distribution
(for instance, for a log odds scale to probabilities): the lower and higher bounds of the transformed
distribution will correspond to the transformed lower and higher bounds of the original distribution.
On the contrary, applying transformations to the distribution will change the resulting HDI.

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

Note

There is also a plot()-method implemented in the see-package.

https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/blog/posts/bayestestr_95/
https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

62 hdi

Author(s)

Credits go to ggdistribute and HDInterval.

References

• Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Aca-
demic Press.

• McElreath, R. (2015). Statistical rethinking: A Bayesian course with examples in R and Stan.
Chapman and Hall/CRC.

See Also

Other interval functions, such as hdi(), eti(), bci(), spi(), si().

Other ci: bci(), ci(), eti(), si(), spi()

Examples

library(bayestestR)

posterior <- rnorm(1000)
hdi(posterior, ci = 0.89)
hdi(posterior, ci = c(0.80, 0.90, 0.95))

bayestestR::hdi(iris[1:4])
bayestestR::hdi(iris[1:4], ci = c(0.80, 0.90, 0.95))

model <- suppressWarnings(
rstanarm::stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)

)
bayestestR::hdi(model)
bayestestR::hdi(model, ci = c(0.80, 0.90, 0.95))

bayestestR::hdi(emmeans::emtrends(model, ~1, "wt", data = mtcars))

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
bayestestR::hdi(model)
bayestestR::hdi(model, ci = c(0.80, 0.90, 0.95))

bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
bayestestR::hdi(bf)
bayestestR::hdi(bf, ci = c(0.80, 0.90, 0.95))

https://github.com/mikemeredith/HDInterval

map_estimate 63

map_estimate Maximum A Posteriori probability estimate (MAP)

Description

Find the Highest Maximum A Posteriori probability estimate (MAP) of a posterior, i.e., the
value associated with the highest probability density (the "peak" of the posterior distribution). In
other words, it is an estimation of the mode for continuous parameters. Note that this function relies
on estimate_density(), which by default uses a different smoothing bandwidth ("SJ") compared
to the legacy default implemented the base R density() function ("nrd0").

Usage

map_estimate(x, ...)

S3 method for class 'numeric'
map_estimate(x, precision = 2^10, method = "kernel", ...)

S3 method for class 'stanreg'
map_estimate(
x,
precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

S3 method for class 'brmsfit'
map_estimate(
x,
precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

S3 method for class 'data.frame'
map_estimate(x, precision = 2^10, method = "kernel", rvar_col = NULL, ...)

S3 method for class 'get_predicted'
map_estimate(
x,

64 map_estimate

precision = 2^10,
method = "kernel",
use_iterations = FALSE,
verbose = TRUE,
...

)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

precision Number of points of density data. See the n parameter in density.

method Density estimation method. Can be "kernel" (default), "logspline" or "KernSmooth".

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

verbose Toggle off warnings.

Value

A numeric value if x is a vector. If x is a model-object, returns a data frame with following columns:

• Parameter: The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

• MAP_Estimate: The MAP estimate for the posterior or each model parameter.

Examples

library(bayestestR)

posterior <- rnorm(10000)

mcse 65

map_estimate(posterior)

plot(density(posterior))
abline(v = as.numeric(map_estimate(posterior)), col = "red")

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
map_estimate(model)

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
map_estimate(model)

mcse Monte-Carlo Standard Error (MCSE)

Description

This function returns the Monte Carlo Standard Error (MCSE).

Usage

mcse(model, ...)

S3 method for class 'stanreg'
mcse(
model,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

Arguments

model A stanreg, stanfit, brmsfit, blavaan, or MCMCglmm object.

... Currently not used.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

66 mediation

Details

Monte Carlo Standard Error (MCSE) is another measure of accuracy of the chains. It is defined
as standard deviation of the chains divided by their effective sample size (the formula for mcse()
is from Kruschke 2015, p. 187). The MCSE “provides a quantitative suggestion of how big the
estimation noise is”.

References

Kruschke, J. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Academic
Press.

Examples

library(bayestestR)

model <- suppressWarnings(
rstanarm::stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)

)
mcse(model)

mediation Summary of Bayesian multivariate-response mediation-models

Description

mediation() is a short summary for multivariate-response mediation-models, i.e. this function
computes average direct and average causal mediation effects of multivariate response models.

Usage

mediation(model, ...)

S3 method for class 'brmsfit'
mediation(
model,
treatment,
mediator,
response = NULL,
centrality = "median",
ci = 0.95,
method = "ETI",
...

)

S3 method for class 'stanmvreg'

mediation 67

mediation(
model,
treatment,
mediator,
response = NULL,
centrality = "median",
ci = 0.95,
method = "ETI",
...

)

Arguments

model A brmsfit or stanmvreg object.

... Not used.

treatment Character, name of the treatment variable (or direct effect) in a (multivariate
response) mediator-model. If missing, mediation() tries to find the treatment
variable automatically, however, this may fail.

mediator Character, name of the mediator variable in a (multivariate response) mediator-
model. If missing, mediation() tries to find the treatment variable automati-
cally, however, this may fail.

response A named character vector, indicating the names of the response variables to be
used for the mediation analysis. Usually can be NULL, in which case these vari-
ables are retrieved automatically. If not NULL, names should match the names
of the model formulas, names(insight::find_response(model, combine =
TRUE)). This can be useful if, for instance, the mediator variable used as pre-
dictor has a different name from the mediator variable used as response. This
might occur when the mediator is transformed in one model, but used "as is"
as response variable in the other model. Example: The mediator m is used as
response variable, but the centered version m_center is used as mediator vari-
able. The second response variable (for the treatment model, with the mediator
as additional predictor), y, is not transformed. Then we could use response like
this: mediation(model, response = c(m = "m_center", y = "y")).

centrality The point-estimates (centrality indices) to compute. Character (vector) or list
with one or more of these options: "median", "mean", "MAP" (see map_estimate()),
"trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".

ci Value or vector of probability of the CI (between 0 and 1) to be estimated. De-
fault to 0.95 (95%).

method Can be "ETI" (default), "HDI", "BCI", "SPI" or "SI".

Details

mediation() returns a data frame with information on the direct effect (mean value of posterior
samples from treatment of the outcome model), mediator effect (mean value of posterior samples
from mediator of the outcome model), indirect effect (mean value of the multiplication of the
posterior samples from mediator of the outcome model and the posterior samples from treatment

68 mediation

of the mediation model) and the total effect (mean value of sums of posterior samples used for the
direct and indirect effect). The proportion mediated is the indirect effect divided by the total effect.

For all values, the 89% credible intervals are calculated by default. Use ci to calculate a different
interval.

The arguments treatment and mediator do not necessarily need to be specified. If missing,
mediation() tries to find the treatment and mediator variable automatically. If this does not work,
specify these variables.

The direct effect is also called average direct effect (ADE), the indirect effect is also called average
causal mediation effects (ACME). See also Tingley et al. 2014 and Imai et al. 2010.

Value

A data frame with direct, indirect, mediator and total effect of a multivariate-response mediation-
model, as well as the proportion mediated. The effect sizes are median values of the posterior
samples (use centrality for other centrality indices).

Note

There is an as.data.frame() method that returns the posterior samples of the effects, which can
be used for further processing in the different bayestestR package.

References

• Imai, K., Keele, L. and Tingley, D. (2010) A General Approach to Causal Mediation Analysis,
Psychological Methods, Vol. 15, No. 4 (December), pp. 309-334.

• Tingley, D., Yamamoto, T., Hirose, K., Imai, K. and Keele, L. (2014). mediation: R package
for Causal Mediation Analysis, Journal of Statistical Software, Vol. 59, No. 5, pp. 1-38.

See Also

The mediation package for a causal mediation analysis in the frequentist framework.

Examples

library(mediation)
library(brms)
library(rstanarm)

load sample data
data(jobs)
set.seed(123)

linear models, for mediation analysis
b1 <- lm(job_seek ~ treat + econ_hard + sex + age, data = jobs)
b2 <- lm(depress2 ~ treat + job_seek + econ_hard + sex + age, data = jobs)
mediation analysis, for comparison with Stan models
m1 <- mediate(b1, b2, sims = 1000, treat = "treat", mediator = "job_seek")

Fit Bayesian mediation model in brms

model_to_priors 69

f1 <- bf(job_seek ~ treat + econ_hard + sex + age)
f2 <- bf(depress2 ~ treat + job_seek + econ_hard + sex + age)
m2 <- brm(f1 + f2 + set_rescor(FALSE), data = jobs, refresh = 0)

Fit Bayesian mediation model in rstanarm
m3 <- suppressWarnings(stan_mvmer(

list(
job_seek ~ treat + econ_hard + sex + age + (1 | occp),
depress2 ~ treat + job_seek + econ_hard + sex + age + (1 | occp)

),
data = jobs,
refresh = 0

))

summary(m1)
mediation(m2, centrality = "mean", ci = 0.95)
mediation(m3, centrality = "mean", ci = 0.95)

model_to_priors Convert model’s posteriors to priors (EXPERIMENTAL)

Description

Convert model’s posteriors to (normal) priors.

Usage

model_to_priors(model, scale_multiply = 3, ...)

Arguments

model A Bayesian model.

scale_multiply The SD of the posterior will be multiplied by this amount before being set as a
prior to avoid overly narrow priors.

... Other arguments for insight::get_prior() or describe_posterior.

