Package 'crt2power'

March 13, 2025

Type Package

Title Designing Cluster-Randomized Trials with Two Continuous Co-Primary Outcomes

Version 1.2.0

Description Provides methods for powering cluster-randomized trials with two continuous coprimary outcomes using five key design techniques. Includes functions for calculating required sample size and statistical power. For more details on methodology, see Owen et al. (2025) <doi:10.1002/sim.70015>, Yang et al. (2022) <doi:10.1111/biom.13692>, Pocock et al. (1987) < erstaff et al. (2019) <doi:10.1186/s12874-019-0754-4>, and Li et al. (2020) <doi:10.1111/biom.13212>.

License GPL-3

Encoding UTF-8

URL https://github.com/melodyaowen/crt2power

Depends R (>= 4.3)

Imports devtools (>= 2.4.5), knitr (>= 1.43), rootSolve (>= 1.8.2.3), tidyverse (>= 2.0.0), tableone (>= 0.13.2), foreach (>= 1.5.2), mvtnorm (>= 1.2), tibble (>= 3.2.1), dplyr (>= 1.1.4), tidyr (>= 1.3.0), stats (>= 3.6.2)

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Melody Owen [aut, cre]

Maintainer Melody Owen <melody.owen@yale.edu>

Repository CRAN

Date/Publication 2025-03-13 07:00:02 UTC

26

Contents

calc_K_comb_outcome
calc_K_conj_test
calc_K_disj_2dftest
calc_K_pval_adj
calc_K_single_1dftest
calc_m_comb_outcome
calc_m_conj_test
calc_m_disj_2dftest
calc_m_pval_adj 1
calc_m_single_1dftest 1
calc_ncp_chi2
calc_pwr_comb_outcome
calc_pwr_conj_test
calc_pwr_disj_2dftest
calc_pwr_pval_adj
calc_pwr_single_1dftest
run_crt2_design

Index

calc_K_comb_outcome Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using a combined outcomes approach.

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses a combined outcomes approach where the two outcome effects are summed together.

```
calc_K_comb_outcome(
   dist = "Chi2",
   power,
   m,
   alpha = 0.05,
   beta1,
   beta2,
   varY1,
   varY2,
   rho01,
   rho02,
   rho1,
```

rho2, r = 1

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi- Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_K_comb_outcome(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_K_conj_test

Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using the conjunctive intersection-union test approach.

Description

Allows user to calculate the required number of clusters per treatment group of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the statistical power, and cluster size. Uses the conjunctive intersection-union test approach.Code is adapted from "calSampleSize_ttestIU()" from https://github.com/siyunyang/coprimary_CRT written by Siyun Yang.

Usage

```
calc_K_conj_test(
  dist = "T",
  power,
 m,
  alpha = 0.05,
 beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1,
  cv = 0,
  deltas = c(0, 0),
  two_sided = FALSE
)
```

dist	Specification of which distribution to base calculation on, either 'T' for T-Distribution or 'MVN' for Multivariate Normal Distribution. Default is T-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.

rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.
CV	Cluster variation parameter, set to 0 if assuming all cluster sizes are equal; numeric.
deltas	Vector of non-inferiority margins, set to $delta_1 = delta_2 = 0$; numeric vector.
two_sided	Specification of whether to conduct two 2-sided tests, 'TRUE', or two 1-sided tests, 'FALSE', default is FALSE; boolean.

A data frame of numerical values.

Examples

```
calc_K_conj_test(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_K_disj_2dftest	Calculate required number of clusters per treatment group for a
	cluster-randomized trial with co-primary endpoints using a disjunc-
	tive 2-DF test approach.

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the statistical power, and cluster size. Uses the disjunctive 2-DF test approach. Code is adapted from "calSampleSize_omnibus()" from https://github.com/siyunyang/coprimary_CRT.

```
calc_K_disj_2dftest(
  dist = "Chi2",
  power,
  m,
  alpha = 0.05,
```

beta1, beta2, varY1, varY2, rho01, rho02, rho1, rho2, r = 1

Arguments

)

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_K_disj_2dftest(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_K_pval_adj

Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using three common p-value adjustment methods

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the statistical power, and cluster size. Uses three common p-value adjustment methods.

Usage

```
calc_K_pval_adj(
    dist = "Chi2",
    power,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi- Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same clus- ter; numeric.

rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

A data frame of numerical values.

Examples

```
calc_K_pval_adj(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho2 = 0.05)
```

calc_K_single_1dftest Calculate required number of clusters per treatment group for a cluster-randomized trial with co-primary endpoints using the single 1-DF combined test approach.

