Package ‘hSlite’

January 29, 2026
Title Simplified HDF5' Interface
Version 2.0.0.2

Description A user-friendly interface for the Hierarchical Data Format 5 (‘(HDFS5') library de-
signed to " " just work." It bundles the necessary system libraries to ensure easy installa-
tion on all platforms. Features smart defaults that automatically map R objects (vectors, matri-
ces, data frames) to efficient ' HDF5' types, removing the need to manage low-level de-
tails like dataspaces or property lists. Uses the '"HDF5' library devel-
oped by The HDF Group <https://www.hdfgroup.org/>.

URL https://github.com/cmmr/h51lite, https://cmmr.github.io/h51ite/

BugReports https://github.com/cmmr/h5lite/issues
Depends R (>=4.2.0)

LinkingTo hdf5lib (>=2.0.0.5)

Suggests bit64, knitr, rmarkdown, testthat (>= 3.0.0)
NeedsCompilation yes

License MIT + file LICENSE

Encoding UTF-8

Config/testthat/edition 3

Config/Needs/website rmarkdown

RoxygenNote 7.3.3

VignetteBuilder knitr

Author Daniel P. Smith [aut, cre] (ORCID:
<https://orcid.org/0000-0002-2479-2044>),
Alkek Center for Metagenomics and Microbiome Research [cph, fnd]

Maintainer Daniel P. Smith <dansmith@1@gmail.com>
Repository CRAN
Date/Publication 2026-01-29 20:20:07 UTC

https://www.hdfgroup.org/
https://github.com/cmmr/h5lite
https://cmmr.github.io/h5lite/
https://github.com/cmmr/h5lite/issues
https://orcid.org/0000-0002-2479-2044

2 h5_attr names
Contents
hS_attr names e 2
hS_class e 3
hS_create_file e 4
hS_create_group e e e e e 5
hS_delete e 6
hS_dim e e e e e 7
hS_exXiStS e e 8
hS_ds_dataset e 9
hS_ds_group 10
h5_length e 11
hS_Is . . o e 12
h5_move s 13
h5_names 14
hS5_open L 15
hS5_read s 17
WS Str . . s 19
hS_typeof e 20
hS_write 21
Index 25
h5_attr_names List HDF5 Attributes
Description
Lists the names of attributes attached to a specific HDF5 object.
Usage
h5_attr_names(file, name = "/")
Arguments
file The path to the HDFS file.
name The path to the object (dataset or group) to query. Use / for the file’s root
attributes.
Value

A character vector of attribute names.

See Also
h5_1s()

h5_class 3

Examples
file <- tempfile(fileext = ".h5")
h5_write(1:10, file, "data")

h5_write(I("meters"”), file, "data", attr = "unit")
h5_write(I(Sys.time()), file, "data"”, attr = "timestamp")

h5_attr_names(file, "data”) # "unit"” "timestamp”

unlink(file)

h5_class Get R Class of an HDF5 Object or Attribute

Description
Inspects an HDF5 object (or an attribute attached to it) and returns the R class that h5_read()
would produce.

Usage

h5_class(file, name, attr = NULL)

Arguments
file The path to the HDFS file.
name The full path of the object (group or dataset) to check.
attr The name of an attribute to check. If NULL (default), the function checks the
class of the object itself.
Details

This function determines the resulting R class by inspecting the storage metadata.

* Group — "list”

* Integer — "numeric”

* Floating Point — "numeric”
e String — "character”

e Complex — "complex”

* Enum — "factor”

* Opaque — "raw"”

* Compound — "data.frame”
e Null — "NULL"

4 h5_create_file

Value

non non n on

A character string representing the R class (e.g., "integer"”, "numeric”, "complex”, "character”,
"factor”, "raw”, "list"”, "NULL"). Returns NA_character_ for HDF5 types that h51ite cannot
read.