Examples

brms models

if (require("brms")) {

formula <- brms::brmsformula(mpg ~ wt + cyl, center = FALSE)

model <- brms::brm(formula, data = mtcars, refresh = 0)
priors <- model_to_priors(model)
priors <- brms::validate_prior(priors, formula, data = mtcars)
priors

70 overlap

model2 <- brms::brm(formula, data = mtcars, prior = priors, refresh = 0)
}

overlap Overlap Coefficient

Description

A method to calculate the overlap coefficient between two empirical distributions (that can be used
as a measure of similarity between two samples).

Usage

overlap(
x,
y,
method_density = "kernel",
method_auc = "trapezoid",
precision = 2^10,
extend = TRUE,
extend_scale = 0.1,
...

)

Arguments

x Vector of x values.
y Vector of x values.
method_density Density estimation method. See estimate_density().
method_auc Area Under the Curve (AUC) estimation method. See area_under_curve().
precision Number of points of density data. See the n parameter in density.
extend Extend the range of the x axis by a factor of extend_scale.
extend_scale Ratio of range by which to extend the x axis. A value of 0.1 means that the x

axis will be extended by 1/10 of the range of the data.
... Currently not used.

Examples

library(bayestestR)

x <- distribution_normal(1000, 2, 0.5)
y <- distribution_normal(1000, 0, 1)

overlap(x, y)
plot(overlap(x, y))

pd_to_p 71

pd_to_p Convert between Probability of Direction (pd) and p-value.

Description

Enables a conversion between Probability of Direction (pd) and p-value.

Usage

pd_to_p(pd, ...)

S3 method for class 'numeric'
pd_to_p(pd, direction = "two-sided", verbose = TRUE, ...)

p_to_pd(p, direction = "two-sided", ...)

convert_p_to_pd(p, direction = "two-sided", ...)

convert_pd_to_p(pd, ...)

Arguments

pd A Probability of Direction (pd) value (between 0 and 1). Can also be a data
frame with a column named pd, p_direction, or PD, as returned by p_direction().
In this case, the column is converted to p-values and the new data frame is re-
turned.

... Arguments passed to or from other methods.

direction What type of p-value is requested or provided. Can be "two-sided" (default,
two tailed) or "one-sided" (one tailed).

verbose Toggle off warnings.

p A p-value.

Details

Conversion is done using the following equation (see Makowski et al., 2019):

When direction = "two-sided"

p = 2× (1− pd)

When direction = "one-sided"

p = 1− pd

Note that this conversion is only valid when the lowest possible values of pd is 0.5 - i.e., when the
posterior represents continuous parameter space (see p_direction()). If any pd < 0.5 are detected,
they are converted to a p of 1, and a warning is given.

72 point_estimate

Value

A p-value or a data frame with a p-value column.

References

Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D. (2019). Indices of Effect
Existence and Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767.
doi:10.3389/fpsyg.2019.02767

Examples

pd_to_p(pd = 0.95)
pd_to_p(pd = 0.95, direction = "one-sided")

point_estimate Point-estimates of posterior distributions

Description

Compute various point-estimates, such as the mean, the median or the MAP, to describe posterior
distributions.

Usage

point_estimate(x, ...)

S3 method for class 'numeric'
point_estimate(x, centrality = "all", dispersion = FALSE, threshold = 0.1, ...)

S3 method for class 'data.frame'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
threshold = 0.1,
rvar_col = NULL,
...

)

S3 method for class 'stanreg'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",

https://doi.org/10.3389/fpsyg.2019.02767

point_estimate 73

"distributional", "auxiliary"),
parameters = NULL,
...

)

S3 method for class 'brmsfit'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

S3 method for class 'BFBayesFactor'
point_estimate(x, centrality = "all", dispersion = FALSE, ...)

S3 method for class 'get_predicted'
point_estimate(
x,
centrality = "all",
dispersion = FALSE,
use_iterations = FALSE,
verbose = TRUE,
...

)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Additional arguments to be passed to or from methods.
centrality The point-estimates (centrality indices) to compute. Character (vector) or list

with one or more of these options: "median", "mean", "MAP" (see map_estimate()),
"trimmed" (which is just mean(x, trim = threshold)), "mode" or "all".

dispersion Logical, if TRUE, computes indices of dispersion related to the estimate(s) (SD
and MAD for mean and median, respectively). Dispersion is not available for
"MAP" or "mode" centrality indices.

threshold For centrality = "trimmed" (i.e. trimmed mean), indicates the fraction (0 to
0.5) of observations to be trimmed from each end of the vector before the mean
is computed.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

74 point_estimate

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

verbose Toggle off warnings.

Note

There is also a plot()-method implemented in the see-package.

References

Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., and Lüdecke, D. (2019). Indices of Effect
Existence and Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767.
doi:10.3389/fpsyg.2019.02767

Examples

library(bayestestR)

point_estimate(rnorm(1000))
point_estimate(rnorm(1000), centrality = "all", dispersion = TRUE)
point_estimate(rnorm(1000), centrality = c("median", "MAP"))

df <- data.frame(replicate(4, rnorm(100)))
point_estimate(df, centrality = "all", dispersion = TRUE)
point_estimate(df, centrality = c("median", "MAP"))

rstanarm models

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
point_estimate(model, centrality = "all", dispersion = TRUE)
point_estimate(model, centrality = c("median", "MAP"))

emmeans estimates

point_estimate(

emmeans::emtrends(model, ~1, "wt", data = mtcars),
centrality = c("median", "MAP")

)

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.3389/fpsyg.2019.02767

p_direction 75

brms models

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
point_estimate(model, centrality = "all", dispersion = TRUE)
point_estimate(model, centrality = c("median", "MAP"))

BayesFactor objects

bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
point_estimate(bf, centrality = "all", dispersion = TRUE)
point_estimate(bf, centrality = c("median", "MAP"))

p_direction Probability of Direction (pd)

Description

Compute the Probability of Direction (pd, also known as the Maximum Probability of Effect -
MPE). This can be interpreted as the probability that a parameter (described by its posterior dis-
tribution) is strictly positive or negative (whichever is the most probable). Although differently
expressed, this index is fairly similar (i.e., is strongly correlated) to the frequentist p-value (see
details).

Usage

p_direction(x, ...)

pd(x, ...)

S3 method for class 'numeric'
p_direction(
x,
method = "direct",
null = 0,
as_p = FALSE,
remove_na = TRUE,
...

)

S3 method for class 'data.frame'
p_direction(
x,
method = "direct",
null = 0,
as_p = FALSE,
remove_na = TRUE,

76 p_direction

rvar_col = NULL,
...

)

S3 method for class 'MCMCglmm'
p_direction(
x,
method = "direct",
null = 0,
as_p = FALSE,
remove_na = TRUE,
...

)

S3 method for class 'emmGrid'
p_direction(
x,
method = "direct",
null = 0,
as_p = FALSE,
remove_na = TRUE,
...

)

S3 method for class 'slopes'
p_direction(
x,
method = "direct",
null = 0,
as_p = FALSE,
remove_na = TRUE,
...

)

S3 method for class 'stanreg'
p_direction(
x,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
method = "direct",
null = 0,
as_p = FALSE,
remove_na = TRUE,
...

)

p_direction 77

S3 method for class 'brmsfit'
p_direction(
x,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
method = "direct",
null = 0,
as_p = FALSE,
remove_na = TRUE,
...

)

S3 method for class 'BFBayesFactor'
p_direction(
x,
method = "direct",
null = 0,
as_p = FALSE,
remove_na = TRUE,
...

)

S3 method for class 'get_predicted'
p_direction(
x,
method = "direct",
null = 0,
as_p = FALSE,
remove_na = TRUE,
use_iterations = FALSE,
verbose = TRUE,
...

)

Arguments

x A vector representing a posterior distribution, a data frame of posterior draws
(samples be parameter). Can also be a Bayesian model.

... Currently not used.
method Can be "direct" or one of methods of estimate_density(), such as "kernel",

"logspline" or "KernSmooth". See details.
null The value considered as a "null" effect. Traditionally 0, but could also be 1 in

the case of ratios of change (OR, IRR, ...).
as_p If TRUE, the p-direction (pd) values are converted to a frequentist p-value using

pd_to_p().
remove_na Should missing values be removed before computation? Note that Inf (infinity)

are not removed.

78 p_direction

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

verbose Toggle off warnings.

Value

Values between 0.5 and 1 or between 0 and 1 (see above) corresponding to the probability of
direction (pd).

What is the pd?

The Probability of Direction (pd) is an index of effect existence, representing the certainty with
which an effect goes in a particular direction (i.e., is positive or negative / has a sign), typically
ranging from 0.5 to 1 (but see next section for cases where it can range between 0 and 1). Be-
yond its simplicity of interpretation, understanding and computation, this index also presents other
interesting properties:

• Like other posterior-based indices, pd is solely based on the posterior distributions and does
not require any additional information from the data or the model (e.g., such as priors, as in
the case of Bayes factors).

• It is robust to the scale of both the response variable and the predictors.

• It is strongly correlated with the frequentist p-value, and can thus be used to draw parallels and
give some reference to readers non-familiar with Bayesian statistics (Makowski et al., 2019).

Relationship with the p-value

In most cases, it seems that the pd has a direct correspondence with the frequentist one-sided p-value
through the formula (for two-sided p): p = 2× (1− pd) Thus, a two-sided p-value of respectively
.1, .05, .01 and .001 would correspond approximately to a pd of 95%, 97.5%, 99.5% and 99.95%.
See pd_to_p() for details.

