filtro: Feature Selection Using Supervised Filter-Based Methods

Tidy tools to apply filter-based supervised feature selection methods. These methods score and rank feature relevance using metrics such as p-values, correlation, and importance scores (Kuhn and Johnson (2019) <doi:10.1201/9781315108230>).

Version: 0.2.0
Depends: R (≥ 4.1)
Imports: cli, desirability2 (≥ 0.1.0), dplyr, generics, pROC, purrr, rlang (≥ 1.1.0), S7, stats, tibble, tidyr, vctrs
Suggests: aorsf, FSelectorRcpp, knitr, modeldata, partykit, quarto, ranger, rmarkdown, testthat (≥ 3.0.0), titanic
Published: 2025-08-26
DOI: 10.32614/CRAN.package.filtro
Author: Frances Lin [aut, cre], Max Kuhn ORCID iD [aut], Emil Hvitfeldt [aut], Posit Software, PBC ROR ID [cph, fnd]
Maintainer: Frances Lin <franceslinyc at gmail.com>
BugReports: https://github.com/tidymodels/filtro/issues
License: MIT + file LICENSE
URL: https://github.com/tidymodels/filtro, https://filtro.tidymodels.org/
NeedsCompilation: no
Materials: README, NEWS
CRAN checks: filtro results

Documentation:

Reference manual: filtro.html , filtro.pdf
Vignettes: Introduction to filtro (source, R code)
Scoring via random forests (source, R code)

Downloads:

Package source: filtro_0.2.0.tar.gz
Windows binaries: r-devel: filtro_0.1.0.zip, r-release: filtro_0.1.0.zip, r-oldrel: filtro_0.1.0.zip
macOS binaries: r-release (arm64): filtro_0.1.0.tgz, r-oldrel (arm64): filtro_0.1.0.tgz, r-release (x86_64): filtro_0.1.0.tgz, r-oldrel (x86_64): filtro_0.1.0.tgz
Old sources: filtro archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=filtro to link to this page.

mirror server hosted at Truenetwork, Russian Federation.