See Also
h5_typeof (), h5_read()

Examples
file <- tempfile(fileext = ".h5")

h5_write(1:10, file, "my_ints", as = "int32")
h5_class(file, "my_ints”) # "numeric”

h5_write(mtcars, file, "mtcars")
h5_class(file, "mtcars"”) # "data.frame”

h5_write(c("a", "b", "c"), file, "strings")
h5_class(file, "strings") # "character”

h5_write(c(1, 2, 3), file, "my_floats”, as = "float64")
h5_class(file, "my_floats”) # "numeric”

unlink(file)

h5_create_file Create an HDF5 File

Description

Explicitly creates a new, empty HDFS5 file.

Usage
h5_create_file(file)

Arguments

file Path to the HDF5 file to be created.

Details
This function is a simple wrapper around h5_create_group(file, "/"). Its main purpose is to
allow for explicit file creation in code.

Note that calling this function is almost always unnecessary, as all h51ite writing functions (like
h5_write() or h5_create_group()) will automatically create the file if it does not exist.

It is provided as a convenience for users who prefer to explicitly create a file before writing data to
it.

h5_create_group 5

Value

Invisibly returns NULL. This function is called for its side effects.

File Handling

* If file does not exist, it will be created as a new, empty HDFS5 file.

» If file already exists and is a valid HDFS? file, this function does nothing and returns success-
fully.

o If file exists but is not a valid HDFS5 file (e.g., a text file), an error will be thrown and the file
will not be modified.

See Also

h5_create_group(), h5_write()

Examples

file <- tempfile(fileext = ".h5")

Explicitly create the file
h5_create_file(file)

if (file.exists(file)) {
message("File created successfully."”)

}

unlink(file)

h5_create_group Create an HDF5 Group

Description
Explicitly creates a new group (or nested groups) in an HDFS5 file. This is useful for creating an
empty group structure.

Usage

h5_create_group(file, name)

Arguments

file The path to the HDFS file.

name The full path of the group to create (e.g., "/gl/g2").
Value

Invisibly returns NULL. This function is called for its side effects.

6 h5_delete

Examples

file <- tempfile(fileext = ".h5")
h5_create_file(file)

Create a nested group structure
h5_create_group(file, "/data/experiment/runi™)

h5_1s(file)

unlink(file)

h5_delete Delete an HDF5 Object or Attribute

Description

Deletes an object (dataset or group) or an attribute from an HDFS5 file. If the object or attribute does
not exist, a warning is issued and the function returns successfully (no error is raised).

Usage

h5_delete(file, name, attr = NULL, warn = TRUE)

Arguments
file The path to the HDFS file.
name The full path of the object to delete (e.g., "/data/dset” or "/groups/gl1").
attr The name of the attribute to delete.
o If NULL (the default), the object specified by name is deleted.
* If a string is provided, the attribute named attr is removed from the object
name.
warn Emit a warning if the name/attr does not exist. Default: TRUE
Value

Invisibly returns NULL. This function is called for its side effects.

See Also

h5_create_group(), h5_move()

h5_dim 7

Examples

file <- tempfile(fileext = ".h5")
h5_create_file(file)

Create some data and attributes
h5_write(matrix(1:10, 2, 5), file, "matrix")
h5_write("A note”, file, "matrix”, attr = "note")

Review the file structure
h5_str(file)

Delete the attribute
h5_delete(file, "matrix", attr = "note")

Review the file structure
h5_str(file)

Delete the dataset
h5_delete(file, "matrix")

Review the file structure
h5_str(file)

Cleaning up
unlink(file)

h5_dim Get Dimensions of an HDF5 Object or Attribute

Description
Returns the dimensions of a dataset or an attribute as an integer vector. These dimensions match
the R-style (column-major) interpretation.

Usage

h5_dim(file, name, attr = NULL)

Arguments
file The path to the HDFS file.
name Name of the dataset or object.
attr The name of an attribute to check. If NULL (default), the function returns the
dimensions of the object itself.
Value

An integer vector of dimensions, or integer (@) for scalars.