Possible Range of Values

The largest value pd can take is 1 - the posterior is strictly directional. However, the smallest value
pd can take depends on the parameter space represented by the posterior.

p_direction 79

For a continuous parameter space, exact values of 0 (or any point null value) are not possible,
and so 100% of the posterior has some sign, some positive, some negative. Therefore, the smallest
the pd can be is 0.5 - with an equal posterior mass of positive and negative values. Values close to
0.5 cannot be used to support the null hypothesis (that the parameter does not have a direction) is
a similar why to how large p-values cannot be used to support the null hypothesis (see pd_to_p();
Makowski et al., 2019).

For a discrete parameter space or a parameter space that is a mixture between discrete and
continuous spaces, exact values of 0 (or any point null value) are possible! Therefore, the smallest
the pd can be is 0 - with 100% of the posterior mass on 0. Thus values close to 0 can be used to
support the null hypothesis (see van den Bergh et al., 2021).

Examples of posteriors representing discrete parameter space:

• When a parameter can only take discrete values.

• When a mixture prior/posterior is used (such as the spike-and-slab prior; see van den Bergh et
al., 2021).

• When conducting Bayesian model averaging (e.g., weighted_posteriors() or brms::posterior_average).

Methods of computation

The pd is defined as:
pd = max(Pr(θ̂ < θnull), P r(θ̂ > θnull))

The most simple and direct way to compute the pd is to compute the proportion of positive (or larger
than null) posterior samples, the proportion of negative (or smaller than null) posterior samples,
and take the larger of the two. This "simple" method is the most straightforward, but its precision
is directly tied to the number of posterior draws.

The second approach relies on density estimation: It starts by estimating the continuous-smooth
density function (for which many methods are available), and then computing the area under the
curve (AUC) of the density curve on either side of null and taking the maximum between them.
Note the this approach assumes a continuous density function, and so when the posterior repre-
sents a (partially) discrete parameter space, only the direct method must be used (see above).

Note

There is also a plot()-method implemented in the see-package.

References

• Makowski, D., Ben-Shachar, M. S., Chen, S. A., & Lüdecke, D. (2019). Indices of effect
existence and significance in the Bayesian framework. Frontiers in psychology, 10, 2767.
doi:10.3389/fpsyg.2019.02767

• van den Bergh, D., Haaf, J. M., Ly, A., Rouder, J. N., & Wagenmakers, E. J. (2021). A
cautionary note on estimating effect size. Advances in Methods and Practices in Psychological
Science, 4(1). doi:10.1177/2515245921992035

See Also

pd_to_p() to convert between Probability of Direction (pd) and p-value.

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.1177/2515245921992035

80 p_direction

Examples

library(bayestestR)

Simulate a posterior distribution of mean 1 and SD 1
--
posterior <- rnorm(1000, mean = 1, sd = 1)
p_direction(posterior)
p_direction(posterior, method = "kernel")

Simulate a dataframe of posterior distributions

df <- data.frame(replicate(4, rnorm(100)))
p_direction(df)
p_direction(df, method = "kernel")

rstanarm models

model <- rstanarm::stan_glm(mpg ~ wt + cyl,

data = mtcars,
chains = 2, refresh = 0

)
p_direction(model)
p_direction(model, method = "kernel")

emmeans

p_direction(emmeans::emtrends(model, ~1, "wt", data = mtcars))

brms models

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
p_direction(model)
p_direction(model, method = "kernel")

BayesFactor objects

bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
p_direction(bf)
p_direction(bf, method = "kernel")

Using "rvar_col"
x <- data.frame(mu = c(0, 0.5, 1), sigma = c(1, 0.5, 0.25))
x$my_rvar <- posterior::rvar_rng(rnorm, 3, mean = x$mu, sd = x$sigma)
x
p_direction(x, rvar_col = "my_rvar")

p_map 81

p_map Bayesian p-value based on the density at the Maximum A Posteriori
(MAP)

Description

Compute a Bayesian equivalent of the p-value, related to the odds that a parameter (described by
its posterior distribution) has against the null hypothesis (h0) using Mills’ (2014, 2017) Objective
Bayesian Hypothesis Testing framework. It corresponds to the density value at the null (e.g., 0)
divided by the density at the Maximum A Posteriori (MAP).

Usage

p_map(x, ...)

p_pointnull(x, ...)

S3 method for class 'numeric'
p_map(x, null = 0, precision = 2^10, method = "kernel", ...)

S3 method for class 'get_predicted'
p_map(
x,
null = 0,
precision = 2^10,
method = "kernel",
use_iterations = FALSE,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
p_map(x, null = 0, precision = 2^10, method = "kernel", rvar_col = NULL, ...)

S3 method for class 'stanreg'
p_map(
x,
null = 0,
precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
...

)

82 p_map

S3 method for class 'brmsfit'
p_map(
x,
null = 0,
precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...

)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.

null The value considered as a "null" effect. Traditionally 0, but could also be 1 in
the case of ratios of change (OR, IRR, ...).

precision Number of points of density data. See the n parameter in density.

method Density estimation method. Can be "kernel" (default), "logspline" or "KernSmooth".

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

verbose Toggle off warnings.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

Note that this method is sensitive to the density estimation method (see the section in the examples
below).

p_map 83

Strengths and Limitations:
Strengths: Straightforward computation. Objective property of the posterior distribution.
Limitations: Limited information favoring the null hypothesis. Relates on density approxima-
tion. Indirect relationship between mathematical definition and interpretation. Only suitable for
weak / very diffused priors.

References

• Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi:10.3389/
fpsyg.2019.02767

• Mills, J. A. (2018). Objective Bayesian Precise Hypothesis Testing. University of Cincinnati.

See Also

Jeff Mill’s talk

Examples

library(bayestestR)

p_map(rnorm(1000, 0, 1))
p_map(rnorm(1000, 10, 1))

model <- suppressWarnings(
rstanarm::stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)

)
p_map(model)

p_map(suppressWarnings(
emmeans::emtrends(model, ~1, "wt", data = mtcars)

))

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
p_map(model)

bf <- BayesFactor::ttestBF(x = rnorm(100, 1, 1))
p_map(bf)

Robustness to density estimation method
set.seed(333)
data <- data.frame()
for (iteration in 1:250) {

x <- rnorm(1000, 1, 1)
result <- data.frame(
Kernel = as.numeric(p_map(x, method = "kernel")),
KernSmooth = as.numeric(p_map(x, method = "KernSmooth")),
logspline = as.numeric(p_map(x, method = "logspline"))

)
data <- rbind(data, result)

https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767
https://www.youtube.com/watch?v=Ip8Ci5KUVRc

84 p_rope

}
data$KernSmooth <- data$Kernel - data$KernSmooth
data$logspline <- data$Kernel - data$logspline

summary(data$KernSmooth)
summary(data$logspline)
boxplot(data[c("KernSmooth", "logspline")])

p_rope Probability of being in the ROPE

Description

Compute the proportion of the whole posterior distribution that doesn’t lie within a region of prac-
tical equivalence (ROPE). It is equivalent to running rope(..., ci = 1).

Usage

p_rope(x, ...)

S3 method for class 'numeric'
p_rope(x, range = "default", verbose = TRUE, ...)

S3 method for class 'data.frame'
p_rope(x, range = "default", rvar_col = NULL, verbose = TRUE, ...)

S3 method for class 'stanreg'
p_rope(
x,
range = "default",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
p_rope(
x,
range = "default",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,

p_rope 85

...
)

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.

range ROPE’s lower and higher bounds. Should be "default" or depending on the
number of outcome variables a vector or a list. For models with one response,
range can be:

• a vector of length two (e.g., c(-0.1, 0.1)),

• a list of numeric vector of the same length as numbers of parameters (see
’Examples’).

• a list of named numeric vectors, where names correspond to parameter
names. In this case, all parameters that have no matching name in range
will be set to "default".

In multivariate models, range should be a list with a numeric vectors for each
response variable. Vector names should correspond to the name of the response
variables. If "default" and input is a vector, the range is set to c(-0.1, 0.1).
If "default" and input is a Bayesian model, rope_range() is used.

verbose Toggle off warnings.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Examples

library(bayestestR)

p_rope(x = rnorm(1000, 0, 0.01), range = c(-0.1, 0.1))
p_rope(x = mtcars, range = c(-0.1, 0.1))

86 p_significance

p_significance Practical Significance (ps)

Description

Compute the probability of Practical Significance (ps), which can be conceptualized as a unidirec-
tional equivalence test. It returns the probability that effect is above a given threshold corresponding
to a negligible effect in the median’s direction. Mathematically, it is defined as the proportion of the
posterior distribution of the median sign above the threshold.

Usage

p_significance(x, ...)

S3 method for class 'numeric'
p_significance(x, threshold = "default", ...)

S3 method for class 'get_predicted'
p_significance(
x,
threshold = "default",
use_iterations = FALSE,
verbose = TRUE,
...

)

S3 method for class 'data.frame'
p_significance(x, threshold = "default", rvar_col = NULL, ...)

S3 method for class 'stanreg'
p_significance(
x,
threshold = "default",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
p_significance(
x,
threshold = "default",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),

p_significance 87

parameters = NULL,
verbose = TRUE,
...

)

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.
threshold The threshold value that separates significant from negligible effect, which can

have following possible values:
• "default", in which case the range is set to 0.1 if input is a vector, and

based on rope_range() if a (Bayesian) model is provided.
• a single numeric value (e.g., 0.1), which is used as range around zero (i.e.

the threshold range is set to -0.1 and 0.1, i.e. reflects a symmetric interval)
• a numeric vector of length two (e.g., c(-0.2, 0.1)), useful for asymmetric

intervals
• a list of numeric vectors, where each vector corresponds to a parameter
• a list of named numeric vectors, where names correspond to parameter

names. In this case, all parameters that have no matching name in threshold
will be set to "default".

