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calc.cluster.comparisons

Calculate comparison measures between two sets of clustering results

Description

Given two sets of posterior probabilities of membership for clusters, calculate three measures to
compare the clustering memberships.

Usage

calc.cluster.comparisons(ppr1, ppr2)

Arguments

ppr1 Posterior probabilities of cluster membership, named ppr_m or ppc_m in the
output of clustord. If you have performed biclustering, then ppr1 should be
the clustering results for just one of the dimensions i.e. just the row clustering
results, or just the column clustering results. The rows of ppr1 give the entries
that have been clustered, and each column corresponds to one cluster.

ppr2 Posterior probabilities of cluster membership from a different clustering run,
which will be compared to ppr1.

Details

The three measures are the Adjusted Rand Index (ARI), the Normalised Variation of Information
(NVI) and the Normalised Information Distance (NID).

The three measures are documented in
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Value

A list with components:

ARI: Adjusted Rand Index.

NVI: Normalised Variation of Information.

NID: Normalised Information Distance.

References

Fernández, D., & Pledger, S. (2016). Categorising count data into ordinal responses with appli-
cation to ecological communities. Journal of agricultural, biological, and environmental statistics
(JABES), 21(2), 348–362.

calc.SE.rowcluster Calculate standard errors of clustering parameters.

Description

Calculate SE of parameters fitted using clustord.

Usage

calc.SE.rowcluster(long.df, clust.out, optim.control = default.optim.control())

calc.SE.bicluster(long.df, clust.out, optim.control = default.optim.control())

Arguments

long.df The data frame, in long format, as passed to clustord.

clust.out A clustord object.

optim.control control list for the optim call within the M step of the EM algorithm. See the
control list Details in the optim manual for more info.

Details

Use calc.SE.rowcluster to calculate SE for row clustering and column clustering, or calc.SE.bicluster
to calculate SE for biclustering.

Calculates SE by running optimHess (see optim) on the incomplete-data log-likelihood to find
the hessian at the fitted parameter values from clustord. Then the square roots of the diagonal
elements of the negative inverse of the hessian are the standard errors of the parameters i.e. SE <-
sqrt(diag(solve(-optim.hess)).

Note that SE values are only calculated for the independent parameters. For example, if the con-
straint on the row clustering parameters is set to constraint_sum_zero = TRUE, where the last row
clustering parameter is the negative sum of the other parameters, SE values will only be calculated
for the first RG-1 parameters, the independent ones. This applies similarly to individual column
effect coefficients, etc.
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The function requires an input which is the output of clustord, which includes the component
outvect, the final vector of independent parameter values from the EM algorithm, which will
correspond to a subset of the parameter values in parlist.out.

Value

The standard errors corresponding to the elements of clust.out$outvect.

Functions

• calc.SE.rowcluster(): SE for rowclustering

• calc.SE.bicluster(): SE for biclustering

clustord Likelihood-based clustering using Ordered Stereotype Models (OSM),
Proportional Odds Models (POM) or Binary Models

Description

Likelihood-based clustering with parameters fitted using the EM algorithm. You can perform clus-
tering on rows or columns of a data matrix, or biclustering on both rows and columns simulta-
neously. You can include any number of covariates for rows and covariates for columns. Ordinal
models used in the package are Ordered Stereotype Model (OSM), Proportional Odds Model (POM)
and a dedicated Binary Model for binary data.

Usage

clustord(
formula,
model,
nclus.row = NULL,
nclus.column = NULL,
long.df,
initvect = NULL,
pi.init = NULL,
kappa.init = NULL,
EM.control = default.EM.control(),
optim.method = "L-BFGS-B",
optim.control = default.optim.control(),
constraint_sum_zero = TRUE,
start_from_simple_model = TRUE,
parallel_starts = FALSE,
nstarts = 5,
verbose = FALSE

)
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Arguments

formula model formula (see ’Details’).

model "OSM" for Ordered Stereotype Model or "POM" for Proportional Odds Model or
"Binary" for binary data model.

nclus.row number of row clustering groups.

nclus.column number of column clustering groups.

long.df data frame with at least three columns, Y and ROW and COL. Each row in the
data frame corresponds to a single cell in the original data matrix; the response
value in that cell is given by Y, and the row and column indices of that cell in
the matrix are given by ROW and COL. Use mat2df to create this data frame from
your data matrix of responses. mat2df also allows you to supply data frames of
row or column covariates which will be incorporated into long.df.

initvect (default NULL) vector of starting parameter values for the model. Note: if the
user enters an initial vector of parameter values, it is strongly recommend that
the user also check the values of parlist.init in the output object, to make
sure that the constructed parameters are as expected.
If NULL, starting parameter values will be generated automatically.
See ’Details’ for definitions of the parameters used for different models.

pi.init (default NULL) starting parameter values for the proportions of observations in
the different row clusters.
If NULL, starting values will be generated automatically.
User-specified values of pi.init must be of length (nclus.row-1) because the
final value will be automatically calculated so that the values of pi sum to 1.

kappa.init (default NULL) starting parameter values for the proportions of observations in
the different column clusters.
If NULL, starting values will be generated automatically.
User-specified values of kappa.init must be of length (nclus.column-1) be-
cause the final value will be automatically calculated so that the values of kappa
sum to 1.

