Type: Package
Title: Access Tidy Education Finance Data
Version: 0.1.1
Description: Provides easy access to tidy education finance data using Bellwether's methodology to combine NCES F-33 Survey, Census Bureau Small Area Income Poverty Estimates (SAIPE), and community data from the ACS 5-Year Estimates. The package simplifies downloading, caching, and filtering education finance data by year and state, enabling researchers and analysts to explore K-12 education funding patterns, revenue sources, expenditure categories, and demographic factors across U.S. school districts.
License: CC BY 4.0
URL: https://github.com/bellwetherorg/edfinr, https://bellwetherorg.github.io/edfinr/
BugReports: https://github.com/bellwetherorg/edfinr/issues
Depends: R (≥ 4.1.0)
Imports: cli, dplyr, rlang, tibble
Encoding: UTF-8
RoxygenNote: 7.3.2
Suggests: ggplot2, knitr, rmarkdown, scales, stringr, tidyr
VignetteBuilder: knitr
NeedsCompilation: no
Packaged: 2025-08-20 17:42:47 UTC; alexspurrier
Author: Alex Spurrier [aut, cre], Krista Kaput [aut], Michael Chrzan [ctb], Bellwether [cph]
Maintainer: Alex Spurrier <alex.spurrier@bellwether.org>
Repository: CRAN
Date/Publication: 2025-08-26 14:00:08 UTC

Get cache file path

Description

Get cache file path

Usage

cache_file(name)

Arguments

name

Name of the cache file

Value

Full path to the cache file


Set up local cache directory for the package

Description

Set up local cache directory for the package

Usage

cache_path()

Value

Path to the cache directory


Get Education Finance Data

Description

This function downloads tidy education finance data using data from the NCES F-33 Survey, Census Bureau Small Area Income Poverty Estimates (SAIPE), and community data from the ACS 5-Year Estimates.

Usage

get_finance_data(
  yr = "2022",
  geo = "all",
  dataset_type = "skinny",
  cpi_adj = "none",
  refresh = FALSE,
  quiet = FALSE
)

Arguments

yr

A string specifying the year(s) to retrieve. Can be a single year ("2022"), a range ("2020:2022"), or "all" for all available years. Defaults to "2022".

geo

A string specifying the geographic scope. Can be "all" for all states (default), a single state code ("KY"), or a comma-separated list of state codes ("IN,KY,OH,TN").

dataset_type

A string specifying whether to download the "skinny" (default) or "full" dataset. The skinny version excludes detailed expenditure data for faster downloads.

cpi_adj

A string specifying the CPI adjustment baseline year. Can be "none" (default) for no adjustment, or a year between 2012-2022 to use as the baseline year. When a year is specified (e.g., "2022"), revenue, expenditure, and economic variables are adjusted to that school year's dollars using CPI averaged over the months of the school year (e.g., "2022" uses the 2021-22 school year CPI). When cpi_adj is set to a value other than "none", a new column "cpi_adj_index" will be added to the output showing the adjustment index used for each row.

refresh

A logical value indicating whether to force a refresh of the cached data. Default is FALSE.

quiet

A logical value indicating whether to suppress download progress messages. Default is FALSE. Note: Cache is stored in R's temporary directory and will be cleared when the R session ends.

Value

A tibble containing the requested education finance data.

Examples

# Check valid parameters without downloading
get_states()  # Valid state codes


# These examples require internet access and may take time to download

# get data for Kentucky for 2022
ky_data <- get_finance_data(yr = "2022", geo = "KY")

# get data for multiple years
ky_multi <- get_finance_data(yr = "2020:2022", geo = "KY")

# get full dataset with detailed expenditure data
ky_full <- get_finance_data(yr = "2022", geo = "KY", dataset_type = "full")
  
# get data adjusted to 2022 dollars
ky_adjusted <- get_finance_data(yr = "2020:2022", geo = "KY", cpi_adj = "2022")

#' # get data for multiple states for all available years
regional_data <- get_finance_data(yr = "all", geo = "IN,KY,OH,TN")


Get list of valid state codes

Description

Returns the valid two-letter state codes that can be used with get_finance_data

Usage

get_states()

Value

A character vector of state codes

Examples

# Get all valid state codes
states <- get_states()
head(states)

Check if a cached file exists and is recent

Description

Check if a cached file exists and is recent

Usage

is_cache_current(name, max_age = 30)

Arguments

name

Name of the cache file

max_age

Maximum age in days

Value

TRUE if cache file exists and is recent, FALSE otherwise


List available variables in the education finance dataset

Description

This function provides information about the variables available in the education finance dataset, including their names, types, and brief descriptions.

Usage

list_variables(dataset_type = "skinny", category = "all")

Arguments

dataset_type

A string specifying whether to list variables for "skinny" (default) or "full" dataset.

category

Optional. Filter variables by category: "id", "time", "geographic", "demographic", "revenue", "expenditure", "economic", "governance", or "all" (default).

Value

A tibble with variable information

Examples

# list all available variables in skinny dataset
vars <- list_variables()
head(vars)

# list all variables in full dataset
full_vars <- list_variables(dataset_type = "full")
nrow(full_vars)

# list only expenditure variables in full dataset
exp_vars <- list_variables(dataset_type = "full", category = "expenditure")
head(exp_vars)

mirror server hosted at Truenetwork, Russian Federation.