8 h5_exists

Examples

file <- tempfile(fileext = ".h5")

h5_write(matrix(1:10, 2, 5), file, "matrix")
h5_dim(file, "matrix") # 2 5

h5_write(mtcars, file, "mtcars")
h5_dim(file, "mtcars”) # 32 11

h5_write(I(TRUE), file, "my_bool")
h5_dim(file, "my_bool") # integer(Q)

h5_write(1:10, file, "my_ints")
h5_dim(file, "my_ints"”) # 10

unlink(file)

h5_exists Check if an HDF5 File, Object, or Attribute Exists

Description

Safely checks if a file, an object within a file, or an attribute on an object exists.

Usage
h5_exists(file, name = "/", attr = NULL, assert = FALSE)

Arguments
file Path to the file.
name The full path of the object to check (e.g., "/data/matrix”). Defaults to "/" to
test file validity.
attr The name of an attribute to check. If provided, the function tests for the exis-
tence of this attribute on name.
assert Logical. If TRUE and the target does not exist, the function will stop with an
informative error message instead of returning FALSE. Defaults to FALSE.
Details

This function provides a robust, error-free way to test for existence.

» Testing for a File: If name is / and attr is NULL, the function checks if file is a valid,
readable HDF5 file.

 Testing for an Object: If name is a path (e.g., /data/matrix) and attr is NULL, the function
checks if the specific object exists.

 Testing for an Attribute: If attr is provided, the function checks if that attribute exists on
the specified object name.

h5_is_dataset 9

Value

A logical value: TRUE if the target exists and is valid, FALSE otherwise.

See Also

h5_is_group(), h5_is_dataset()

Examples

file <- tempfile(fileext = ".h5")
h5_exists(file) # FALSE

h5_create_file(file)
h5_exists(file) # TRUE

h5_exists(file, "missing_object”) # FALSE

h5_write(1:10, file, "my_ints")
h5_exists(file, "my_ints") # TRUE

h5_exists(file, "my_ints"”, "missing_attr") # FALSE

h5_write(1:10, file, "my_ints”, attr = "my_attr")
h5_exists(file, "my_ints"”, "my_attr"”) # TRUE

unlink(file)

h5_is_dataset Check if an HDF5 Object is a Dataset

Description

Checks if the object at a given path is a dataset.

Usage

h5_is_dataset(file, name, attr = NULL)

Arguments
file The path to the HDFS file.
name The full path of the object to check.
attr The name of an attribute. If provided, the function returns TRUE if the attribute

exists, as all attributes are considered datasets in HDF5 context. (Default: NULL)

10 h5_is_group

Value

A logical value: TRUE if the object exists and is a dataset, FALSE otherwise (if it is a group, or does
not exist).

See Also

h5_is_group(), h5_exists()

Examples

file <- tempfile(fileext = ".h5")

h5_write(1, file, "dset")
h5_is_dataset(file, "dset”) # TRUE

h5_create_group(file, "grp")
h5_is_dataset(file, "grp") # FALSE

h5_write(1, file, "grp", attr = "my_attr")
h5_is_dataset(file, "grp"”, "my_attr") # TRUE

unlink(file)

h5_is_group Check if an HDFS5 Object is a Group

Description

Checks if the object at a given path is a group.

Usage

h5_is_group(file, name, attr = NULL)

Arguments
file The path to the HDFS file.
name The full path of the object to check.
attr The name of an attribute. This parameter is included for consistency with other
functions. Since attributes cannot be groups, providing this will always return
FALSE. (Default: NULL)
Value

A logical value: TRUE if the object exists and is a group, FALSE otherwise (if it is a dataset, or does
not exist).

h5_length 11

See Also

h5_is_dataset(), h5_exists()

Examples

file <- tempfile(fileext = ".h5")

h5_create_group(file, "grp")
h5_is_group(file, "grp") # TRUE

h5_write(1:10, file, "my_ints")
h5_is_group(file, "my_ints") # FALSE

unlink(file)

h5_length Get the Total Length of an HDF5 Object or Attribute

Description

Behaves like 1length() for R objects.

¢ For Compound Datasets (data.frames), this is the number of columns.
» For Datasets and Attributes, this is the product of all dimensions (total number of elements).
*» For Groups, this is the number of objects directly contained in the group.

e Scalar datasets or attributes return 1.