EM.control (default = list(EMcycles=50, EMlikelihoodtol=1e-4, EMparamtol=1e-2,
paramstopping=TRUE, startEMcycles=10, keepallparams=FALSE, epsilon=1e-6))
list of parameters controlling the EM algorithm.
EMcycles controls how many EM iterations of the main EM algorithm are used
to fit the chosen submodel.
EMlikelihoodtol is the tolerance for the stopping criterion for the log-likelihood
in the EM algorithm. The criterion is the absolute change in the incomplete
log-likelihood since the previous iteration, scaled by the size of the dataset n*p,
where n is the number of rows in the data matrix and p is the number of columns
in the data matrix. The scaling is applied because the incomplete log-likelihood
is predominantly affected by the dataset size.
EMparamtol is the tolerance for the stopping criterion for the parameters in the
EM algorithm. This is a tolerance for the sum of the scaled parameter changes
from the last iteration, i.e. the tolerance is not for any individual parameter but
for the sum of changes in all the parameters. Thus the default tolerance is 1e-2.
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The individual parameter criteria are the absolute differences between the expo-
nentiated absolute parameter value at the current timestep and the exponentiated
absolute parameter value at the previous timestep, as a proportion of the expo-
nentiated absolute parameter value at the current timestep. The exponentiation
is to rescale parameter values that are close to zero.
there are around 5 independent parameter values, then at the point of conver-
gence using default tolerances for the log-likelihood and the parameters, each
parameter will have a scaled absolute change since the previous iteration of
about 1e-4; if there are 20 or 30 independent parameters, then each will have
a scaled aboslute change of about 1e-6.
paramstopping: if FALSE, indicates that the EM algorithm should only check
convergence based on the change in incomplete-data log-likelihood, relative
to the current difference between the complete-data and incomplete-data log-
likelihoods, i.e. abs(delta_lli)/abs(llc[iter] - lli[iter]); if TRUE, in-
dicates that as well as checking the likelihood criterion, the EM algorithm should
also check whether the relative change in the exponentials of the absolute values
of the current parameters is below the tolerance EMstoppingpar, to see whether
the parameters and the likelihood have both converged.
startEMcycles controls how many EM iterations are used when fitting the sim-
pler submodels to get starting values for fitting models with interaction.
keepallparams: if TRUE, keep a record of parameter values (including pi_r and
kappa_c) for every EM iteration.
rerunestepbeforelli: if TRUE, and only when using biclustering, rerun the
E-step before calculating the incomplete-data log-likelihood. The EM algo-
rithm runs the E-step to estimate the cluster membership probabilities and then
runs the M-step to estimate the parameters by maximising the complete-data
log-likelihood (LLC), and then recalculates the estimated incomplete-data log-
likelihood (LLI) to check for convergence. The biclustering LLI approximation
uses the cluster membership probabilities so will be slightly more accurate if
these cluster membership probabilities are recalculated using the very latest pa-
rameter estimates. So the TRUE setting for this control recalculates the cluster
memberships before calculating the LLI approx.
uselatestlli: Kept for backwards compatibility with original version of clus-
tord algorithm. Original version of the algorithm had this set to FALSE, which
keeps the best LLI from any previous iteration rather than the latest LLI. The
default, TRUE, instead keeps the latest LLI even if there was a better LLI in a
previous iteration. This is appropriat: In row clustering the exact LLI is used
and the EM algorithm creators proved the LLI should always not decrease with
each iteration. In biclustering the approximation to the LLI may be very inac-
curate when the algorithm is a long way from convergence, so even when the
value of LLI appears to be very high in early iterations this may not be accurate,
so it is better to take the latest value.
For columnclustering, the parameters saved from each iteration will NOT be
converted to column clustering format, and will be in the row clustering format,
so alpha in EM.status$params.every.iteration will correspond to beta_c
and pi will correspond to kappa.
epsilon: default 1e-6, small value used to adjust values of pi, kappa and theta
that are too close to zero so that taking logs of them does not create infinite
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values.

optim.method (default "L-BFGS-B") method to use in optim within the M step of the EM
algorithm. Must be one of ’L-BFGS-B’, ’BFGS’, ’CG’ or ’Nelder-Mead’ (i.e.
not the SANN method).

optim.control control list for the optim call within the M step of the EM algorithm. See the
control list Details in the optim manual for more info. Please note that although
optim, by default, uses pgtol=0 and factr=1e7 in the L-BFGS-B method,
clustord, by default, alters these to pgtol=1e-4 and factr=1e11, but you can
use this optim.control argument in clustord to revert them to the defaults if
you want. The reason for the change is that the chosen values in clustord re-
duce the tolerance on the log-likelihood function optimization in order to speed
up the algorithm, and because the log-likelihood is on the scale of 1e4 for <100
rows in the data matrix and 1e6 for 5000 rows in the data matrix, tolerance at the
default optim scale is not as important as the choice of model type and structure
or the number of starting points. If one model is better than another, it will prob-
ably have a likelihood that is better by about the size of the data matrix, which
is far larger than the tolerance in the optimization. If one starting point is better
than another, it will probably have a likelihood that is better on about 1/10th or
1/100th the size of the data matrix, which is still far larger than the tolerance
in the optimization. If you need accurate parameter estimates, firstly make sure
to try more starting points, then perform model selection first, and then finally
rerun the chosen model with finer tolerance, e.g. the optim defaults, pgtol=0
and factr=1e7.

constraint_sum_zero

(default TRUE) if TRUE, use constraints that cluster effects sum to zero; if FALSE,
use constraints that the cluster effect for the first cluster will be 0. Both versions
have the same constraints for joint row-column cluster effects: these effects are
described by a matrix of parameters gamma_rc, indexed by row cluster and col-
umn cluster indices, and the constraints are that the final column of gamma_rc is
equal to the negative sum of the other columns (so gamma columns sum to zero)
and first row of gamma_rc is equal to the negative sum of the other rows (so
gamma rows sum to zero).

start_from_simple_model

(default TRUE) if TRUE, fit a simpler clustering model first and use that to pro-
vide starting values for all parameters for the model with interactions; if FALSE,
use the more basic models to provide starting values only for pi.init and
kappa.init. If the full model has interaction terms, then simpler models are
ones without the interactions. If the model has individual row/column effects
alongside the clusters, then simpler models are ones without the individual row/column
effects. If the full model has covariates, then simpler models are ones without
the covariates (to get starting values for the cluster parameters), and ones with
the covariates but no clustering (to get starting values for the covariates).

parallel_starts

(default FALSE) if TRUE, by generating multiple random starts, those random
starts will be parallelised over as many cores as are available. For example,
on a personal computer this will be one fewer than the number of cores in the
machine, to make sure one is left for system tasks external to R.
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nstarts (default 5) number of random starts to generate, if generating random starting
points for the EM algorithm.

verbose (default FALSE) changes how much is reported to the console during the algo-
rithm’s progress. If TRUE, reports the incomplete-data log-likelihood at every
EM algorithm iteration and the trace information from nnet::multinom() dur-
ing the process of fitting initial values for the mu parameters. If FALSE, the
incomplete log-likelihood is only reported every 10 iterations of the EM algo-
rithm and the initial fitting reporting is suppressed. Regardless of the verbosity
setting the algorithm reports each of the random starts and whenever it finds
a better log-likelihood than all previous starts, and it also reports when it is
fitting simpler models to find starting values for the parameters vs fitting the
final, more complex model. If wanting the detailed output from optim(), use
optim.control=list(trace=X), where X is 1 to 6, with 6 being the highest
level of verbosity for the L-BFGS-B algorithm.

Details

You can select your own input parameters, or starting values will be generated by running kmeans
or by fitting simpler models and feeding the outputs into the final model as starting values.

The starting point for clustering is a data matrix of response values that are binary or categorical.
You may also have a data frame of covariates that are linked to the rows of the data matrix, and may
also have a data frame of covariates that are linked to the columns of the data matrix.

For example, if clustering data from fishing trawls, where the rows are trawl events and columns
are species caught, then you could also supply a gear covariate linked to the rows, representing gear
used on each trawl event, and could additionally supply species covariates linked to the columns,
representing auxiliary information about each species. There is no requirement to provide any
covariates, and you can provide only row covariates, or only column covariates.

Before running clustord, you need to run mat2df to convert the data matrix into a long form data
frame. The data frame needs to have at least three columns, Y and ROW and COL. Each row in the
data frame corresponds to a single cell in the original data matrix; the response value in that cell is
given by Y, and the row and column indices of that cell in the matrix are given by ROW and COL.

mat2df also allows you to supply data frames of row or column covariates which will be incorpo-
rated into long.df.

Then, to run the clustord function, you need to enter your chosen formula and model, and the
number of clusters you want to fit. The formula model_structure is akin to that for glm, but with
a few restrictions. You can include any number of covariates in the same way as for a multiple
regression model, though unlike for glm, you can include both row and column covariates.