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

verbose Toggle off warnings.
rvar_col A single character - the name of an rvar column in the data frame to be pro-

cessed. See example in p_direction().
effects Should results for fixed effects, random effects or both be returned? Only applies

to mixed models. May be abbreviated.
component Should results for all parameters, parameters for the conditional model or the

zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

Details

p_significance() returns the proportion of a probability distribution (x) that is outside a certain
range (the negligible effect, or ROPE, see argument threshold). If there are values of the dis-
tribution both below and above the ROPE, p_significance() returns the higher probability of a
value being outside the ROPE. Typically, this value should be larger than 0.5 to indicate practical
significance. However, if the range of the negligible effect is rather large compared to the range
of the probability distribution x, p_significance() will be less than 0.5, which indicates no clear
practical significance.

88 p_to_bf

Value

Values between 0 and 1 corresponding to the probability of practical significance (ps).

Note

There is also a plot()-method implemented in the see-package.

Examples

library(bayestestR)

Simulate a posterior distribution of mean 1 and SD 1
--
posterior <- rnorm(1000, mean = 1, sd = 1)
p_significance(posterior)

Simulate a dataframe of posterior distributions

df <- data.frame(replicate(4, rnorm(100)))
p_significance(df)

rstanarm models

model <- rstanarm::stan_glm(mpg ~ wt + cyl,

data = mtcars,
chains = 2, refresh = 0

)
p_significance(model)
multiple thresholds - asymmetric, symmetric, default
p_significance(model, threshold = list(c(-10, 5), 0.2, "default"))
named thresholds
p_significance(model, threshold = list(wt = 0.2, `(Intercept)` = c(-10, 5)))

p_to_bf Convert p-values to (pseudo) Bayes Factors

Description

Convert p-values to (pseudo) Bayes Factors. This transformation has been suggested by Wagen-
makers (2022), but is based on a vast amount of assumptions. It might therefore be not reliable.
Use at your own risks. For more accurate approximate Bayes factors, use bic_to_bf() instead.

Usage

p_to_bf(x, ...)

S3 method for class 'numeric'

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

p_to_bf 89

p_to_bf(x, log = FALSE, n_obs = NULL, ...)

Default S3 method:
p_to_bf(x, log = FALSE, ...)

Arguments

x A (frequentist) model object, or a (numeric) vector of p-values.

... Other arguments to be passed (not used for now).

log Wether to return log Bayes Factors. Note: The print() method always shows
BF - the "log_BF" column is only accessible from the returned data frame.

n_obs Number of observations. Either length 1, or same length as p.

Value

A data frame with the p-values and pseudo-Bayes factors (against the null).

References

• Wagenmakers, E.J. (2022). Approximate objective Bayes factors from p-values and sample
size: The 3p(sqrt(n)) rule. Preprint available on ArXiv: https://psyarxiv.com/egydq

See Also

bic_to_bf() for more accurate approximate Bayes factors.

Examples

data(iris)
model <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
p_to_bf(model)

Examples that demonstrate comparison between
BIC-approximated and pseudo BF
--
m0 <- lm(mpg ~ 1, mtcars)
m1 <- lm(mpg ~ am, mtcars)
m2 <- lm(mpg ~ factor(cyl), mtcars)

In this first example, BIC-approximated BF and
pseudo-BF based on p-values are close...

BIC-approximated BF, m1 against null model
bic_to_bf(BIC(m1), denominator = BIC(m0))

pseudo-BF based on p-values - dropping intercept
p_to_bf(m1)[-1,]

The second example shows that results from pseudo-BF are less accurate
and should be handled wit caution!
bic_to_bf(BIC(m2), denominator = BIC(m0))

90 reshape_iterations

p_to_bf(anova(m2), n_obs = nrow(mtcars))

reshape_iterations Reshape estimations with multiple iterations (draws) to long format

Description

Reshape a wide data.frame of iterations (such as posterior draws or bootsrapped samples) as columns
to long format. Instead of having all iterations as columns (e.g., iter_1, iter_2, ...), will return
3 columns with the *_index (the previous index of the row), the *_group (the iteration number)
and the *_value (the value of said iteration).

Usage

reshape_iterations(x, prefix = c("draw", "iter", "iteration", "sim"))

reshape_draws(x, prefix = c("draw", "iter", "iteration", "sim"))

Arguments

x A data.frame containing posterior draws obtained from estimate_response or
estimate_link.

prefix The prefix of the draws (for instance, "iter_" for columns named as iter_1, iter_2, iter_3).
If more than one are provided, will search for the first one that matches.

Value

Data frame of reshaped draws in long format.

Examples

if (require("rstanarm")) {
model <- stan_glm(mpg ~ am, data = mtcars, refresh = 0)
draws <- insight::get_predicted(model)
long_format <- reshape_iterations(draws)
head(long_format)

}

rope 91

rope Region of Practical Equivalence (ROPE)

Description

Compute the proportion of the HDI (default to the 89% HDI) of a posterior distribution that lies
within a region of practical equivalence.

Usage

rope(x, ...)

S3 method for class 'numeric'
rope(x, range = "default", ci = 0.95, ci_method = "ETI", verbose = TRUE, ...)

S3 method for class 'data.frame'
rope(
x,
range = "default",
ci = 0.95,
ci_method = "ETI",
rvar_col = NULL,
verbose = TRUE,
...

)

S3 method for class 'stanreg'
rope(
x,
range = "default",
ci = 0.95,
ci_method = "ETI",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
rope(
x,
range = "default",
ci = 0.95,
ci_method = "ETI",
effects = c("fixed", "random", "all"),

92 rope

component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
verbose = TRUE,
...

)

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.

range ROPE’s lower and higher bounds. Should be "default" or depending on the
number of outcome variables a vector or a list. For models with one response,
range can be:

• a vector of length two (e.g., c(-0.1, 0.1)),
• a list of numeric vector of the same length as numbers of parameters (see

’Examples’).
• a list of named numeric vectors, where names correspond to parameter

names. In this case, all parameters that have no matching name in range
will be set to "default".

In multivariate models, range should be a list with a numeric vectors for each
response variable. Vector names should correspond to the name of the response
variables. If "default" and input is a vector, the range is set to c(-0.1, 0.1).
If "default" and input is a Bayesian model, rope_range() is used.

ci The Credible Interval (CI) probability, corresponding to the proportion of HDI,
to use for the percentage in ROPE.

ci_method The type of interval to use to quantify the percentage in ROPE. Can be ’HDI’
(default) or ’ETI’. See ci().

verbose Toggle off warnings.

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

ROPE

Statistically, the probability of a posterior distribution of being different from 0 does not make much
sense (the probability of a single value null hypothesis in a continuous distribution is 0). Therefore,

rope 93

the idea underlining ROPE is to let the user define an area around the null value enclosing values
that are equivalent to the null value for practical purposes (Kruschke 2010, 2011, 2014).

Kruschke (2018) suggests that such null value could be set, by default, to the -0.1 to 0.1 range of
a standardized parameter (negligible effect size according to Cohen, 1988). This could be general-
ized: For instance, for linear models, the ROPE could be set as 0 +/- .1 * sd(y). This ROPE
range can be automatically computed for models using the rope_range() function.

Kruschke (2010, 2011, 2014) suggests using the proportion of the 95% (or 89%, considered more
stable) HDI that falls within the ROPE as an index for "null-hypothesis" testing (as understood
under the Bayesian framework, see equivalence_test()).

Sensitivity to parameter’s scale

It is important to consider the unit (i.e., the scale) of the predictors when using an index based on the
ROPE, as the correct interpretation of the ROPE as representing a region of practical equivalence
to zero is dependent on the scale of the predictors. Indeed, the percentage in ROPE depend on the
unit of its parameter. In other words, as the ROPE represents a fixed portion of the response’s scale,
its proximity with a coefficient depends on the scale of the coefficient itself.

Multicollinearity - Non-independent covariates

When parameters show strong correlations, i.e. when covariates are not independent, the joint pa-
rameter distributions may shift towards or away from the ROPE. Collinearity invalidates ROPE and
hypothesis testing based on univariate marginals, as the probabilities are conditional on indepen-
dence. Most problematic are parameters that only have partial overlap with the ROPE region. In
case of collinearity, the (joint) distributions of these parameters may either get an increased or de-
creased ROPE, which means that inferences based on rope() are inappropriate (Kruschke 2014,
340f).

rope() performs a simple check for pairwise correlations between parameters, but as there can be
collinearity between more than two variables, a first step to check the assumptions of this hypothesis
testing is to look at different pair plots. An even more sophisticated check is the projection predictive
variable selection (Piironen and Vehtari 2017).

Strengths and Limitations

Strengths: Provides information related to the practical relevance of the effects.

Limitations: A ROPE range needs to be arbitrarily defined. Sensitive to the scale (the unit) of the
predictors. Not sensitive to highly significant effects.

Note

There is also a plot()-method implemented in the see-package.

References

• Cohen, J. (1988). Statistical power analysis for the behavioural sciences.

• Kruschke, J. K. (2010). What to believe: Bayesian methods for data analysis. Trends in
cognitive sciences, 14(7), 293-300. doi:10.1016/j.tics.2010.05.001.