Description

Allows user to calculate the number of clusters per treatment arm of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the statistical power, and cluster size. Uses the single 1-DF combined test approach for clustered data and two outcomes.

```
calc_K_single_1dftest(
    dist = "Chi2",
    power,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_K_single_1dftest(power = 0.8, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_comb_outcome	Calculate cluster size for a cluster-randomized trial with co-primary
	endpoints using a combined outcomes approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses a combined outcomes approach where the two outcome effects are summed together.

Usage

```
calc_m_comb_outcome(
    dist = "Chi2",
    power,
    K,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A numerical value.

10

calc_m_conj_test

Examples

```
calc_m_comb_outcome(power = 0.8, K = 15, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_conj_test	Calculate cluster size for a cluster-randomized trial with co-primary
	endpoints using the conjunctive intersection-union test approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses the conjunctive intersection-union test approach.

Usage

```
calc_m_conj_test(
  dist = "T",
  power,
  Κ,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1,
  cv = 0,
  deltas = c(0, 0),
  two_sided = FALSE
)
```

dist	Specification of which distribution to base calculation on, either 'T' for T-Distribution or 'MVN' for Multivariate Normal Distribution. Default is T-Distribution.
power	Desired statistical power in decimal form; numeric.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.

beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.
cv	Cluster variation parameter, set to 0 if assuming all cluster sizes are equal; numeric.
deltas	Vector of non-inferiority margins, set to $delta_1 = delta_2 = 0$; numeric vector.
two_sided	Specification of whether to conduct two 2-sided tests, 'TRUE', or two 1-sided tests, 'FALSE', default is FALSE; boolean.

A numerical value.

Examples

calc_m_conj_test(power = 0.8, K = 15, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)

calc_m_disj_2dftest	Calculate cluster size for a cluster-randomized trial with co-primary
	endpoints using a disjunctive 2-DF test approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses the disjunctive 2-DF test approach.

calc_m_disj_2dftest

Usage

```
calc_m_disj_2dftest(
    dist = "Chi2",
    power,
    K,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
```

```
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi- Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_m_disj_2dftest(power = 0.8, K = 15, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_m_pval_adj	Calculate cluster size for a cluster-randomized trial with co-primary
	endpoints using three common p-value adjustment methods

Description

#' @description Allows user to calculate the cluster size of a cluster-randomized trial with two coprimary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses three common p-value adjustment methods.

Usage

```
calc_m_pval_adj(
    dist = "Chi2",
    power,
    K,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.

rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

A data frame of numerical values.

Examples

calc_m_pval_adj(power = 0.8, K = 15, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho2 = 0.05)

calc_m_single_1dftest Calculate cluster size for a cluster-randomized trial with co-primary endpoints using the single 1-DF combined test approach.

Description

Allows user to calculate the cluster size of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and statistical power. Uses the single 1-DF combined test approach for clustered data and two outcomes.

```
calc_m_single_1dftest(
    dist = "Chi2",
    power,
    K,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi- Squared or 'F' for F-Distribution.
power	Desired statistical power in decimal form; numeric.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

calc_m_single_1dftest(power = 0.8, K = 15, alpha = 0.05, beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25, rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)

calc_ncp_chi2	Find the non-centrality parameter corresponding to Type I error rate
	and statistical power

Description

Allows user to find the corresponding non-centrality parameter for power analysis based on the Type I error rate, statistical power, and degrees of freedom.

Usage

calc_ncp_chi2(alpha, power, df = 1)

alpha	Type I error rate; numeric.
power	Desired statistical power in decimal form; numeric.
df	Degrees of freedom; numeric.

Value

A number.

Examples

calc_ncp_chi2(alpha = 0.05, power = 0.8, df = 1)

calc_pwr_comb_outcome Calculate statistical power for a cluster-randomized trial with coprimary endpoints using a combined outcomes approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses a combined outcomes approach where the two outcome effects are summed together.

```
calc_pwr_comb_outcome(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi- Squared or 'F' for F-Distribution.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_pwr_comb_outcome(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_pwr_conj_test	Calculate statistical power for a cluster-randomized trial with co-
	primary endpoints using the conjunctive intersection-union test ap-
	proacn.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses the conjunctive intersection-union test approach. Code is adapted from "calPower_ttestIU()" from https://github.com/siyunyang/coprimary_CRT written by Siyun Yang.

calc_pwr_conj_test

Usage

```
calc_pwr_conj_test(
  dist = "T",
  Κ,
  m,
  alpha = 0.05,
  beta1,
  beta2,
  varY1,
  varY2,
  rho01,
  rho02,
  rho1,
  rho2,
  r = 1,
  cv = 0,
  deltas = c(0, 0),
  two_sided = FALSE
```