Note that, unlike glm, you should not specify a family argument; the model argument is used
instead.

formula argument details
In the following description of different models, the Binary model is used for simplicity when giving
the mathematical descriptions of the models, but you can use any of the following models with the
Ordered Stereotype or Proportional Odds Models as well.

In the formula argument, the response must be exactly Y. You cannot use any functions of Y as the
response, nor can you include Y in any terms on the right hand side of the formula. Y is the name in
clustord of the response values in the original data matrix.
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The formula argument has 4 special variables: ROWCLUST, COLCLUST, ROW and COL. There are some
restrictions on how these can be used in the formula, as they are not covariates, but instead act as
indicators of the clustering model_structure you want to use.

All other variables in the formula will be any covariates that you want to include in the model, and
these are unrestricted, and can be used in the same way as in glm.

ROWCLUST and COLCLUST are used to indicate what row clustering model_structure you want, and
what column clustering model_structure you want, respectively. The inclusion of ROWCLUST as a
single term indicates that you want to include a row clustering effect in the model. In the simplest
row clustering model, for Binary data with row clustering effects only, the basic function call
would be

clustord(Y ~ ROWCLUST, model="Binary", long.df=long.df)

and the model fitted would have the form:

Logit(P(Y = 1)) = mu + rowc_coef_r

where mu is the intercept term, and rowc_coef_r is the row cluster effect that will be applied to
every row from the original data matrix that is a member of row cluster r. The inclusion of ROWCLUST
corresponds to the inclusion of rowc_coef_r.

Note that we are not using notation involving greek letters, because (a) we ran out of letters for
all the different types of parameters in the model and (b) with this many parameters, it would be
difficult to remember which ones are which.

Similarly to row clustering, the formula Y ~ COLCLUST would perform column clustering, with
model Logit(P(Y = 1)) = mu + colc_coef_c, where colc_coef_c is the column cluster effect that will
be applied to every column from the original data matrix that is a member of column cluster c.

Including both ROWCLUST and COLCLUST in the same formula indicates that you want to perform
biclustering, i.e. you want to cluster the rows and the columns of the original data matrix simulta-
neously. If included without interaction, then the terms just correspond to including rowc_coef_r
and colc_coef_c in the model:

The formula

Y ~ ROWCLUST + COLCLUST

is the simplest possible biclustering model, Logit(P(Y = 1)) = mu + rowc_coef_r + colc_coef_c

If you want to include interaction between the rows and columns, i.e. you want to perform block
biclustering where each block corresponds to a row cluster r and a column cluster c, then that model
has a matrix of parameters indexed by r and c.

clustord(Y ~ ROWCLUST*COLCLUST, model="Binary", ...) has the model Logit(P(Y = 1)) = mu
+ rowc_colc_coef_rc

This model can instead be called using the equivalent formula Y ~ ROWCLUST + COLCLUST + ROWCLUST:COLCLUST.

You can instead use the formula Y ~ ROWCLUST:COLCLUST. Mathematically, this is equivalent to
the previous two. In regression, the models would not be equivalent but in clustering, they are
equivalent, and have the same number of independent parameters overall. If you include the main
effects, then that reduces the number of independent parameters in the interaction term compared
to if you just use the interaction term (see below section about initvect).

You cannot include just one of the main effects alongside the interaction term, i.e. you cannot use Y
~ ROWCLUST + ROWCLUST:COLCLUST or Y ~ COLCLUST + ROWCLUST:COLCLUST. This is for simplicity
in the code, and to avoid confusion when interpreting the results.
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However, clustord allows a lot more flexibility than this. The variables ROW and COL are used to
indicate that you want to also include individual row or column effects, respectively.

For example, if you are clustering binary data that indicates the presence/ absence of different
species (columns) at different trawl events (rows), and you know that one particular species is
incredibly common, then you can include column effects in the model, which will allow for the
possibility that two columns may correspond to species with different probabilities of appearing in
the trawl.

You can add individual column effects along with row clustering, or you can add individual row
effects along with column clustering. The formula for row clustering with individual column effects
(without interaction) is

Y ~ ROWCLUST + COL

which corresponds to Binary model

Logit(P(Y = 1)) = mu + rowc_coef_r + col_coef_j

So if two cells from the data matrix are in the same row cluster, but in different columns, they will
not have the same probability of Y = 1.

You can also add interaction between the individual row/column effects and the clustering effects.

If you still want to be able to see the row cluster and column effects separately, then you use Y
~ ROWCLUST*COL or Y ~ ROWCLUST + COL + ROWCLUST:COL (these are both the same), which have
model

Logit(P(Y = 1)) = mu + rowc_coef_r + col_coef_j + rowc_col_coef_rj

As before, rowc_coef_r and col_coef_j are the row cluster effects and individual column effects,
and rowc_col_coef_rj are the interaction terms.

Alternatively, you can use the mathematically-equivalent formula

Y ~ ROWCLUST:COL which has model

Logit(P(Y = 1)) = mu + rowc_col_coef_rj

where the row cluster effects and individual column effects are absorbed into the matrix rowc_col_coef_rj.
These models are the same mathematically, the only differences between them are in how they are
constrained (see below in the section about the initvect argument) and how they should be inter-
preted.

Note that if you were using covariates, then it would not be equivalent to leave out the main effects
and just use the interaction terms, but the clustering models don’t work quite the same as regression
models with covariates.

Equivalently, if you want to cluster the columns, you can include individual row effects alongside
the column clusters, i.e.

Y ~ COLCLUST + ROW or Y ~ COLCLUST + ROW + COLCLUST:ROW,

depending on whether you want the interaction terms or not.

You are not able to include individual row effects with row clusters, or include individual column
effects with column clusters, because there is not enough information in ordinal or binary data to
fit these models. As a consequence, you cannot include individual row or column effects if you are
doing biclustering, e.g.

Y ~ ROWCLUST + COLCLUST + ROW or Y ~ ROwCLUST + COLCLUST + COL

are not permitted.
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From version 1 of the package, you can now also include covariates alongside the clustering pat-
terns. The basic way to do this is include them as additions to the clustering model_structure. For
example, including one row covariate xr to a row clustering model would have the formula

Y ~ ROWCLUST + xr

with Binary model Logit(P(Y = 1)) = mu + rowc_coef_r + row_coef_1*xr_i

where row_coef_1 is the coefficient of xr_i, just as in a typical regression model.

Additional row covariates can also be included, and you can include interactions between them, and
functions of them, as in regression models, e.g.

Y ~ ROWCLUST + xr1*log(xr2)

which would have the Binary model

Logit(P(Y = 1)) = mu + rowc_coef_r + row_coef1*xr1_i + row_coef2*log(xr2_i) + row_coef3*xr1_i*log(xr2_i)

If instead you want to add column covariates to the model, they work in the same way after they’ve
been added to the long.df data frame using mat2df, but they are indexed by j instead of i. Simplest
model, with one single column covariate xc, would have formula

Y ~ ROWCLUST + xc

with Binary model Logit(P(Y = 1)) = mu + rowc_coef_r + col_coef1*xc_j

You can use any functions of or interactions between column covariates, just as with row covariates.
You can similarly add row or column covariates to column clustering or biclustering models.