Usage

h5_length(file, name, attr = NULL)

Arguments
file The path to the HDFS file.
name The full path of the object (group or dataset).
attr The name of an attribute to check. If provided, the length of the attribute is
returned.
Value

An integer representing the total length (number of elements).

12 h5_Is

Examples

file <- tempfile(fileext = ".h5")

h5_write(1:100, file, "my_vec")
h5_length(file, "my_vec”) # 100

h5_write(mtcars, file, "my_df")
h5_length(file, "my_df") # 11 (ncol(mtcars))

h5_write(as.matrix(mtcars), file, "my_mtx")
h5_length(file, "my_mtx") # 352 (prod(dim(mtcars)))

h5_length(file, "/") # 3

unlink(file)

h5_1s List HDF5 Objects

Description

Lists the names of objects (datasets and groups) within an HDF?5 file or group.

Usage

h5_1s(file, name = "/", recursive = TRUE, full.names = FALSE, scales = FALSE)

Arguments
file The path to the HDFS file.
name The group path to start listing from. Defaults to the root group (/).
recursive If TRUE (default), lists all objects found recursively under name. If FALSE, lists
only the immediate children.
full.names If TRUE, the full paths from the file’s root are returned. If FALSE (the default),
names are relative to name.
scales If TRUE, also returns datasets that are dimensions scales for other datasets.
Value

A character vector of object names. If name is / (the default), the paths are relative to the root of the
file. If name is another group, the paths are relative to that group (unless full.names = TRUE).

See Also

h5_attr_names(), h5_str()

h5 _move 13

Examples

file <- tempfile(fileext = ".h5")
h5_create_group(file, "foo/bar")
h5_write(1:5, file, "foo/data")

List everything recursively
h5_1s(file)

List only top-level objects
h5_1s(file, recursive = FALSE)

List relative to a sub-group
h5_ls(file, "foo")

unlink(file)

h5_move Move or Rename an HDF5 Object

Description

Moves or renames an object (dataset, group, etc.) within an HDFS file.

Usage

h5_move(file, from, to)

Arguments

file The path to the HDFS file.

from The current (source) path of the object (e.g., "/group/data”).

to The new (destination) path for the object (e.g., "/group/data_new").
Details

This function provides an efficient, low-level wrapper for the HDFS5 library’s H5Lmove function. Itis
a metadata-only operation, meaning the data itself is not read or rewritten. This makes it extremely
fast, even for very large datasets.

You can use this function to either rename an object within the same group (e.g., "data/old” to
"data/new"”) or to move an object to a different group (e.g., "data/old” to "archive/old"). The
destination parent group will be automatically created if it does not exist.

Value

This function is called for its side-effect and returns NULL invisibly.

14 h5 names

See Also

h5_create_group(), h5_delete()

Examples

file <- tempfile(fileext = ".h5")
h5_write(1:10, file, "group/dataset”)

Review the file structure
h5_str(file)

Rename within the same group
h5_move(file, "group/dataset”, "group/renamed")

Review the file structure
h5_str(file)

Move to a new group (creates parent automatically)
h5_move(file, "group/renamed”, "archive/dataset"”)

Review the file structure
h5_str(file)

unlink(file)

h5_names Get Names of an HDF5 Object

Description

Returns the names of the object.

 For Groups, it returns the names of the objects contained in the group (similar to 1s()).
¢ For Compound Datasets (data.frames), it returns the column names.

* For other Datasets, it looks for a dimension scale and returns it if found.

Usage

h5_names(file, name = "/", attr = NULL)

Arguments
file The path to the HDFS file.
name The full path of the object.
attr The name of an attribute. If provided, returns the names associated with the

attribute (e.g., field names if the attribute is a compound type). (Default: NULL)

h5_open 15

Value

A character vector of names, or NULL if the object has no names.