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/
https://doi.org/10.1016/j.tics.2010.05.001

94 rope

• Kruschke, J. K. (2011). Bayesian assessment of null values via parameter estimation and
model comparison. Perspectives on Psychological Science, 6(3), 299-312. doi:10.1177/
1745691611406925.

• Kruschke, J. K. (2014). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan.
Academic Press. doi:10.1177/2515245918771304.

• Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation.
Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi:10.1177/
2515245918771304.

• Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi:10.3389/
fpsyg.2019.02767

• Piironen, J., & Vehtari, A. (2017). Comparison of Bayesian predictive methods for model
selection. Statistics and Computing, 27(3), 711–735. doi:10.1007/s112220169649y

Examples

library(bayestestR)

rope(x = rnorm(1000, 0, 0.01), range = c(-0.1, 0.1))
rope(x = rnorm(1000, 0, 1), range = c(-0.1, 0.1))
rope(x = rnorm(1000, 1, 0.01), range = c(-0.1, 0.1))
rope(x = rnorm(1000, 1, 1), ci = c(0.90, 0.95))

library(rstanarm)
model <- suppressWarnings(

stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
)
rope(model)
rope(model, ci = c(0.90, 0.95))

multiple ROPE ranges
rope(model, range = list(c(-10, 5), c(-0.2, 0.2), "default"))

named ROPE ranges
rope(model, range = list(gear = c(-3, 2), wt = c(-0.2, 0.2)))

library(emmeans)
rope(emtrends(model, ~1, "wt"), ci = c(0.90, 0.95))

library(brms)
model <- brm(mpg ~ wt + cyl, data = mtcars)
rope(model)
rope(model, ci = c(0.90, 0.95))

library(brms)
model <- brm(

bf(mvbind(mpg, disp) ~ wt + cyl) + set_rescor(rescor = TRUE),
data = mtcars

)
rope(model)

https://doi.org/10.1177/1745691611406925
https://doi.org/10.1177/1745691611406925
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.1177/2515245918771304
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.1007/s11222-016-9649-y

rope_range 95

rope(model, ci = c(0.90, 0.95))

library(BayesFactor)
bf <- ttestBF(x = rnorm(100, 1, 1))
rope(bf)
rope(bf, ci = c(0.90, 0.95))

rope_range Find Default Equivalence (ROPE) Region Bounds

Description

This function attempts at automatically finding suitable "default" values for the Region Of Practical
Equivalence (ROPE).

Usage

rope_range(x, ...)

Default S3 method:
rope_range(x, verbose = TRUE, ...)

Arguments

x A stanreg, brmsfit or BFBayesFactor object, or a frequentist regression model.
... Currently not used.
verbose Toggle warnings.

Details

Kruschke (2018) suggests that the region of practical equivalence could be set, by default, to a range
from -0.1 to 0.1 of a standardized parameter (negligible effect size according to Cohen, 1988).

• For linear models (lm), this can be generalised to [−0.1 ∗ SDy, 0.1 ∗ SDy].
• For logistic models, the parameters expressed in log odds ratio can be converted to standard-

ized difference through the formula π/
√
3, resulting in a range of -0.18 to 0.18.

• For other models with binary outcome, it is strongly recommended to manually specify the
rope argument. Currently, the same default is applied that for logistic models.

• For models from count data, the residual variance is used. This is a rather experimental
threshold and is probably often similar to -0.1, 0.1, but should be used with care!

• For t-tests, the standard deviation of the response is used, similarly to linear models (see
above).

• For correlations, -0.05, 0.05 is used, i.e., half the value of a negligible correlation as
suggested by Cohen’s (1988) rules of thumb.

• For all other models, -0.1, 0.1 is used to determine the ROPE limits, but it is strongly
advised to specify it manually.

96 sensitivity_to_prior

References

Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances
in Methods and Practices in Psychological Science, 1(2), 270-280. doi:10.1177/2515245918771304.

Examples

model <- suppressWarnings(rstanarm::stan_glm(
mpg ~ wt + gear,
data = mtcars,
chains = 2,
iter = 200,
refresh = 0

))
rope_range(model)

model <- suppressWarnings(
rstanarm::stan_glm(vs ~ mpg, data = mtcars, family = "binomial", refresh = 0)

)
rope_range(model)

model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
rope_range(model)

model <- BayesFactor::ttestBF(mtcars[mtcars$vs == 1, "mpg"], mtcars[mtcars$vs == 0, "mpg"])
rope_range(model)

model <- lmBF(mpg ~ vs, data = mtcars)
rope_range(model)

sensitivity_to_prior Sensitivity to Prior

Description

Computes the sensitivity to priors specification. This represents the proportion of change in some
indices when the model is fitted with an antagonistic prior (a prior of same shape located on the
opposite of the effect).

Usage

sensitivity_to_prior(model, ...)

S3 method for class 'stanreg'
sensitivity_to_prior(model, index = "Median", magnitude = 10, ...)

https://doi.org/10.1177/2515245918771304

sexit 97

Arguments

model A Bayesian model (stanreg or brmsfit).

... Arguments passed to or from other methods.

index The indices from which to compute the sensitivity. Can be one or multiple names
of the columns returned by describe_posterior. The case is important here
(e.g., write ’Median’ instead of ’median’).

magnitude This represent the magnitude by which to shift the antagonistic prior (to test
the sensitivity). For instance, a magnitude of 10 (default) means that the mode
wil be updated with a prior located at 10 standard deviations from its original
location.

See Also

DescTools

Examples

library(bayestestR)

rstanarm models

model <- rstanarm::stan_glm(mpg ~ wt, data = mtcars)
sensitivity_to_prior(model)

model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
sensitivity_to_prior(model, index = c("Median", "MAP"))

sexit Sequential Effect eXistence and sIgnificance Testing (SEXIT)

Description

The SEXIT is a new framework to describe Bayesian effects, guiding which indices to use. Ac-
cordingly, the sexit() function returns the minimal (and optimal) required information to describe
models’ parameters under a Bayesian framework. It includes the following indices:

• Centrality: the median of the posterior distribution. In probabilistic terms, there is 50% of
probability that the effect is higher and lower. See point_estimate().

• Uncertainty: the 95% Highest Density Interval (HDI). In probabilistic terms, there is 95% of
probability that the effect is within this confidence interval. See ci().

• Existence: The probability of direction allows to quantify the certainty by which an effect
is positive or negative. It is a critical index to show that an effect of some manipulation
is not harmful (for instance in clinical studies) or to assess the direction of a link. See
p_direction().

98 sexit

• Significance: Once existence is demonstrated with high certainty, we can assess whether the
effect is of sufficient size to be considered as significant (i.e., not negligible). This is a useful
index to determine which effects are actually important and worthy of discussion in a given
process. See p_significance().

• Size: Finally, this index gives an idea about the strength of an effect. However, beware, as
studies have shown that a big effect size can be also suggestive of low statistical power (see
details section).

Usage

sexit(x, significant = "default", large = "default", ci = 0.95, ...)

Arguments

x A vector representing a posterior distribution, a data frame of posterior draws
(samples be parameter). Can also be a Bayesian model.

significant, large
The threshold values to use for significant and large probabilities. If left to
’default’, will be selected through sexit_thresholds(). See the details section
below.

ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to
be estimated. Default to .95 (95%).

... Currently not used.

Details

Rationale: The assessment of "significance" (in its broadest meaning) is a pervasive issue in
science, and its historical index, the p-value, has been strongly criticized and deemed to have
played an important role in the replicability crisis. In reaction, more and more scientists have
tuned to Bayesian methods, offering an alternative set of tools to answer their questions. However,
the Bayesian framework offers a wide variety of possible indices related to "significance", and the
debate has been raging about which index is the best, and which one to report.
This situation can lead to the mindless reporting of all possible indices (with the hopes that with
that the reader will be satisfied), but often without having the writer understanding and interpreting
them. It is indeed complicated to juggle between many indices with complicated definitions and
subtle differences.
SEXIT aims at offering a practical framework for Bayesian effects reporting, in which the focus
is put on intuitiveness, explicitness and usefulness of the indices’ interpretation. To that end, we
suggest a system of description of parameters that would be intuitive, easy to learn and apply,
mathematically accurate and useful for taking decision.
Once the thresholds for significance (i.e., the ROPE) and the one for a "large" effect are explicitly
defined, the SEXIT framework does not make any interpretation, i.e., it does not label the effects,
but just sequentially gives 3 probabilities (of direction, of significance and of being large, respec-
tively) as-is on top of the characteristics of the posterior (using the median and HDI for centrality
and uncertainty description). Thus, it provides a lot of information about the posterior distribution
(through the mass of different ’sections’ of the posterior) in a clear and meaningful way.

sexit 99

Threshold selection: One of the most important thing about the SEXIT framework is that it relies
on two "arbitrary" thresholds (i.e., that have no absolute meaning). They are the ones related
to effect size (an inherently subjective notion), namely the thresholds for significant and large
effects. They are set, by default, to 0.05 and 0.3 of the standard deviation of the outcome variable
(tiny and large effect sizes for correlations according to Funder and Ozer, 2019). However, these
defaults were chosen by lack of a better option, and might not be adapted to your case. Thus, they
are to be handled with care, and the chosen thresholds should always be explicitly reported and
justified.

• For linear models (lm), this can be generalised to [0.05∗SDy] and [0.3∗SDy] for significant
and large effects, respectively.

• For logistic models, the parameters expressed in log odds ratio can be converted to standard-
ized difference through the formula π/

√
3, resulting a threshold of 0.09 and 0.54.