```
)
```

dist	Specification of which distribution to base calculation on, either 'T' for T-Distribution or 'MVN' for Multivariate Normal Distribution. Default is T-Distribution.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same clus- ter; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; nu- meric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.
CV	Cluster variation parameter, set to 0 if assuming all cluster sizes are equal; numeric.

deltas	Vector of non-inferiority margins, set to $delta_1 = delta_2 = 0$; numeric vector.
two_sided	Specification of whether to conduct two 2-sided tests, 'TRUE', or two 1-sided tests, 'FALSE', default is FALSE; boolean.

A numerical value.

Examples

```
calc_pwr_conj_test(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_pwr_disj_2dftest Calculate statistical power for a cluster-randomized trial with coprimary endpoints using a disjunctive 2-DF test approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary outcomes given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses the disjunctive 2-DF test approach. Code is adapted from "calPower_omnibus()" from https://github.com/siyunyang/coprimary_CRT written by Siyun Yang.

```
calc_pwr_disj_2dftest(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A numerical value.

Examples

```
calc_pwr_disj_2dftest(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

calc_pwr_pval_adj	Calculate statistical power for a cluster-randomized trial with co-
	primary endpoints using three common p-value adjustment methods

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses three common p-value adjustment methods.

Usage

```
calc_pwr_pval_adj(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho2,
    r = 1
```

```
)
```

Arguments

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
calc_pwr_pval_adj(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho2 = 0.05)
```

22

calc_pwr_single_1dftest

Calculate statistical power for a cluster-randomized trial with coprimary endpoints using the single 1-DF combined test approach.

Description

Allows user to calculate the statistical power of a cluster-randomized trial with two co-primary endpoints given a set of study design input values, including the number of clusters in each trial arm, and cluster size. Uses the single 1-DF combined test approach for clustered data and two outcomes.

Usage

```
calc_pwr_single_1dftest(
    dist = "Chi2",
    K,
    m,
    alpha = 0.05,
    beta1,
    beta2,
    varY1,
    varY2,
    rho01,
    rho02,
    rho1,
    rho2,
    r = 1
)
```

dist	Specification of which distribution to base calculation on, either 'Chi2' for Chi-Squared or 'F' for F-Distribution.
К	Number of clusters in treatment arm, and control arm under equal allocation; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.

rho02	Correlation of the second outcome for two different individuals in the same clus- ter; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

A numerical value.

Examples

```
calc_pwr_single_1dftest(K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

<pre>run_crt2_design</pre>	Find study design output sp	specifications	based on	all five	CRT	со-
	primary design methods.					

Description

Allows user to calculate either statistical power, number of clusters per treatment group (K), or cluster size (m), given a set of input values for all five study design approaches.

```
run_crt2_design(
 output,
 power = NA,
 K = NA,
 m = NA,
  alpha = 0.05,
 beta1,
 beta2,
 varY1,
  varY2,
  rho01,
  rho02,
 rho1,
 rho2,
  r = 1
)
```

output	Parameter to calculate, either "power", "K", or "m"; character.
power	Desired statistical power; numeric.
К	Number of clusters in each arm; numeric.
m	Individuals per cluster; numeric.
alpha	Type I error rate; numeric.
beta1	Effect size for the first outcome; numeric.
beta2	Effect size for the second outcome; numeric.
varY1	Total variance for the first outcome; numeric.
varY2	Total variance for the second outcome; numeric.
rho01	Correlation of the first outcome for two different individuals in the same cluster; numeric.
rho02	Correlation of the second outcome for two different individuals in the same cluster; numeric.
rho1	Correlation between the first and second outcomes for two individuals in the same cluster; numeric.
rho2	Correlation between the first and second outcomes for the same individual; numeric.
r	Treatment allocation ratio - $K2 = rK1$ where K1 is number of clusters in experimental group; numeric.

Value

A data frame of numerical values.

Examples

```
run_crt2_design(output = "power", K = 15, m = 300, alpha = 0.05,
beta1 = 0.1, beta2 = 0.1, varY1 = 0.23, varY2 = 0.25,
rho01 = 0.025, rho02 = 0.025, rho1 = 0.01, rho2 = 0.05)
```

Index

calc_K_comb_outcome, 2 calc_K_conj_test, 4 calc_K_disj_2dftest, 5 calc_K_pval_adj,7 calc_K_single_1dftest, 8 calc_m_comb_outcome, 9 calc_m_conj_test, 11 calc_m_disj_2dftest, 12 calc_m_pval_adj, 14 calc_m_single_1dftest, 15 calc_ncp_chi2, 16 $calc_pwr_comb_outcome, 17$ calc_pwr_conj_test, 18 calc_pwr_disj_2dftest, 20 calc_pwr_pval_adj, 21 calc_pwr_single_1dftest, 23

run_crt2_design, 24