Examples

file <- tempfile(fileext = ".h5")

h5_write(data.frame(x=1, y=2), file, "df")
hs_names(file, "d'F") # "x" nyn

x <- 1:5

names(x) <- letters[1:5]

h5_write(x, file, "x")

h5_names(file, "x") # "a" "b" "c" "d" "e"

h5_write(mtcars[,c("mpg”, "hp")], file, "dset")
h5_names(file, "dset”) # "mpg"” "hp"

unlink(file)

h5_open Create an HDF5 File Handle

Description
Creates a file handle that provides a convenient, object-oriented interface for interacting with and
navigating a specific HDFS file.

Usage
h5_open(file)

Arguments

file Path to the HDFS5 file. The file will be created if it does not exist.

Details

This function returns a special h5 object that wraps the standard h51ite functions. The primary
benefit is that the file argument is pre-filled, allowing for more concise and readable code when
performing multiple operations on the same file.

For example, instead of writing:

h5_write(1:10, file, "dsetl1")
h5_write(2:20, file, "dset2")
h5_1s(file)

16 h5_open

You can create a handle and use its methods. Note that the file argument is omitted from the
method calls:

h5 <- h5_open("my_file.h5")
h5$write(1:10, "dsetl1"”)
h5$write(2:20, "dset2")
h5%$1s()

h5%$close()

Value

An object of class h5 with methods for interacting with the file.

Pass-by-Reference Behavior

Unlike most R objects, the h5 handle is an environment. This means it is passed by reference. If
you assign it to another variable (e.g., h5_alias <- h5), both variables point to the same handle.
Modifying one (e.g., by calling h5_alias$close()) will also affect the other.

Interacting with the HDFS File

The h5 object provides several ways to interact with the HDF? file:

Standard h51ite Functions as Methods: Most h51ite functions (e.g., h5_read, h5_write,
h5_1s) are available as methods on the h5 object, without the h5_ prefix.

For example, h5$write(data, "dset"”) is equivalent to h5_write(data, file, "dset").

The available methods are: attr_names, cd, class, close, create_group, delete, dim, exists,
is_dataset, is_group, length, 1s, move, names, pwd, read, str, typeof, write.

Navigation ($cd(), $pwd()): The handle maintains an internal working directory to simplify
path management.

* h5$cd(group): Changes the handle’s internal working directory. This is a stateful, pass-by-
reference operation. It understands absolute paths (e.g., "/new/path”) and relative naviga-
tion (e.g., "../other"). The target group does not need to exist.

* h5%pwd(): Returns the current working directory.

When you call a method like h5$read("dset"”), the handle automatically prepends the current
working directory to any relative path. If you provide an absolute path (e.g., h5$read("/path/to/dset™)),
the working directory is ignored.

Closing the Handle ($close()): The h5lite package does not keep files persistently open.
Each operation opens, modifies, and closes the file. Therefore, the h5$close() method does not
perform any action on the HDFS file itself.

Its purpose is to invalidate the handle, preventing any further operations from being called. After
h5$close() is called, any subsequent method call (e.g., h5$1s()) will throw an error.

h5_read 17

Examples

file <- tempfile(fileext = ".h5")

Open the handle
h5 <- h5_open(file)

Write data (note: 'data' is the first argument, 'file' is implicit)
h5%$write(1:5, "vector”)
h5$write(matrix(1:9, 3, 3), "matrix")

Create a group and navigate to it
h5%$create_group("”simulations™)
h5%$cd("simulations™)
print(h5$pwd()) # "/simulations”

Write data relative to the current working directory
h5$write(rnorm(10), "run1"”) # Writes to /simulations/runi

Read data
dat <- h5%read("runi")

List contents of current WD
h5$1s()

Close the handle
h5%$close()
unlink(file)

h5_read Read an HDF5 Object or Attribute

Description

Reads a dataset, a group, or a specific attribute from an HDFS5 file into an R object.

Usage

h5_read(file, name = "/", attr = NULL, as = "auto")

Arguments
file The path to the HDFS file.
name The full path of the dataset or group to read (e.g., "/data/matrix").
attr The name of an attribute to read.

e If NULL (default), the function reads the object specified by name (and at-
taches its attributes to the result).

* If provided (string), the function reads only the specified attribute from
name.

18 h5_read

as The target R data type.

¢ Global: "auto” (default), "integer”, "double”, "logical”, "bit64",
"null”.