• For other models with binary outcome, it is strongly recommended to manually specify the
rope argument. Currently, the same default is applied that for logistic models.

• For models from count data, the residual variance is used. This is a rather experimental
threshold and is probably often similar to 0.05 and 0.3, but should be used with care!

• For t-tests, the standard deviation of the response is used, similarly to linear models (see
above).

• For correlations,0.05 and 0.3 are used.

• For all other models, 0.05 and 0.3 are used, but it is strongly advised to specify it manually.

Examples: The three values for existence, significance and size provide a useful description of
the posterior distribution of the effects. Some possible scenarios include:

• The probability of existence is low, but the probability of being large is high: it suggests that
the posterior is very wide (covering large territories on both side of 0). The statistical power
might be too low, which should warrant any confident conclusion.

• The probability of existence and significance is high, but the probability of being large is very
small: it suggests that the effect is, with high confidence, not large (the posterior is mostly
contained between the significance and the large thresholds).

• The 3 indices are very low: this suggests that the effect is null with high confidence (the
posterior is closely centred around 0).

Value

A dataframe and text as attribute.

References

• Makowski, D., Ben-Shachar, M. S., & Lüdecke, D. (2019). bayestestR: Describing Effects
and their Uncertainty, Existence and Significance within the Bayesian Framework. Journal of
Open Source Software, 4(40), 1541. doi:10.21105/joss.01541

• Makowski D, Ben-Shachar MS, Chen SHA, Lüdecke D (2019) Indices of Effect Existence and
Significance in the Bayesian Framework. Frontiers in Psychology 2019;10:2767. doi:10.3389/
fpsyg.2019.02767

https://doi.org/10.21105/joss.01541
https://doi.org/10.3389/fpsyg.2019.02767
https://doi.org/10.3389/fpsyg.2019.02767

100 sexit_thresholds

Examples

library(bayestestR)

s <- sexit(rnorm(1000, -1, 1))
s
print(s, summary = TRUE)

s <- sexit(iris)
s
print(s, summary = TRUE)

if (require("rstanarm")) {
model <- suppressWarnings(rstanarm::stan_glm(mpg ~ wt * cyl,
data = mtcars,
iter = 400, refresh = 0

))
s <- sexit(model)
s
print(s, summary = TRUE)

}

sexit_thresholds Find Effect Size Thresholds

Description

This function attempts at automatically finding suitable default values for a "significant" (i.e., non-
negligible) and "large" effect. This is to be used with care, and the chosen threshold should always
be explicitly reported and justified. See the detail section in sexit() for more information.

Usage

sexit_thresholds(x, ...)

Arguments

x Vector representing a posterior distribution. Can also be a stanreg or brmsfit
model.

... Currently not used.

References

Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances
in Methods and Practices in Psychological Science, 1(2), 270-280. doi:10.1177/2515245918771304.

https://doi.org/10.1177/2515245918771304

si 101

Examples

sexit_thresholds(rnorm(1000))

if (require("rstanarm")) {
model <- suppressWarnings(stan_glm(
mpg ~ wt + gear,
data = mtcars,
chains = 2,
iter = 200,
refresh = 0

))
sexit_thresholds(model)

model <- suppressWarnings(
stan_glm(vs ~ mpg, data = mtcars, family = "binomial", refresh = 0)

)
sexit_thresholds(model)

}

if (require("brms")) {
model <- brm(mpg ~ wt + cyl, data = mtcars)
sexit_thresholds(model)

}

if (require("BayesFactor")) {
bf <- ttestBF(x = rnorm(100, 1, 1))
sexit_thresholds(bf)

}

si Compute Support Intervals

Description

A support interval contains only the values of the parameter that predict the observed data better than
average, by some degree k; these are values of the parameter that are associated with an updating
factor greater or equal than k. From the perspective of the Savage-Dickey Bayes factor, testing
against a point null hypothesis for any value within the support interval will yield a Bayes factor
smaller than 1/k.

Usage

si(posterior, ...)

S3 method for class 'numeric'
si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)

S3 method for class 'stanreg'

102 si

si(
posterior,
prior = NULL,
BF = 1,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("location", "conditional", "all", "smooth_terms", "sigma", "auxiliary",

"distributional"),
parameters = NULL,
...

)

S3 method for class 'brmsfit'
si(
posterior,
prior = NULL,
BF = 1,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("location", "conditional", "all", "smooth_terms", "sigma", "auxiliary",

"distributional"),
parameters = NULL,
...

)

S3 method for class 'blavaan'
si(
posterior,
prior = NULL,
BF = 1,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("location", "conditional", "all", "smooth_terms", "sigma", "auxiliary",

"distributional"),
parameters = NULL,
...

)

S3 method for class 'emmGrid'
si(posterior, prior = NULL, BF = 1, verbose = TRUE, ...)

S3 method for class 'get_predicted'
si(
posterior,
prior = NULL,
BF = 1,
use_iterations = FALSE,
verbose = TRUE,

si 103

...
)

S3 method for class 'data.frame'
si(posterior, prior = NULL, BF = 1, rvar_col = NULL, verbose = TRUE, ...)

Arguments

posterior A numerical vector, stanreg / brmsfit object, emmGrid or a data frame - rep-
resenting a posterior distribution(s) from (see ’Details’).

... Arguments passed to and from other methods. (Can be used to pass arguments
to internal logspline::logspline().)

prior An object representing a prior distribution (see ’Details’).

BF The amount of support required to be included in the support interval.

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

rvar_col A single character - the name of an rvar column in the data frame to be pro-
cessed. See example in p_direction().

Details

For more info, in particular on specifying correct priors for factors with more than 2 levels,
see the Bayes factors vignette.

This method is used to compute support intervals based on prior and posterior distributions. For
the computation of support intervals, the model priors must be proper priors (at the very least they
should be not flat, and it is preferable that they be informative - note that by default, brms::brm()
uses flat priors for fixed-effects; see example below).

Value

A data frame containing the lower and upper bounds of the SI.

Note that if the level of requested support is higher than observed in the data, the interval will be
[NA,NA].

https://easystats.github.io/bayestestR/articles/bayes_factors.html

104 si

Choosing a value of BF

The choice of BF (the level of support) depends on what we want our interval to represent:

• A BF = 1 contains values whose credibility is not decreased by observing the data.

• A BF > 1 contains values who received more impressive support from the data.

• A BF < 1 contains values whose credibility has not been impressively decreased by observing
the data. Testing against values outside this interval will produce a Bayes factor larger than
1/BF in support of the alternative. E.g., if an SI (BF = 1/3) excludes 0, the Bayes factor against
the point-null will be larger than 3.

Setting the correct prior

For the computation of Bayes factors, the model priors must be proper priors (at the very least they
should be not flat, and it is preferable that they be informative); As the priors for the alternative
get wider, the likelihood of the null value(s) increases, to the extreme that for completely flat priors
the null is infinitely more favorable than the alternative (this is called the Jeffreys-Lindley-Bartlett
paradox). Thus, you should only ever try (or want) to compute a Bayes factor when you have an
informed prior.

(Note that by default, brms::brm() uses flat priors for fixed-effects; See example below.)

It is important to provide the correct prior for meaningful results, to match the posterior-type
input:

• A numeric vector - prior should also be a numeric vector, representing the prior-estimate.

• A data frame - prior should also be a data frame, representing the prior-estimates, in match-
ing column order.

– If rvar_col is specified, prior should be the name of an rvar column that represents the
prior-estimates.

• Supported Bayesian model (stanreg, brmsfit, etc.)
– prior should be a model an equivalent model with MCMC samples from the priors only.

See unupdate().
– If prior is set to NULL, unupdate() is called internally (not supported for brmsfit_multiple

model).

• Output from a {marginaleffects} function - prior should also be an equivalent output
from a {marginaleffects} function based on a prior-model (See unupdate()).

• Output from an {emmeans} function
– prior should also be an equivalent output from an {emmeans} function based on a prior-

model (See unupdate()).
– prior can also be the original (posterior) model, in which case the function will try to

"unupdate" the estimates (not supported if the estimates have undergone any transforma-
tions – "log", "response", etc. – or any regriding).

Note

There is also a plot()-method implemented in the see-package.

https://easystats.github.io/see/articles/bayestestR.html
https://easystats.github.io/see/

si 105

References

Wagenmakers, E., Gronau, Q. F., Dablander, F., & Etz, A. (2018, November 22). The Support
Interval. doi:10.31234/osf.io/zwnxb

See Also

Other ci: bci(), ci(), eti(), hdi(), spi()

Examples

library(bayestestR)

prior <- distribution_normal(1000, mean = 0, sd = 1)
posterior <- distribution_normal(1000, mean = 0.5, sd = 0.3)

si(posterior, prior, verbose = FALSE)

rstanarm models

library(rstanarm)
contrasts(sleep$group) <- contr.equalprior_pairs # see vignette
stan_model <- stan_lmer(extra ~ group + (1 | ID), data = sleep)
si(stan_model, verbose = FALSE)
si(stan_model, BF = 3, verbose = FALSE)

emmGrid objects

library(emmeans)
group_diff <- pairs(emmeans(stan_model, ~group))
si(group_diff, prior = stan_model, verbose = FALSE)

brms models

library(brms)
contrasts(sleep$group) <- contr.equalprior_pairs # see vingette
my_custom_priors <-

set_prior("student_t(3, 0, 1)", class = "b") +
set_prior("student_t(3, 0, 1)", class = "sd", group = "ID")

brms_model <- suppressWarnings(brm(extra ~ group + (1 | ID),
data = sleep,
prior = my_custom_priors,
refresh = 0

))
si(brms_model, verbose = FALSE)

https://doi.org/10.31234/osf.io/zwnxb

106 simulate_correlation

simulate_correlation Data Simulation

Description

Simulate data with specific characteristics.

