cycleTrendR-overview

library(cycleTrendR)
#> Registered S3 method overwritten by 'quantmod':
#>   method            from
#>   as.zoo.data.frame zoo
set.seed(1)

Introduction cycleTrendR provides a unified framework for analyzing time-series that contain both trend and cyclic components. It supports:

LOESS, GAM, and GAMM trend estimation

Automatic Fourier harmonic selection (AICc/BIC)

Bootstrap confidence intervals (IID or MBB)

Change-point detection

Lomb–Scargle periodogram for irregular sampling

Rolling-origin forecasting

Publication-quality ggplot2 visualizations

This vignette demonstrates the main workflows using simulated data.

Simulated Example Data We simulate a noisy cyclic signal with irregular sampling:

dates <- as.Date(“2020-01-01”) + cumsum(sample(1:3, 300, replace = TRUE)) signal <- sin(2pias.numeric(dates)/20) + rnorm(300, 0, 0.3)

LOESS Trend + Automatic Fourier Selection res_loess <- adaptive_cycle_trend_analysis( signal = signal, dates = dates, trendmethod = “loess”, usefourier = TRUE, auto_fourier_select = TRUE, nboot = 50 )

res_loess\(Plot\)Trend

GAM Trend res_gam <- adaptive_cycle_trend_analysis( signal = signal, dates = dates, trendmethod = “gam”, usefourier = TRUE, nboot = 50 )

res_gam\(Plot\)Trend

GAMM Trend with Random Effects group <- rep(letters[1:4], length.out = length(signal))

res_gamm <- adaptive_cycle_trend_analysis( signal = signal, dates = dates, trendmethod = “gam”, use_gamm = TRUE, group_var = “subject”, group_values = group, usefourier = FALSE, nboot = 20 )

res_gamm\(Plot\)Trend

Irregular Sampling + Fourier + Lomb–Scargle

Irregular sampling is detected automatically and the Lomb–Scargle periodogram is used: res_irreg <- adaptive_cycle_trend_analysis( signal = signal, dates = dates, trendmethod = “loess”, usefourier = TRUE, auto_fourier_select = TRUE, nboot = 50 )

res_irreg\(Plot\)Spectrum

Change-Point Detection res_loess$ChangePoints

Bootstrap Confidence Intervals head(res_loess\(CI_lower) head(res_loess\)CI_upper)

Conclusion cycleTrendR provides a flexible and robust toolkit for analyzing complex time-series with trend and cyclic components, especially when sampling is irregular or noise levels are high. It is suitable for biomedical assay monitoring, environmental signals, and forecasting tasks.

mirror server hosted at Truenetwork, Russian Federation.