You can include interactions between covariates and ROWCLUST or COLCLUST in the formula. But
these are not quite the same as interactions between covariates. The formula

Y ~ ROWCLUST*xr

where xr is some row covariate, corresponds to the Binary model

Logit(P(Y = 1)) = mu + rowc_coef_r + cov_coef*xr_i + rowc_row_coef_r1*xr_i

What this means is that there is a term in the linear predictor that involves the row covariate xr
(which has the index i because it is a row covariate), and each cluster (indexed by r) has a different
coefficient for that covariate (as distinct from the non-interaction covariate models above, which
have the same coefficients for the covariates regardless of which cluster the row is in).

This is different from interaction terms involving only covariates, where two or more covariates
appear multiplied together in the model and then have a shared coefficient term attached to them.
In a clustering/covariate interaction, the row or column clustering pattern controls the coefficients
rather than adding a different type of covariate.

Note that the pure cluster effect rowc_coef_r is also included in the model automatically, in the
same way that a regression formula Y ~ x1*x2 would include the individual x1 and x2 effects as
well as the interaction between x1 and x2.

The coefficients for row clusters interacting with row coefficients are named row_cluster_row_coef
in the output of clustord because you can also have coefficients for interactions between row clus-
tering and column covariates, or column clustering and row covariates, or column clustering and
column covariates. Row clustering interacting with column covariates would look something like

Y ~ ROWCLUST*xc

with Binary model Logit(P(Y = 1)) = mu + rowc_coef_r + rowc_col_coef_r1*xc_j

The other combinations of clustering and covariates work similarly. rowc_col_coef_rl and the
other similar coefficients have two indices. Their first index is the index of the cluster, and their
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second index is the index of the covariate among the list of covariates interacting with that direction
of clustering. So if there are two row covariates xr1 and xr2 interacting with three row clusters,
that gives you 6 coefficients:

rowc_col_coef_11, rowc_col_coef_12,rowc_col_coef_21, rowc_col_coef_22,rowc_col_coef_31,
rowc_col_coef_32.

and you can also have a three-way interaction between row cluster and those two covariates, which
would add the coefficients rowc_col_coef_r3 for the xr1:xr2 term.

You can instead add covariates that interact with column clusters, which will have parameters
colc_row_coef_cm, where m here indexes just the covariates interacting with column cluster.

If you have covariates interacting with row clusters and other covariates interacting with column
clusters, then you will have parameters rowc_cov_coef_rl and colc_cov_coef_cm.

An example of this is the model

Y ~ ROWCLUST + xr1 + ROWCLUST:xr1 + xc1 + COLCLUST + COLCLUST:log(xc1)

This has main effects for row clusters and column clusters, i.e. ROWCLUST and COLCLUST. It also has
two covariate terms not interacting with clusters, xr1 and xc1. It also has 1 covariate term interact-
ing with row clusters, xr1, with coefficients rowc_cov_coef_r1, and 1 covariate term interacting
with column clusters, log(xc1), with coefficients colc_cov_coef_c1.

Restrictions on formula

The primary restriction on the formula argument is that that you cannot use functions of ROW,
COL, ROWCLUST or COLCLUST, such as log(ROW) or I(COLCLUST^2). That is because they are not
covariates, and cannot be manipulated like that; instead, they are indicators for particular elements
of the clustering model_structure.

If performing biclustering, i.e. if ROWCLUST and COLCLUST are both in the model, and you want to
include the interaction between them, then you can use the interaction between them on its own, or
you can include both main effects, but you are not allowed to use just one main effect alongside the
interaction. That is, you can use

Y ~ ROWCLUST + COLCLUST + ROWCLUST:COLCLUST or Y ~ ROWCLUST*COLCLUST,

or you can use Y ~ ROWCLUST:COLCLUST, and these two types of biclustering model will have dif-
ferent parameter constraints (see below under initvect details), but you cannot use

Y ~ ROWCLUST + ROWCLUST:COLCLUST or Y ~ COLCLUST + ROWCLUST:COLCLUST

As stated above, you also cannot include individual row effects alongside row clustering, and you
cannot use individual column effects alongside column clustering, i.e. if ROWCLUST is in the formula,
then ROW cannnot be in the formula, and if COLCLUST is in the formula then COL cannot be in the
formula.

If you are including COL with ROWCLUST, then you can include the interaction between them but that
is the only permitted interaction term that involves COL, and similarly the interaction between ROW
and COLCLUST is the only permitted interaction term that involves ROW. But you can include those
interactions in the form

Y ~ ROWCLUST + COL + ROWCLUST:COL or as Y ~ ROWCLUST*COL, or as Y ~ ROWCLUST:COL.

These are the only permitted uses of the COL term, and there are equivalent constraints on the
inclusion of ROW.

As stated above, you can include interactions between ROWCLUST or COLCLUST and covariates, but
you cannot include three-way interactions between ROWCLUST, COLCLUST and one or more covari-
ates are not permitted in clustord, mostly because of the prohibitive number of parameter values
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that would need to be fitted, and the difficulty of interpreting such a model. That is, you cannot use
formulae such as Y ~ ROWCLUST*COLCLUST*xr, which would have Binary model Logit(P(Y = 1)) =
mu + bi_cluster_row_coef_rc1*xr_i.

model argument details

The three models available in clustord are the Binary model, which is a Bernoulli model equivalent
to the binary model in the package clustglm, the Proportional Odds Model (POM) and the Ordered
Stereotype Model (OSM).

Many Binary model examples have been given above, which have the general form

logit(P(Y = 1)) = mu + «linear terms»

where the linear terms can include row or column clustering effects, individual row or column
effects, and row or column covariates, with or without interactions with row or column clustering.

The Proportional Odds Model and the Ordered Stereotype Model have the same model_structure
for the linear terms, but the overall model equation is different.

The Proportional Odds Model (model = "POM") has the form

logit(P(Y <= k)) = log(P(Y <= k)/P(Y > k)) = mu_k - «linear terms»

So the simplest POM for row clustering would be

logit(P(Y <= k)) = mu_k - rowc_coef_r

and the model including individual column effects and no interactions would be

logit(P(Y <= k)) = mu_k - rowc_coef_r - col_coef_j

Note that the linear-term coefficients have negative signs for the Proportional Odds Models. This is
so that as the row cluster index increases, or as the column index increases, Y is more likely to fall
at higher values (see Ch4 of Agresti, 2010).

The Ordered Stereotype model (model = "OSM") has the form

log(P(Y = k)/P(Y = 1)) = mu_k + phi_k(«linear terms»)

So the simplest OSM for row clustering would be

log(P(Y = k)/P(Y = 1)) = mu_k + phi_k*rowc_coef_r

and the model including individual column effects and no interactions would be

log(P(Y = k)/P(Y = 1)) = mu_k + phi_k(rowc_coef_r + col_coef_j)

Note that the OSM is not a cumulative logit model, unlike the POM. The model describes the log
of the kth level relative to the first level, which is the baseline category, but the patterns for k = 2
may be different than the patterns for k = 3. They are linked, because the linear terms will be the
same, but they may not have the same shape. In this sense, the OSM is more flexible/less restrictive
than the POM.