Usage

simulate_correlation(n = 100, r = 0.5, mean = 0, sd = 1, names = NULL, ...)

simulate_ttest(n = 100, d = 0.5, names = NULL, ...)

simulate_difference(n = 100, d = 0.5, names = NULL, ...)

Arguments

n The number of observations to be generated.

r A value or vector corresponding to the desired correlation coefficients.

mean A value or vector corresponding to the mean of the variables.

sd A value or vector corresponding to the SD of the variables.

names A character vector of desired variable names.

... Arguments passed to or from other methods.

d A value or vector corresponding to the desired difference between the groups.

Examples

Correlation --------------------------------
data <- simulate_correlation(r = 0.5)
plot(data$V1, data$V2)
cor.test(data$V1, data$V2)
summary(lm(V2 ~ V1, data = data))

Specify mean and SD
data <- simulate_correlation(r = 0.5, n = 50, mean = c(0, 1), sd = c(0.7, 1.7))
cor.test(data$V1, data$V2)
round(c(mean(data$V1), sd(data$V1)), 1)
round(c(mean(data$V2), sd(data$V2)), 1)
summary(lm(V2 ~ V1, data = data))

Generate multiple variables
cor_matrix <- matrix(

c(
1.0, 0.2, 0.4,
0.2, 1.0, 0.3,
0.4, 0.3, 1.0

simulate_prior 107

),
nrow = 3

)

data <- simulate_correlation(r = cor_matrix, names = c("y", "x1", "x2"))
cor(data)
summary(lm(y ~ x1, data = data))

t-test --------------------------------
data <- simulate_ttest(n = 30, d = 0.3)
plot(data$V1, data$V0)
round(c(mean(data$V1), sd(data$V1)), 1)
diff(t.test(data$V1 ~ data$V0)$estimate)
summary(lm(V1 ~ V0, data = data))
summary(glm(V0 ~ V1, data = data, family = "binomial"))

Difference --------------------------------
data <- simulate_difference(n = 30, d = 0.3)
plot(data$V1, data$V0)
round(c(mean(data$V1), sd(data$V1)), 1)
diff(t.test(data$V1 ~ data$V0)$estimate)
summary(lm(V1 ~ V0, data = data))
summary(glm(V0 ~ V1, data = data, family = "binomial"))

simulate_prior Returns Priors of a Model as Empirical Distributions

Description

Transforms priors information to actual distributions.

Usage

simulate_prior(model, n = 1000, ...)

Arguments

model A stanreg, stanfit, brmsfit, blavaan, or MCMCglmm object.

n Size of the simulated prior distributions.

... Currently not used.

See Also

unupdate() for directly sampling from the prior distribution (useful for complex priors and de-
signs).

108 simulate_simpson

Examples

library(bayestestR)
if (require("rstanarm")) {

model <- suppressWarnings(
stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)

)
simulate_prior(model)

}

simulate_simpson Simpson’s paradox dataset simulation

Description

Simpson’s paradox, or the Yule-Simpson effect, is a phenomenon in probability and statistics, in
which a trend appears in several different groups of data but disappears or reverses when these
groups are combined.

Usage

simulate_simpson(
n = 100,
r = 0.5,
groups = 3,
difference = 1,
group_prefix = "G_"

)

Arguments

n The number of observations for each group to be generated (minimum 4).

r A value or vector corresponding to the desired correlation coefficients.

groups Number of groups (groups can be participants, clusters, anything).

difference Difference between groups.

group_prefix The prefix of the group name (e.g., "G_1", "G_2", "G_3", ...).

Value

A dataset.

spi 109

Examples

data <- simulate_simpson(n = 10, groups = 5, r = 0.5)

if (require("ggplot2")) {
ggplot(data, aes(x = V1, y = V2)) +
geom_point(aes(color = Group)) +
geom_smooth(aes(color = Group), method = "lm") +
geom_smooth(method = "lm")

}

spi Shortest Probability Interval (SPI)

Description

Compute the Shortest Probability Interval (SPI) of posterior distributions. The SPI is a more
computationally stable HDI. The implementation is based on the algorithm from the SPIn package.

Usage

spi(x, ...)

S3 method for class 'numeric'
spi(x, ci = 0.95, verbose = TRUE, ...)

S3 method for class 'data.frame'
spi(x, ci = 0.95, rvar_col = NULL, verbose = TRUE, ...)

S3 method for class 'stanreg'
spi(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'brmsfit'
spi(
x,
ci = 0.95,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),

110 spi

parameters = NULL,
verbose = TRUE,
...

)

S3 method for class 'get_predicted'
spi(x, ci = 0.95, use_iterations = FALSE, verbose = TRUE, ...)

Arguments

x Vector representing a posterior distribution, or a data frame of such vectors. Can
also be a Bayesian model. bayestestR supports a wide range of models (see, for
example, methods("hdi")) and not all of those are documented in the ’Usage’
section, because methods for other classes mostly resemble the arguments of the
.numeric or .data.framemethods.

... Currently not used.
ci Value or vector of probability of the (credible) interval - CI (between 0 and 1) to

be estimated. Default to .95 (95%).
verbose Toggle off warnings.
rvar_col A single character - the name of an rvar column in the data frame to be pro-

cessed. See example in p_direction().
effects Should results for fixed effects, random effects or both be returned? Only applies

to mixed models. May be abbreviated.
component Should results for all parameters, parameters for the conditional model or the

zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

use_iterations Logical, if TRUE and x is a get_predicted object, (returned by insight::get_predicted()),
the function is applied to the iterations instead of the predictions. This only ap-
plies to models that return iterations for predicted values (e.g., brmsfit models).

Details

The SPI is an alternative method to the HDI (hdi()) to quantify uncertainty of (posterior) distri-
butions. The SPI is said to be more stable than the HDI, because, the "HDI can be noisy (that is,
have a high Monte Carlo error)" (Liu et al. 2015). Furthermore, the HDI is sensitive to additional
assumptions, in particular assumptions related to the different estimation methods, which can make
the HDI less accurate or reliable.

Value

A data frame with following columns:

• Parameter The model parameter(s), if x is a model-object. If x is a vector, this column is
missing.

weighted_posteriors 111

• CI The probability of the credible interval.

• CI_low, CI_high The lower and upper credible interval limits for the parameters.

Note

The code to compute the SPI was adapted from the SPIn package, and slightly modified to be
more robust for Stan models. Thus, credits go to Ying Liu for the original SPI algorithm and R
implementation.

References

Liu, Y., Gelman, A., & Zheng, T. (2015). Simulation-efficient shortest probability intervals. Statis-
tics and Computing, 25(4), 809–819. https://doi.org/10.1007/s11222-015-9563-8

See Also

Other ci: bci(), ci(), eti(), hdi(), si()

Examples

library(bayestestR)

posterior <- rnorm(1000)
spi(posterior)
spi(posterior, ci = c(0.80, 0.89, 0.95))

df <- data.frame(replicate(4, rnorm(100)))
spi(df)
spi(df, ci = c(0.80, 0.89, 0.95))

library(rstanarm)
model <- suppressWarnings(

stan_glm(mpg ~ wt + gear, data = mtcars, chains = 2, iter = 200, refresh = 0)
)
spi(model)

weighted_posteriors Generate posterior distributions weighted across models

Description

Extract posterior samples of parameters, weighted across models. Weighting is done by comparing
posterior model probabilities, via bayesfactor_models().

112 weighted_posteriors

Usage

weighted_posteriors(..., prior_odds = NULL, missing = 0, verbose = TRUE)

S3 method for class 'data.frame'
weighted_posteriors(..., prior_odds = NULL, missing = 0, verbose = TRUE)

S3 method for class 'stanreg'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL

)

S3 method for class 'brmsfit'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL

)

S3 method for class 'blavaan'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL

)

S3 method for class 'BFBayesFactor'
weighted_posteriors(
...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
iterations = 4000

)

weighted_posteriors 113

Arguments

... Fitted models (see details), all fit on the same data, or a single BFBayesFactor
object.

prior_odds Optional vector of prior odds for the models compared to the first model (or the
denominator, for BFBayesFactor objects). For data.frames, this will be used
as the basis of weighting.

missing An optional numeric value to use if a model does not contain a parameter that
appears in other models. Defaults to 0.

verbose Toggle off warnings.

effects Should results for fixed effects, random effects or both be returned? Only applies
to mixed models. May be abbreviated.

component Should results for all parameters, parameters for the conditional model or the
zero-inflated part of the model be returned? May be abbreviated. Only applies
to brms-models.

parameters Regular expression pattern that describes the parameters that should be returned.
Meta-parameters (like lp__ or prior_) are filtered by default, so only param-
eters that typically appear in the summary() are returned. Use parameters to
select specific parameters for the output.

iterations For BayesFactor models, how many posterior samples to draw.

Details

Note that across models some parameters might play different roles. For example, the parame-
ter A plays a different role in the model Y ~ A + B (where it is a main effect) than it does in the
model Y ~ A + B + A:B (where it is a simple effect). In many cases centering of predictors (mean
subtracting for continuous variables, and effects coding via contr.sum or orthonormal coding via
contr.equalprior_pairs for factors) can reduce this issue. In any case you should be mindful of
this issue.

See bayesfactor_models() details for more info on passed models.

