Lifecycle: experimental CRAN status R-CMD-check pkgdown test-coverage Codecov test coverage Github commit frequency

card

Cardiovascular Applications for Research Data

The inspiration for {card} was to create useful functions and analytical approaches in computational neurocardiology, with a on electrocardiography and epidemiology.

The areas of focus of this package are the following:

Installation

You can install the released version of {card} from CRAN with:

install.packages("card")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("shah-in-boots/card")

Usage

The intent for card is to assist in the analysis of cardiovascular and epidemiological data, with a focus on cardiac-specific datasets and data types.

library(card)

Datasets

# ECG data
data("twins")
head(twins)
#> # A tibble: 6 × 23
#> # Groups:   patid, hour [6]
#>   patid   age   bmi race  smoking hptn  dm    chf   prevchd med_beta_blockers
#>   <dbl> <dbl> <dbl> <fct> <fct>   <fct> <fct> <fct> <fct>   <fct>            
#> 1     1    49  27.4 0     1       1     0     0     0       0                
#> 2     1    49  27.4 0     1       1     0     0     0       0                
#> 3     1    49  27.4 0     1       1     0     0     0       0                
#> 4     1    49  27.4 0     1       1     0     0     0       0                
#> 5     1    49  27.4 0     1       1     0     0     0       0                
#> 6     1    49  27.4 0     1       1     0     0     0       0                
#> # ℹ 13 more variables: med_antidepr <fct>, beck_total <dbl>, sad_bin <fct>,
#> #   sad_cat <fct>, PETdiff_2 <fct>, dyxtime <dttm>, date <date>, hour <dbl>,
#> #   rDYX <dbl>, sDYX <dbl>, HR <dbl>, CP <dbl>, zip <chr>

# Outcomes data
data("stress")
head(stress)
#> # A tibble: 6 × 11
#>      id start      stop       head_ache_date_1 head_ache_date_2 head_ache_date_3
#>   <dbl> <date>     <date>     <date>           <date>           <date>          
#> 1   123 2014-08-26 2016-12-08 2016-12-08       NA               NA              
#> 2   117 2014-08-12 2016-10-30 2016-10-30       NA               NA              
#> 3   145 2014-10-22 2016-07-31 2016-06-01       2016-07-31       NA              
#> 4   144 2014-10-21 2017-03-24 2015-02-12       NA               NA              
#> 5   204 2015-03-16 2015-04-03 NA               NA               NA              
#> 6   283 2015-10-12 2016-01-19 NA               NA               NA              
#> # ℹ 5 more variables: heart_ache_date_1 <date>, heart_ache_date_2 <date>,
#> #   heart_ache_date_3 <date>, death <dbl>, broken_heart <dbl>

# VCG data
data("geh")
head(geh)
#> # A tibble: 6 × 70
#>      pid hhp_id   age sex   age_cat systolic_bp_first systolic_bp_second
#>    <dbl>  <dbl> <dbl> <fct> <fct>               <dbl>              <dbl>
#> 1 200481 220946    42 0     0                     162                165
#> 2 200489 224643    62 1     1                     133                128
#> 3 200495 224845    84 0     2                     100                 99
#> 4 200052 222917    65 0     2                     139                141
#> 5 200517 220638    64 1     1                     166                163
#> 6 200623 224862    57 0     1                     151                144
#> # ℹ 63 more variables: systolic_bp_third <dbl>, diastolic_bp_first <dbl>,
#> #   diastolic_bp_second <dbl>, diastolic_bp_third <dbl>,
#> #   pulse_rate_first <dbl>, pulse_rate_second <dbl>, height_cm <dbl>,
#> #   weight_kg <dbl>, waist_cm <dbl>, dia_trt_allopdrug <hvn_lbll>,
#> #   hbp_trt_allopdrug <hvn_lbll>, hyp_trt_allopdrug <hvn_lbll>,
#> #   lab_hba1c <dbl>, lab_fasting_bg <dbl>, lab_fasting_insulin <dbl>,
#> #   lab_tchol <dbl>, lab_ldlchol <dbl>, lab_hdlchol <dbl>, lab_triglyc <dbl>, …

Cosinor Analysis

This modeling algorithm requires only base R, which allows internal flexibility for modeling heuristics and improved efficiency. For the user, it also allows standard modeling tools/approaches, and a flexible user interface that accounts for individual/population analysis and single/multiple component analysis.

There are other cosinor models available in R, however they do not allow for simple multiple-component or individual/population analysis in a method that is tidy (for both tidyverse and tidymodels approaches).

m <- cosinor(rDYX ~ hour, twins, tau = c(24, 12))
summary(m)
#> Individual Cosinor Model 
#> ------------------------------------------
#> Call: 
#> cosinor(formula = rDYX ~ M + A1 * cos(2*pi*hour/24 + phi1) + A2 * cos(2*pi*hour/12 + phi2) 
#> 
#> Period(s): 24, 12 
#> 
#> Residuals: 
#>     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
#> -3.00770 -0.52024 -0.03247  0.00000  0.48753  4.88552 
#> 
#> Coefficients: 
#>         Estimate  Std. Error
#> mesor  2.8586510 0.006062639
#> amp1   0.2964114 0.008702368
#> amp2   0.1302012 0.008542526
#> phi1  -2.6542757 0.028911445
#> phi2  -3.6636921 0.065235427
ggcosinor(m)
#> This is a harmonic multiple-component cosinor object. The orthophase, bathyphase, and global amplitude were calculated.
#> Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
#> 'x' values
#> `geom_smooth()` using formula = 'y ~ s(x, bs = "cs")'


head(augment(m))
#> # A tibble: 6 × 8
#>       y     t     x1        x2        z1        z2 .fitted .resid
#>   <dbl> <dbl>  <dbl>     <dbl>     <dbl>     <dbl>   <dbl>  <dbl>
#> 1  2.63     8 -0.5   -5.00e- 1  8.66e- 1 -8.66e- 1    3.22 -0.592
#> 2  2.42     9 -0.707 -1.84e-16  7.07e- 1 -1   e+ 0    3.21 -0.787
#> 3  1.81    10 -0.866  5   e- 1  5   e- 1 -8.66e- 1    3.15 -1.34 
#> 4  2.01    11 -0.966  8.66e- 1  2.59e- 1 -5.00e- 1    3.08 -1.07 
#> 5  1.63    12 -1      1   e+ 0  1.22e-16 -2.45e-16    3.01 -1.38 
#> 6  1.95    13 -0.966  8.66e- 1 -2.59e- 1  5   e- 1    2.95 -0.996

mirror server hosted at Truenetwork, Russian Federation.