See Anderson (1984) for the original definition of the ordered stereotype model, and see Fernández
et al. (2016) for the application to clustering.

The phi_k parameters may be treated as "score" parameters. After fitting the OSM, the fitted phi_k
values can give some indication of what the true separation is between the categories. Even if the
default labelling of the categories is from 1 to n, that doesn’t mean that the categories are actually
equally spaced in reality. But the fitted phi_k values from the OSM can be treated as data-derived
numerical labels for the categories. Moreover, if two categories have very similar fitted phi_k
values, e.g. if phi_2 = 0.11 and phi_3 = 0.13, that suggests that there is not enough information
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in the data to distinguish between categories 2 and 3, and so you might as well merge them into a
single category to simplify the model-fitting process and the interpretation of the results.

initvect argument details

Initvect is the vector of starting values for the parameters, made up of sections for each different
type of parameter in the model. Note that the length of each section of initvect is the number of
independent parameter values, not the overall number of parameter values of that type.

If you want to supply a vector of starting values for the EM algorithm, you need to be careful
how many values you supply, and the order in which you include them in initvect, and you
should CHECK the output list of parameters (which is the full set of parameter values, including
dependent ones, broken up into each type of parameter) to check that your initvect model_structure
is correct for the formula you have specified.

For example, the number of mu values will always be 1 fewer than the number of categories in the
data, and the remaining value of mu is dependent on those q-1 values. In the OSM for data with
3 categories, the first value of mu for category 1 will be 0, and then the other 2 values of mu for
categories 2 and 3 will be the independent values of mu. For the POM for data with 5 categories, the
first 4 values of mu will be the independent values and then the last value of mu is infinity, because
the probability of Y being in category 5 is defined as 1 minus the sum of the probabilities for the
other 4 levels.

q is the number of levels in the values of y, n is the number of rows in the original data matrix, and
p is the number of columns in the original data matrix.

For Binary, There is one independent value for mu, i.e. q = 2.

Ignore phi, which is not used in the Binary model.

For OSM, The starting values for mu_k are length q-1, and the model has mu_1 = 0 always, so the
initvect values for mu will become mu_2, mu_3, etc. up to mu_q.

The starting values for phi_k are length q-2.

Note that the starting values for phi do not correspond directly to phi, because phi is restricted
to being increasing and between 0 and 1, so instead the starting values are treated as elements
u[2:q-1] of a vector u which can be between -Inf and +Inf, and then

phi[2] <- expit(u[2]) and

phi[k] <- expit(u[2] + sum(exp(u[3:k]))) for k between 3 and q-1

(phi[1] = 0 and phi[q] = 1).

For POM, The starting values for mu_k are length q-1, but the starting values do not correspond
directly to mu_k, because mu_k is restricted to being increasing, i.e. the model has to have mu_1 <=
mu_2 <= ... mu_q = +Inf

So instead of using the initvect values directly for mu_k, the 2nd to (q-1)th elements of initvect are
used to construct mu_k as follows:

mu_1 <- initvect[1]

mu_2 <- initvect[1] + exp(initvect[2])

mu_3 <- initvect[1] + exp(initvect[2]) + exp(initvect[3])

... and so on up to mu_{k-1}, and mu_k is infinity, because it is not used directly to construct the
probability of Y = q.
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Thus the values that are used to construct mu_k can be unconstrained, which makes it easier to
specify initvect and easier to optimize the parameter values.

Ignore phi, which is not used in POM.

For all three models,

The starting values for rowc_coef_r are length nclus.row-1, where nclus.row is the number of
row clusters. The final row cluster parameter is dependent on the others (see the input parameter
info for constraint_sum_zero), whereas if it were independent it would be colinear with the mu_k
parameters and thus not identifiable.

Similarly the starting values for colc_coef_c are length nclus.column-1, where nclus.column
is the number of column clusters, to avoid problems of colinearity and nonidentifiability.

If you have biclustering with an interaction term between row clusters and column clusters, then the
number of independent values in the matrix of interaction terms depends on whether you include
the main effects of row and column clusters separately. That is, if you use the biclustering model

Y ~ ROWCLUST + COLCLUST + ROWCLUST:COLCLUST, or equivalently

Y ~ ROWCLUST*COLCLUST,

then the main effect term ROWCLUST has nclus.row-1 independent parameters in initvect, and
COLCLUST has nclus.column-1 independent parameters in initvect, and ROWCLUST:COLCLUST
will have (nclus.row - 1)*(nclus.column - 1) independent parameter values. The final matrix
of interaction terms will be constrained to have its last row equal to the negative sum of the other
rows, and the last column equal to the negative sum of the other columns.

On the other hand, if you want to use only the interaction term and not the main effects (which for
the clustering model is mathematically equivalent), i.e.

Y ~ ROWCLUST:COLCLUST,

then that matrix of interaction terms will have nclus.row*nclus.column - 1 independent param-
eters, i.e. more independent parameters than if you included the main effects.

If you have column effects alongside row clusters (they are not permitted alongside column clus-
ters), without interactions, i.e. the formula Y ~ ROWCLUST + COL with Binary model Logit(P(Y = 1))
= mu + rowc_coef_r + col_coef_j then the row cluster coefficients have nclus.row - 1 independent
parameters, and the column effect coefficients have p - 1 independent parameters, where p is the
number of columns in the original data matrix, i.e. the maximum value of long.df$COL.

If you include the interaction term, then the number of independent parameters again depends on
whether you just use the interaction term, or include the main effects.

In the formula Y ~ ROWCLUST + COL + ROWCLUST:COL or its equivalent with "*", the interaction term
will have (nclus.row - 1)*(p-1) independent parameters.

If you instead use the formula Y ~ ROWCLUST:COL, then the interaction term will have nclus.row*p
- 1 independent parameters. Either way, the total number of independent parameters in the model
will be nclus.row*p.

Similarly, if you have row effects alongside column clusters, without interactions, i.e. the formula

Y ~ COLCLUST + ROW,

with Binary model Logit(P(Y = 1)) = mu + colc_coef_c + row_coef_i

then the column cluster coefficients will have nclus.column - 1 independent parameters, and the
row coefficients will have n-1 independent parameters, where n is the number of rows in the original
data matrix, i.e. the maximum value of long.df$ROW.
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If you include the interaction term alongside the main effects, i.e.

Y ~ COLCLUST + ROW + COLCLUST:ROW, or its equivalent with "*", the interaction term will have
(nclus.column - 1)*(n-1) independent parameters.

If you instead use the formula Y ~ COLCLUST:ROW, that interaction coefficient matrix will have
nclus.column*n - 1 independent parameters.