Note that for BayesFactor models, posterior samples cannot be generated from intercept only
models.

This function is similar in function to brms::posterior_average.

Value

A data frame with posterior distributions (weighted across models) .

Note

For BayesFactor < 0.9.12-4.3, in some instances there might be some problems of duplicate
columns of random effects in the resulting data frame.

114 weighted_posteriors

References

• Clyde, M., Desimone, H., & Parmigiani, G. (1996). Prediction via orthogonalized model
mixing. Journal of the American Statistical Association, 91(435), 1197-1208.

• Hinne, M., Gronau, Q. F., van den Bergh, D., and Wagenmakers, E. (2019, March 25). A
conceptual introduction to Bayesian Model Averaging. doi:10.31234/osf.io/wgb64

• Rouder, J. N., Haaf, J. M., & Vandekerckhove, J. (2018). Bayesian inference for psychology,
part IV: Parameter estimation and Bayes factors. Psychonomic bulletin & review, 25(1), 102-
113.

• van den Bergh, D., Haaf, J. M., Ly, A., Rouder, J. N., & Wagenmakers, E. J. (2019). A
cautionary note on estimating effect size.

See Also

bayesfactor_inclusion() for Bayesian model averaging.

Examples

if (require("rstanarm") && require("see") && interactive()) {
stan_m0 <- suppressWarnings(stan_glm(extra ~ 1,
data = sleep,
family = gaussian(),
refresh = 0,
diagnostic_file = file.path(tempdir(), "df0.csv")

))

stan_m1 <- suppressWarnings(stan_glm(extra ~ group,
data = sleep,
family = gaussian(),
refresh = 0,
diagnostic_file = file.path(tempdir(), "df1.csv")

))

res <- weighted_posteriors(stan_m0, stan_m1, verbose = FALSE)

plot(eti(res))
}

With BayesFactor
if (require("BayesFactor")) {

extra_sleep <- ttestBF(formula = extra ~ group, data = sleep)

wp <- weighted_posteriors(extra_sleep, verbose = FALSE)

describe_posterior(extra_sleep, test = NULL, verbose = FALSE)
also considers the null
describe_posterior(wp$delta, test = NULL, verbose = FALSE)

}

weighted prediction distributions via data.frames

https://doi.org/10.31234/osf.io/wgb64

weighted_posteriors 115

if (require("rstanarm") && interactive()) {
m0 <- suppressWarnings(stan_glm(
mpg ~ 1,
data = mtcars,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df0.csv"),
refresh = 0

))

m1 <- suppressWarnings(stan_glm(
mpg ~ carb,
data = mtcars,
family = gaussian(),
diagnostic_file = file.path(tempdir(), "df1.csv"),
refresh = 0

))

Predictions:
pred_m0 <- data.frame(posterior_predict(m0))
pred_m1 <- data.frame(posterior_predict(m1))

BFmods <- bayesfactor_models(m0, m1, verbose = FALSE)

wp <- weighted_posteriors(
pred_m0, pred_m1,
prior_odds = as.numeric(BFmods)[2],
verbose = FALSE

)

look at first 5 prediction intervals
hdi(pred_m0[1:5])
hdi(pred_m1[1:5])
hdi(wp[1:5]) # between, but closer to pred_m1

}

Index

∗ ci
bci, 24
ci, 29
eti, 56
hdi, 59
si, 101
spi, 109

∗ data
disgust, 45

area under the curve, 79
area_under_curve, 3
area_under_curve(), 70
as.data.frame.density, 4
as.logical.bayesfactor_restricted

(bayesfactor_restricted), 19
as.matrix.bayesfactor_models

(bayesfactor_models), 9
as.numeric.map_estimate, 5
as.numeric.p_direction

(as.numeric.map_estimate), 5
as.numeric.p_map

(as.numeric.map_estimate), 5
as.numeric.p_significance

(as.numeric.map_estimate), 5
auc (area_under_curve), 3

bayesfactor, 5
bayesfactor_inclusion, 7
bayesfactor_inclusion(), 6, 114
bayesfactor_models, 9
bayesfactor_models(), 6, 7, 10, 111, 113
bayesfactor_parameters, 13
bayesfactor_parameters(), 6
bayesfactor_pointnull

(bayesfactor_parameters), 13
bayesfactor_restricted, 19
bayesfactor_rope

(bayesfactor_parameters), 13

bayesian_as_frequentist
(convert_bayesian_as_frequentist),
35

bcai (bci), 24
bci, 24, 31, 58, 62, 105, 111
bci(), 39, 62
bf_inclusion (bayesfactor_inclusion), 7
bf_models (bayesfactor_models), 9
bf_parameters (bayesfactor_parameters),

13
bf_pointnull (bayesfactor_parameters),

13
bf_restricted (bayesfactor_restricted),

19
bf_rope (bayesfactor_parameters), 13
bic_to_bf, 27
bic_to_bf(), 88, 89

check_prior, 28
ci, 27, 29, 58, 62, 105, 111
ci(), 92, 97
contr.bayes (contr.equalprior), 32
contr.equalprior, 32
contr.equalprior_deviations

(contr.equalprior), 32
contr.equalprior_pairs, 113
contr.equalprior_pairs

(contr.equalprior), 32
contr.orthonorm (contr.equalprior), 32
convert_bayesian_as_frequentist, 35
convert_p_to_pd (pd_to_p), 71
convert_pd_to_p (pd_to_p), 71

density estimation, 79
density(), 63
density_at, 36
describe_posterior, 37, 69
describe_prior, 41
dgCMatrix, 32
diagnostic_draws, 43

116

INDEX 117

diagnostic_posterior, 43
disgust, 45
distribution, 46
distribution_beta (distribution), 46
distribution_binom (distribution), 46
distribution_binomial (distribution), 46
distribution_cauchy (distribution), 46
distribution_chisq (distribution), 46
distribution_chisquared (distribution),

46
distribution_custom (distribution), 46
distribution_gamma (distribution), 46
distribution_gaussian (distribution), 46
distribution_mixture_normal

(distribution), 46
distribution_nbinom (distribution), 46
distribution_normal (distribution), 46
distribution_poisson (distribution), 46
distribution_student (distribution), 46
distribution_student_t (distribution),

46
distribution_t (distribution), 46
distribution_tweedie (distribution), 46
distribution_uniform (distribution), 46
Distributions, 47

effective_sample, 48
equivalence_test, 50
equivalence_test(), 93
estimate_density, 53
estimate_density(), 63, 70, 77
eti, 27, 31, 56, 62, 105, 111
eti(), 39, 62

HDI, 26, 52, 58, 61, 93
hdi, 27, 31, 58, 59, 105, 111
hdi(), 39, 62, 110

insight::get_loglikelihood, 10
insight::get_loglikelihood(), 10
insight::get_predicted(), 26, 58, 61, 64,

74, 78, 82, 87, 103, 110

logspline::logspline(), 16, 103

map_estimate, 63
map_estimate(), 39, 67, 73
mcse, 65
mediation, 66

model_to_priors, 69

overlap, 70

p_direction, 75
p_direction(), 16, 21, 26, 31, 39, 40, 51, 55,

57, 60, 64, 71, 73, 78, 82, 85, 87, 92,
97, 103, 110

p_map, 81
p_pointnull (p_map), 81
p_rope, 84
p_significance, 86
p_significance(), 98
p_to_bf, 88
p_to_pd (pd_to_p), 71
pd (p_direction), 75
pd_to_p, 71
pd_to_p(), 77–79
point_estimate, 72
point_estimate(), 97

reshape_draws (reshape_iterations), 90
reshape_iterations, 90
reshape_iterations(), 39
rnorm_perfect (distribution), 46
ROPE, 52
rope, 91
rope(), 39
rope_range, 95
rope_range(), 51, 52, 85, 87, 92, 93

sensitivity_to_prior, 96
sexit, 97
sexit(), 100
sexit_thresholds, 100
sexit_thresholds(), 98
si, 27, 31, 58, 62, 101, 111
si(), 39, 62
simulate_correlation, 106
simulate_difference

(simulate_correlation), 106
simulate_prior, 107
simulate_prior(), 28
simulate_simpson, 108
simulate_ttest (simulate_correlation),

106
spi, 27, 31, 58, 62, 105, 109
spi(), 26, 39, 58, 61, 62
stats::contr.sum, 33

118 INDEX

stats::contr.treatment, 33

unupdate(), 17, 22, 28, 104, 107
update.bayesfactor_models

(bayesfactor_models), 9

weighted_posteriors, 111
weighted_posteriors(), 8, 79

	area_under_curve
	as.data.frame.density
	as.numeric.map_estimate
	bayesfactor
	bayesfactor_inclusion
	bayesfactor_models
	bayesfactor_parameters
	bayesfactor_restricted
	bci
	bic_to_bf
	check_prior
	ci
	contr.equalprior
	convert_bayesian_as_frequentist
	density_at
	describe_posterior
	describe_prior
	diagnostic_draws
	diagnostic_posterior
	disgust
	distribution
	effective_sample
	equivalence_test
	estimate_density
	eti
	hdi
	map_estimate
	mcse
	mediation
	model_to_priors
	overlap
	pd_to_p
	point_estimate
	p_direction
	p_map
	p_rope
	p_significance
	p_to_bf
	reshape_iterations
	rope
	rope_range
	sensitivity_to_prior
	sexit
	sexit_thresholds
	si
	simulate_correlation
	simulate_prior
	simulate_simpson
	spi
	weighted_posteriors
	Index