* Specific: A named vector mapping names or type classes to R types (see
Section "Type Conversion").

Value

An R object corresponding to the HDF5 object or attribute. Returns NULL if the object is skipped
via as = "null”.

Type Conversion (as)

You can control how HDFS5 data is converted to R types using the as argument.

1. Mapping by Name:

e as=c("data_col” = "integer"): Reads the dataset/column named "data_col" as an integer.
* as =c("@validated” = "logical”): When reading a dataset, this forces the attached at-

tribute "validated" to be read as logical.

2. Mapping by HDFS5 Type Class: You can target specific HDF5 data types using keys prefixed
with a dot (.). Supported classes include:

* Integer: .int, .int8, .int16, .int32, .int64

* Unsigned: .uint, .uint8, .uint16, .uint32, .uint64

 Floating Point: .float, .float16, .float32, .float64

Example: as = c(.uint8 = "logical”, .int = "bit64")
3. Precedence & Attribute Config:
» Attributes vs Datasets: Attribute type mappings take precedence over dataset mappings. If

you specify as = c(.uint = "logical”, "@.uint" = "integer"), unsigned integer datasets
will be read as logical, but unsigned integer attributes will be read as integer.

* Specific vs Generic: Specific keys (e.g., .uint32) take precedence over generic keys (e.g.,
.uint), which take precedence over the global default (.).

Note

The @ prefix is only used to configure attached attributes when reading a dataset (attr = NULL). If
you are reading a specific attribute directly (e.g., h5_read(..., attr ="id")), do not use the @
prefix in the as argument.

See Also

h5_write()

h5_str 19

Examples
file <- tempfile(fileext = ".h5")
--- Write Data ---
h5_write(c(1oL, 20L), file, "ints")
h5_write(I(TRUE), file, "ints"”, attr = "ready")

h5_write(c(10.5, 18), file, "floats")
h5_write(I("meters”), file, "floats”, attr = "unit")

--- Read Data ---

Read dataset

x <- h5_read(file, "ints")
print(x)

Read dataset with attributes
y <- h5_read(file, "floats")
print(attr(y, "unit"))

Read a specific attribute directly
unit <- h5_read(file, "floats”, attr = "unit")
print(unit)

--- Type Conversion Examples ---

Force integer dataset to be read as numeric (double)
x_dbl <- h5_read(file, "ints"”, as = "double")
class(x_dbl)

Force attached attribute to be read as logical
Note the "@" prefix to target the attribute

z <- h5_read(file, "ints", as = c("@ready"” = "logical”))
print(z)
unlink(file)
h5_str Display the Structure of an HDF5 Object
Description

Recursively prints a summary of an HDF5 group or dataset, similar to the structure of h51s -r. It
displays the nested structure, object types, dimensions, and attributes.

Usage

h5_str(file, name = "/", attrs = TRUE, members = TRUE, markup = interactive())

20 h5_typeof

Arguments
file The path to the HDFS file.
name The name of the group or dataset to display. Defaults to the root group "/".
attrs Set to FALSE to hide attributes. The default (TRUE) shows attributes prefixed with
@.
members Set to FALSE to hide compound dataset members. The default (TRUE) shows
members prefixed with $.
markup Set to FALSE to remove colors and italics from the output.
Details

This function provides a quick and convenient way to inspect the contents of an HDFS5 file. It
performs a recursive traversal of the file from the C-level and prints a formatted summary to the R
console.

This function does not read any data into R. It only inspects the metadata (names, types, dimen-
sions) of the objects in the file, making it fast and memory-safe for arbitrarily large files.
Value

This function is called for its side-effect of printing to the console and returns NULL invisibly.

See Also
h5_1s(), h5_attr_names()

Examples

file <- tempfile(fileext = ".h5")
h5_write(list(x = 1:10, y = matrix(1:9, 3, 3)), file, "group")
h5_write("metadata”, file, "group”, attr = "info")

Print structure
h5_str(file)

unlink(file)

h5_typeof Get HDF5 Storage Type of an Object or Attribute

Description
Returns the low-level HDF5 storage type of a dataset or an attribute (e.g., "int8", "float64", "utf8",
"ascii[10]"). This allows inspecting the file storage type before reading the data into R.