Any covariate terms included in the formula will be split up by clustord into the covariates that
interact with row clusters, the covariates that interact with column clusters, and the covariates that
do not interact with row or column clusters.

The number of independent parameters for row-cluster-interacting covariates will be nclus.row*L,
where L is the number of terms involving row clusters and covariates after any "*" terms have been
expanded.

So in this formula, for example,

Y ~ ROWCLUST*xr1 + xr2 + ROWCLUST:log(xc1)

where xr1 and xr2 are row covariates, and xc1 is a column covariate, the fully expanded formula
would be

Y ~ ROWCLUST + xr1 + xr2 + ROWCLUST:xr1 + ROWCLUST:log(xc1)

and the terms interacting with ROWCLUST would be ROWCLUST:xr1 and ROWCLUST:log(xc1), so
there would be nclus.row*2 independent coefficients for those covariates.

The number of independent parameters for column-cluster-interacting covariates will be nclus.column*M,
where M is the number of terms involving column clusters and covariates after any "*" terms have
been expanded.

So this formula, for example,

Y ~ I(xr1^2) + COLCLUST*xc1 + COLCLUST:xc2:xc3 + COLCLUST*xr1

would be expanded as

Y ~ COLCLUST + xr1 + I(xr1^2) + xc1 + COLCLUST:xc1 + COLCLUST:xc2:xc3 + COLCLUST:xr1

and the terms interacting with COLCLUST would be COLCLUST:xc1, COLCLUST:xc2:xc3 and COLCLUST:xr1,
so there would be nclus.column*3 independent coefficients for those covariates.

The number of independent parameters for covariates that do not interact with row or column clus-
ters will be the same as the number of those covariate terms, after any "*" terms have been expanded.

So this formula, for example,

Y ~ ROWCLUST*xr1 + xr2 + ROWCLUST:log(xc1) + COLCLUST*xc1

would be expanded as

Y ~ ROWCLUST +COLCLUST + xr1 + xr2 + xc1 + ROWCLUST:xr1 + ROWCLUST:log(xc1) + COLCLUST:xc1,

so there would be 3 independent coefficients for the terms xr1, xr2, xc1.

Note that there are no intercept terms for the coefficients, because those are incorporated into the
parameters mu_k.

The order of the initvect entries is as follows, and any entries that are not included in the formula
will be ignored and not included in initvect. That is, you should NOT provide values in initvect
for components that are not included in the formula.

1) mu (or values used to construct mu, POM only) 2) values used to construct phi (OSM only) 3) row
cluster coefficients 4) column cluster coefficients 5) [matrix] bicluster coefficients (i.e. interaction
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between row and column clusters) 6) individual row coefficients 7) individual column coefficients
8) [matrix] interactions between row clusters and individual column coefficients 9) [matrix] inter-
actions between column clusters and individual row coefficients 10) [matrix] row-cluster-specific
coefficients for covariates interacting with row clusters 11) [matrix] column-cluster-specific coef-
ficients for covariates interacting with column clusters 12) coefficients for covariates that do not
interact with row or column clusters

Any entries marked as [matrix] will be constructed into matrices by filling those matrices row-wise,
e.g. if you want starting values 1:6 for a matrix of 2 row clusters and 3 covariates interacting with
those row clusters, the matrix of coefficients will become

1 2 3 4 5 6

For the formula Y ~ ROWCLUST*COLCLUST, where the matrix of interactions between row and col-
umn clusters has (nclus.row - 1)*(nclus.column - 1) independent parameters, the last row and
column of the matrix will be the negative sums of the rest, so e.g. if you have 2 row clusters and 3
column clusters, there will only be 2 independent values, so if you provide the starting values -0.5
and 1.2, the final matrix of parameters will be:

column cluster 1 column cluster 2 column cluster 3 row cluster 1 -0.5 1.2 -0.7 row cluster
2 0.5 -1.2 0.7

If the matrix is a matrix relating to row clusters, then the row clusters are in the rows, and if it’s a
matrix relating to column clusters but not row clusters, then the column clusters are in the rows, i.e.
the matrix of coefficients for column clusters interacting with individual row effects will have the
rows of the matrix corresponding to the clusters, i.e. the matrix would be indexed colc_row_coef_ci,
c being the column cluster index and i being the row index.

Similarly, if the matrix is a matrix relating to column clusters and covariates, then the rows of the
matrix will correspond to the column clusters, i.e. the matrix would be indexed colc_cov_coef_cl,
c being the column cluster index and l being the covariate index.

If using biclustering with interaction between row and column clusters, then the row clusters will be
the rows and the column clusters will be the columns, i.e. the matrix would be indexed rowc_colc_coef_rc,
r being the row cluster index and c being the column cluster index.

Value

A clustord object, i.e. a list with components:

info: Basic info n, p, q, the number of parameters, the number of row clusters and the number of
column clusters, where relevant.

model: The model used for fitting, "OSM" for Ordered Stereotype Model, "POM" for Proportional
Odds Model, or "Binary" for Binary model.

EM.status: a list containing the latest iteration iter, latest incomplete-data and complete-data
log-likelihoods new.lli and new.llc, the best incomplete-data log-likelihood best.lli and the
corresponding complete-data log-likelihood, llc.for.best.lli, and the parameters for the best
incomplete-data log-likelihood, params.for.best.lli, indicator of whether the algorithm con-
verged converged, and if the user chose to keep all parameter values from every iteration, also
params.every.iteration.

Note that for biclustering, i.e. when ROWCLUST and COLCLUST are both included in the model, the
incomplete log-likelihood is calculated using the entropy approximation, and this may be inaccu-
rate unless the algorithm has converged or is close to converging. So beware of using the incomplete
log-likelihood and the corresponding AIC value unless the EM algorithm has converged.
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criteria: the calculated values of AIC, BIC, etc. from the best incomplete-data log-likelihood.

epsilon: the very small value (default 1e-6) used to adjust values of pi and kappa and theta that are
too close to zero, so that taking logs of them does not produce infinite values. Use the EM.control
argument to adjust epsilon.

constraints_sum_zero: the chosen value of constraints_sum_zero.

param_lengths: vector of total number of parameters/coefficients for each part of the model, la-
belled with the names of the components. The value is 0 for each component that is not included
in the model, e.g. if there are no covariates interacting with row clusters then the rowc_cov_coef
value will be 0. If the component is included, then the value given will include any dependent
parameter/coefficient values, so if column clusters are included then the colc_coef value will be
nclus.column, whereas the number of independent values will be nclus.column - 1.

initvect: the initial vector of parameter values, either specified by the user or generated automat-
ically. This vector has only the independent values of the parameters, not the full set.

outvect: the final vector of parameter values, containing only the independent parameter values
from parlist.out.

parlist.init: the initial list of parameters, constructed from the initial parameter vector initvect.
Note that if the initial vector has been incorrectly specified, the values of parlist.init may not
be as expected, and they should be checked by the user.

parlist.out: fitted values of parameters.

pi, kappa: fitted values of pi and kappa, where relevant.

ppr, ppc: the posterior probabilities of membership of the row clusters and the column clusters,
where relevant.

rowc_mm, colc_mm, cov_mm: the model matrices for, respectively, the covariates interacting with
row clusters, the covariates interacting with column clusters, and the covariates not interacting with
row or column clusters (i.e. the covariates with constant coefficients). Note that one row of each
model matrix corresponds to one row of long.df.

