fuzzr implements some simple “fuzz tests” for your R functions, passing in a wide array of inputs and returning a report on how your function reacts.
install.package("fuzzr")
# Or, for the development version:
::install_github("mdlincoln/fuzzr") devtools
Tests are set by passing functions that return named lists of input
values. These values will be passed as function arguments. Several
default suites are provided with this package, such as
test_char
, however you may implement your own by passing a
function that returns a similarly-formatted list.
library(fuzzr)
str(test_char())
#> List of 8
#> $ char_empty : chr(0)
#> $ char_single : chr "a"
#> $ char_single_blank : chr ""
#> $ char_multiple : chr [1:3] "a" "b" "c"
#> $ char_multiple_blank: chr [1:4] "a" "b" "c" ""
#> $ char_with_na : chr [1:3] "a" "b" NA
#> $ char_single_na : chr NA
#> $ char_all_na : chr [1:3] NA NA NA
Evaluate a function argument by supplying fuzz_function
its quoted name, the tests to run, along with any other required static
values. fuzz_function
returns a fuzz_results
object that stores conditions raised by a function (message, warning, or
error) along with any value returned by that function.
<- fuzz_function(fun = lm, arg_name = "subset", data = iris,
fuzz_results formula = Sepal.Length ~ Petal.Width + Petal.Length,
tests = test_all())
#> Warning: `cross_n()` is deprecated; please use `cross()` instead.
#> Warning: `cross_n()` is deprecated; please use `cross()` instead.
#> Warning: at_depth() is deprecated, please use `modify_depth()` instead
You can render these results as a data frame:
<- as.data.frame(fuzz_results)
fuzz_df ::kable(head(fuzz_df)) knitr
subset | data | formula | output | messages | warnings | errors | result_classes | results_index |
---|---|---|---|---|---|---|---|---|
char_empty | iris | Sepal.Length ~ Petal.Width + Petal.Length | NA | NA | NA | 0 (non-NA) cases | NA | 1 |
char_single | iris | Sepal.Length ~ Petal.Width + Petal.Length | NA | NA | NA | 0 (non-NA) cases | NA | 2 |
char_single_blank | iris | Sepal.Length ~ Petal.Width + Petal.Length | NA | NA | NA | 0 (non-NA) cases | NA | 3 |
char_multiple | iris | Sepal.Length ~ Petal.Width + Petal.Length | NA | NA | NA | 0 (non-NA) cases | NA | 4 |
char_multiple_blank | iris | Sepal.Length ~ Petal.Width + Petal.Length | NA | NA | NA | 0 (non-NA) cases | NA | 5 |
char_with_na | iris | Sepal.Length ~ Petal.Width + Petal.Length | NA | NA | NA | 0 (non-NA) cases | NA | 6 |
You can also access the value returned by any one test by matching the argument tested with its test name:
<- fuzz_value(fuzz_results, subset = "int_multiple")
model coefficients(model)
#> (Intercept) Petal.Width Petal.Length
#> 0.8 NA 3.0
Specify multiple-argument tests with p_fuzz_function
,
passing a named list of arguments and tests to run on each.
p_fuzz_function
will test every combination of argument and
variable.
<- p_fuzz_function(agrep, list(pattern = test_char(), x = test_char()))
fuzz_p #> Warning: `cross_n()` is deprecated; please use `cross()` instead.
#> Warning: `cross_n()` is deprecated; please use `cross()` instead.
#> Warning: at_depth() is deprecated, please use `modify_depth()` instead
length(fuzz_p)
#> [1] 64
::kable(head(as.data.frame(fuzz_p))) knitr
pattern | x | output | messages | warnings | errors | result_classes | results_index |
---|---|---|---|---|---|---|---|
char_empty | char_empty | NA | NA | NA | invalid ‘pattern’ argument | NA | 1 |
char_single | char_empty | NA | NA | NA | NA | integer | 2 |
char_single_blank | char_empty | NA | NA | NA | ‘pattern’ must be a non-empty character string | NA | 3 |
char_multiple | char_empty | NA | NA | argument ‘pattern’ has length > 1 and only the first element will be used | NA | integer | 4 |
char_multiple_blank | char_empty | NA | NA | argument ‘pattern’ has length > 1 and only the first element will be used | NA | integer | 5 |
char_with_na | char_empty | NA | NA | argument ‘pattern’ has length > 1 and only the first element will be used | NA | integer | 6 |