Usage

h5_typeof (file, name, attr = NULL)

h5_ write 21

Arguments
file The path to the HDFS file.
name Name of the dataset or object.
attr The name of an attribute to check. If NULL (default), the function returns the
type of the object itself.
Value

A character string representing the HDF5 storage type (e.g., "float32", "uint32", "ascii[10]", "com-
pound[2]").
See Also

h5_class(), h5_exists()

Examples
file <- tempfile(fileext = ".h5")

h5_write(1L, file, "int32_val”, as = "int32")
h5_typeof (file, "int32_val") # "int32"

h5_write(mtcars, file, "mtcars”)
h5_typeof (file, "mtcars”) # "compound[11]"

h5_write(c("a", "b", "c"), file, "strings")
h5_typeof (file, "strings") # "utf8[1]"

unlink(file)

h5_write Write an R Object to HDF5

Description

Writes an R object to an HDFS5 file, creating the file if it does not exist. This function acts as a
unified writer for datasets, groups (lists), and attributes.

Usage

h5_write(data, file, name, attr = NULL, as = "auto", compress = TRUE)

22 h5_ write

Arguments
data The R object to write. Supported: numeric, complex, logical, character,
factor, raw, matrix, data.frame, integer64, POSIXt, NULL, and nested 1ists.
file The path to the HDFS file.
name The name of the dataset or group to write (e.g., "/data/matrix").
attr The name of an attribute to write.
o If NULL (default), data is written as a dataset or group at the path name.
o If provided (string), data is written as an attribute named attr attached to
the object name.
as The target HDF5 data type. Defaults to "auto”. See the Data Type Selec-
tion section for a full list of valid options (including "int64", "bfloat16”,
"utf8[n]", etc.) and how to map sub-components of data.
compress Compression configuration.
* TRUE (default): Enables compression (zlib level 5).
* FALSE or @: Disables compression.
* Integer 1-9: Specifies the zlib compression level.
Value

Invisibly returns file. This function is called for its side effects.

Writing Scalars

By default, h5_write saves single-element vectors as 1-dimensional arrays. To write a true HDF5
scalar, wrap the value in I() to treat it "as-is."

Examples:

h5_write(I(5), file, "x") # Creates a scalar dataset
h5_write(5, file, "x") # Creates a 1D array of length 1

Data Type Selection (as Argument)

By default, as = "auto” will automatically select the most appropriate data type for the given object.
For numeric types, this will be the smallest type that can represent all values in the vector. For
character types, h51ite will use a ragged vs rectangular heuristic, favoring small file size over fast
I/0. For R data types not mentioned below, see vignette("data-types”) for information on their
fixed mappings to HDFS data types.

Numeric and Logical Vectors:
When writing a numeric or logical vector, you can specify one of the following storage types for
it:

* Floating Point: "float16", "float32", "float64", "bfloat16”

 Signed Integer: "int8", "int16", "int32", "int64"

¢ Unsigned Integer: "uint8"”, "uint16"”, "uint32”, "uint64”

h5_write 23

NOTE: NA values must be stored as float64. NaN, Inf, and -Inf must be stored as a floating
point type.
Examples:

h5_write(1:100, file, "big_ints"”, as = "int64")
h5_write(TRUE, file, "my_bool”, as = "float32")

Character Vectors:
You can control whether character vectors are stored as variable or fixed length strings, and
whether to use UTF-8 or ASCII encoding.
* Variable Length Strings: "utf8"”, "ascii”
* Fixed Length Strings:
— "utf8[]" or "ascii[]" (length is set to the longest string)
— "utf8[n]"” or "ascii[n]" (where n is the length in bytes)

NOTE: Variable-length strings allow for NA values but cannot be compressed on disk. Fixed-
length strings allow for compression but do not support NA.