RowClusters, ColumnClusters: the assigned row and column clusters, where relevant, where each
row/column is assigned to a cluster based on maximum posterior probability of cluster membership
(ppr and ppc).

RowClusterMembers, ColumnClusterMembers: vectors of assigned members of each row or col-
umn cluster, where each row/column is assigned to a cluster based on maximum posterior probabil-
ity of cluster membership (ppr and ppc)

References

Fernandez, D., Arnold, R., & Pledger, S. (2016). Mixture-based clustering for the ordered stereo-
type model. Computational Statistics & Data Analysis, 93, 46-75.

Anderson, J. A. (1984). Regression and ordered categorical variables. Journal of the Royal Statis-
tical Society: Series B (Methodological), 46(1), 1-22.

Agresti, A. (2010). Analysis of ordinal categorical data (Vol. 656). John Wiley & Sons.

Examples

set.seed(1)
long.df <- data.frame(Y=factor(sample(1:3,5*20,replace=TRUE)),
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ROW=factor(rep(1:20,times=5)),COL=rep(1:5,each=20))

# Model Log(P(Y=k)/P(Y=1))=mu_k+phi_k*rowc_coef_r with 3 row clustering groups:
clustord(Y~ROWCLUST,model="OSM",3,long.df=long.df,

EM.control=list(EMcycles=2,startEMcycles=2), nstarts=2)

# Model Log(P(Y=k)/P(Y=1))=mu_k+phi_k*(rowc_coef_r + col_coef_j) with 3 row clustering groups:
clustord(Y~ROWCLUST+COL,model="OSM",3,long.df=long.df,

EM.control=list(EMcycles=2,startEMcycles=2), nstarts=2)

# Model Logit(P(Y <= k))=mu_k-rowc_coef_r-col_coef_j-rowc_col_coef_rj with 2 row clustering groups:
clustord(Y~ROWCLUST*COL,model="POM",nclus.row=2,long.df=long.df,

EM.control=list(EMcycles=2,startEMcycles=2), nstarts=2)

# Model Log(P(Y=k)/P(Y=1))=mu_k+phi_k*(colc_coef_c) with 3 column clustering groups:
clustord(Y~COLCLUST,model="OSM",nclus.column=3,long.df=long.df,

EM.control=list(EMcycles=2,startEMcycles=2), nstarts=2)

# Model Log(P(Y=k)/P(Y=1))=mu_k+phi_k*(colc_coef_c + row_coef_i) with 3 column clustering groups:
clustord(Y~COLCLUST+ROW,model="OSM",nclus.column=3,long.df=long.df,

EM.control=list(EMcycles=2,startEMcycles=2), nstarts=2)

# Model Log(P(Y=k)/P(Y=1))=mu_k+phi_k*(rowc_coef_r + colc_coef_c)
# with 3 row clustering groups and 2 column clustering groups:
clustord(Y~ROWCLUST+COLCLUST,model="OSM",nclus.row=3,nclus.column=2,long.df=long.df,

EM.control=list(EMcycles=2), nstarts=1)

# Model Logit(P(Y<=k))=mu_k-rowc_coef_r-colc_coef_c-rowc_colc_coef_rc
# with 2 row clustering groups and 4 column clustering groups, and
# interactions between them:
clustord(Y~ROWCLUST*COLCLUST, model="POM", nclus.row=2, nclus.column=4,

long.df=long.df,EM.control=list(EMcycles=2), nstarts=1,
start_from_simple_model=FALSE)

mat2df Converting matrix of responses into a long-form data frame and in-
corporating covariates, if supplied.

Description

Converting matrix of responses into a long-form data frame and incorporating covariates, if sup-
plied.

Usage

mat2df(mat, xr.df = NULL, xc.df = NULL)
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Arguments

mat matrix of responses to be clustered

xr.df optional data frame of covariates corresponding to the rows of mat. Each row of
xr.df corresponds to one row of mat, and each column of xr.df is a covariate.

xc.df optional data frame of covariates corresponding to the columns of mat. Each
row of xc.df corresponds to one column of mat, and each column of xc.df is
a covariate.

Value

A data frame with columns Y, ROW and COL, and additional columns for covariates from xr.df and
xc.df, if included.

The Y column of the output contains the entries in mat, with one row in the output per one cell in
mat, and the ROW and COL entries indicate the row and column of the data matrix that correspond to
the given cell. Any cells that were NA are left out of the output data frame.

If xr.df is supplied, then there are additional columns in the output corresponding to the columns of
xr.df, and the values for each covariate are repeated for every entry that was in the corresponding
row of the data matrix.

Similarly, if xc.df is supplied, there are additional columns in the output corresponding to the
columns of xc.df, and the values for each covariate are repeated for every entry that was in the
corresponding column of the data matrix.

osm Ordinal data regression using the Ordered Stereotype Model (OSM).

Description

Fit a regression model to an ordered factor response. The model is NOT a logistic or probit model
because the link function is not the logit, but the link function is log-based.

Usage

osm(
formula,
data,
weights,
start,
...,
subset,
na.action,
Hess = FALSE,
model = TRUE

)
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Arguments

formula a formula expression as for regression models, of the form response ~ predictors.
The response should be a factor (preferably an ordered factor), which will be
interpreted as an ordinal response, with levels ordered as in the factor. The
model must have an intercept: attempts to remove one will lead to a warning
and be ignored. An offset may be used. See the documentation of formula for
other details.

data a data frame, list or environment in which to interpret the variables occurring in
formula.

weights optional case weights in fitting. Default to 1.

start initial values for the parameters. See the Details section for information about
this argument.

... additional arguments to be passed to optim, most often a control argument.

subset expression saying which subset of the rows of the data should be used in the fit.
All observations are included by default.

na.action a function to filter missing data.

Hess logical for whether the Hessian (the observed information matrix) should be
returned.

model logical for whether the model matrix should be returned.

Details

This function should be used in a very similar way to MASS::polr, and some of the arguments
are the same as polr, but the ordinal model used here is less restrictive in its assumptions than
the proportional odds model. However, it is still parsimonious i.e. it uses only a small number of
additional parameters compared with the proportional odds model.

This model is the ordered stereotype model (Anderson 1984, Agresti 2010)

It is more flexible than the proportional odds model but only adds a handful of additional parameters.
It is not a cumulative model, being instead defined in terms of the relationships between each of the
higher categories and the lowest category that is treated as the reference category.

Each of the higher categories has its own intercept term, mu_k, which is similar to the zeta parame-
ters in polr, but in the OSM each higher category also has its own scaling parameter, phi_k, which
adjusts the effect of the covariates on the response. This allows the effect of the covariates on the
response to be slightly different for each category of the response, thus making the model more
flexible than the proportional odds model.

The final set of parameters are coefficients for each of the covariates, and these are equivalent to
the coefs in polr. Higher or more positive values of the coefficients increases the probability of
the response being in the higher categories, and lower or more negative values of the coefficients
increase the probability of the response being in the lower categories.

The overall model takes the following form:

log(P(Y = k | X)/P(Y = 1 | X)) = mu_k + phi_k*beta_vec^T x_vec

for k = 2, ..., q, where x_vec is the vector of covariates for the observation Y.

mu_1 is fixed at 0 for identifiability of the model, and the phi_k parameters are constrained to be
ordered (giving the model its name) in the following way:
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0 = phi_1 <= phi_2 <= ... <= phi_k <= ... <= phi_q = 1.

(The unordered stereotype model restricts phi_1 and phi_q but allows the remaining phi_k to be in
any order, and this is suitable for fitting the model for nominal data. However, this package does not
provide that option, as it is already available in other packages which can fit the stereotype model.)

After fitting the model, the estimated values of the intermediate phi_k values indicate a suitable
numerical spacing of the ordinal response categories that is based on the data. The spacings indicate
how much distinct information each of the corresponding levels provide. For example, if you have
five response categories and the fitted phi values are (0, 0.04,0.6, 0.62, 1) then this indicates
that levels 1 and 2 provide very similar information about the effect of the covariates on the response,
and levels 3 and 4 provide very similar information as each other. The meaning of this is that you
could simplify the response by combining levels 1 and 2 and combining levels 3 and 4 (i.e. reduce
the levels to 1, 3 and 5) and you would still be able to estimate the beta coefficients with similar
accuracy.

Another use for the phi_k values is that if you want to carry out further analysis of the response,
treating it as a numerical variable, then the phi values are a better choice of numerical values for the
response categories than the default values 1 to q.

start argument values: start is a vector of start values for estimating the model parameters.

The first part of the start vector is starting values for the coefficients of the covariates, the second
part is starting values for the mu values (per-category intercepts), and the third part is starting values
for the raw parameters used to construct the phi values.

The length of the vector is [number of covariate terms] + [number of categories in response variable
- 1] + [number of categories in response variable - 2]. Every one of the values can take any real
value.

The second part is the starting values for the mu_k per-category intercept parameters, and since
mu_1 is fixed at 0 for identifiability, the number of non-fixed mu_k parameters is one fewer than
the number of categories.

The third part of the starting vector is a re-parametrization used to construct starting values for the
estimated phi parameters such that the phi parameters observe the ordering restriction of the ordered
stereotype model, but the raw parameters are not restricted which makes it easier to optimise over
them. phi_1 is always 0 and phi_q is always 1 (where q is the number of response categories). If the
raw parameters are u_2 up to u_(q-1), then phi_2 is constructed as expit(u_2), phi_3 is expit(u_2
+ exp(u_3)), phi_4 is expit(exp(u_3) + exp(u_4)) etc. which ensures that the phi_k values are non-
decreasing.

This code was adapted from file MASS/R/polr.R copyright (C) 1994-2013 W. N. Venables and B.
D. Ripley Use of transformed intercepts contributed by David Firth The osm and osm.fit functions
were written by Louise McMillan, 2020.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 or 3 of the
License (at your option).

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

A copy of the GNU General Public License is available at http://www.r-project.org/Licenses/
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Value

An object of class "osm". This has components

beta the coefficients of the covariates, with NO intercept.

mu the intercepts for the categories.

phi the score parameters for the categories (restricted to be ordered).

deviance the residual deviance.

fitted.values a matrix of fitted values, with a column for each level of the response.

lev the names of the response levels.

terms the terms structure describing the model.

df.residual the number of residual degrees of freedom, calculated using the weights.

edf the (effective) number of degrees of freedom used by the model

n, nobs the (effective) number of observations, calculated using the weights.

call the matched call.

convergence the convergence code returned by optim.

niter the number of function and gradient evaluations used by optim.

eta

Hessian (if Hess is true). Note that this is a numerical approximation derived from the optimization
proces.

model (if model is true), the model used in the fitting.

na.action the NA function used

xlevels factor levels from any categorical predictors

References

Agresti, A. (2010). Analysis of ordinal categorical data (Vol. 656). John Wiley & Sons.

Anderson, J. A. (1984). Regression and ordered categorical variables. Journal of the Royal Statis-
tical Society: Series B (Methodological), 46(1), 1-22.

See Also

[MASS::polr()]
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rerun Rerun clustord using the results of a previous run as the starting point.

Description

This function is designed for two purposes. (1) You tried to run clustord and the results did not
converge. You can supply this function with the previous results and the previous data object, and it
will carry on running clustord from the endpoint of the previous run, which is quicker than starting
the run again from scratch with more iterations.

Usage

rerun(
results.original,
long.df,
EM.control = NULL,
verbose = FALSE,
optim.control = NULL

)

Arguments

results.original

The results of the previous run that you want to use as a starting point. The
model, number of clusters, and final parameter values will be used, and the
cluster controls such as EMcycles will be reused unless the user specifies new
values. But the row cluster and/or column cluster memberships will NOT be
reused, and nor will the dataset, so you can change the dataset slightly and the
rest of the details will be applied to this new dataset.

long.df The dataset to use for this run, which may be slightly different to the original.
Please note that the only compatibility check performed is comparing the sizes
of the original and new datasets, and it is up to the user to check that the new
dataset is sufficiently similar to the old one.

EM.control Options to use for this run such as EMcycles (number of EM iterations). Note
that "startEMcycles" will not be relevant as this run will not generate random
starts, it will run from the end parameters of the other run. See clustord docu-
mentation for more info.

verbose (default FALSE) changes how much is reported to the console during the algo-
rithm’s progress. See clustord documentation for more info.

optim.control Options to use for this run within optim(), which is used to estimate the param-
eters during each M-step. See clustord documentation for more info.

Details

(2) The previous result converged, but you have changed the dataset slightly, and want to rerun from
the previous endpoint to save time.
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Either way, you call the function in the same way, supplying the previous results object and a dataset,
and optionally a new number of iterations (‘EM.control=list(EMcycles=XXX)‘, where ‘XXX‘ is the
new number of iterations.)

The output parameters of the old result will be used as the new initial parameters.

Value

An object of class clustord. See clustord for more info.

Examples

set.seed(1)
long.df <- data.frame(Y=factor(sample(1:3,5*20,replace=TRUE)),

ROW=factor(rep(1:20,times=5)),COL=rep(1:5,each=20))
results.original <- clustord(Y ~ ROWCLUST, model="OSM", nclus.row=4,

long.df=long.df, EM.control=list(EMcycles=2))
results.original$EM.status$converged
# FALSE

## Since original run did not converge, rerun from that finishing point and
## allow more iterations this time
results.new <- rerun(results.original, long.df, EM.control=list(EMcycles=10))

## Alternatively, if dataset has changed slightly then rerun from the
## previous finishing point to give the new results a helping hand
long.df.new <- long.df[-c(4,25,140),]
results.new <- rerun(results.original, long.df.new)
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