Examples:
h5_write(letters[1:5], file, "lenl@_strs", as = "utf8[10]")
h5_write(c('X"', 'Y"', NA), file, "var_chars"”, as = "ascii")

Lists, Data Frames, and Attributes:

Provide a named vector to apply type mappings to sub-components of data. Set "skip” as the
type to skip a specific component.

* Specific Name: "col_name"” = "type" (e.g., c(score = "float32"))
¢ Specific Attribute: "@attr_name” = "type”

non

¢ Class-based: ".integer" = "type", ".numeric" = "type"

I

¢ Class-based Attribute: "@.character” = "type", "@.logical"” = "type’
¢ Global Fallback: "." = "type"
¢ Global Attribute Fallback: "@." = "type"

Examples:

To strip attributes when writing:
h5_write(data, file, 'no_attrs_obj', as = c('@.' = "skip"))

To only save the “hp™ and “wt® columns:
h5_write(mtcars, file, 'my_df', as =c('hp' = "auto”, 'wt' = "float32", '."' = "skip"))

Dimension Scales

h51ite automatically writes names, row.names, and dimnames as HDF5 dimension scales. Named
vectors will generate an <name>_names dataset. A data.frame with row names will generate an
<name>_rownames dataset (column names are saved internally in the original dataset). Matrices will
generate <name>_rownames and <name>_colnames datasets. Arrays will generate <name>_dimscale_1,
<name>_dimscale_2, etc. Special HDF5 metadata attributes link the dimension scales to the
dataset. The dimension scales can be relocated with h5_move () without breaking the link.

24
See Also
h5_read()
Examples
file <- tempfile(fileext = ".h5")

1. Writing Basic Datasets

h5_write(1:10, file, "data/integers")
h5_write(rnorm(10), file, "data/floats”)
h5_write(letters[1:5], file, "data/chars")

2. Writing Attributes

Write an object first

h5_write(1:10, file, "data/vector™)

Attach an attribute to it using the 'attr' parameter

h5_write(I("My Description”), file, "data/vector”, attr = "description”)
h5_write(I(100), file, "data/vector”, attr = "scale_factor")

3. Controlling Data Types
Store values as 32-bit signed integers
h5_write(1:5, file, "small_ints"”, as = "int32")

4. Writing Complex Structures (Lists/Groups)
my_list <- list(

meta = list(id = 1, name = "Experiment A"),
results = matrix(runif(9), 3, 3),
valid = I(TRUE)

)

h5_write(my_list, file, "experiment_1", as = c(id = "uint16"))

5. Writing Data Frames (Compound Datasets)
df <- data.frame(

id = 1:5,

score = c(10.5, 9.2, 8.4, 7.1, 6.0),

grade = factor(c("A", "A", "B", "C", "D"))
)

h5_write(df, file, "records/scores”, as = c(grade = "asciil[1]1"))

6. Fixed-Length Strings
h5_write(c("A", "B"), file, "fixed_str"”, as = "ascii[10]")

7. Review the file structure
h5_str(file)

8. Clean up
unlink(file)

h5_ write

Index

h5_attr_names, 2
h5_attr_names(), 12, 20
h5_class, 3
h5_class(), 21
h5_create_file, 4
h5_create_group, 5
h5_create_group(), 4-6, 14
h5_delete, 6
h5_delete(), 14
h5_dim, 7

h5_exists, 8
h5_exists(), 10, 11, 21
h5_is_dataset, 9
h5_is_dataset(), 9, 11
h5_is_group, 10
h5_is_group(), 9, 10
h5_length, 11
h5_1s, 12
h5_1s(), 2, 20
h5_move, 13
h5_move(), 6
h5_names, 14
h5_open, 15
h5_read, 17
h5_read(), 4, 24
h5_str, 19
h5_str(), 12
h5_typeof, 20
h5_typeof (), 4
h5_write, 21
h5_write(), 4, 5, 18

25

	h5_attr_names
	h5_class
	h5_create_file
	h5_create_group
	h5_delete
	h5_dim
	h5_exists
	h5_is_dataset
	h5_is_group
	h5_length
	h5_ls
	h5_move
	h5_names
	h5_open
	h5_read
	h5_str
	h5_typeof
	h5_write
	Index

