Package ‘il.cbs.muni’

February 12, 2026

Title Utility Functions to Work with Israeli Central Bureau of
Statistics Municipal Data

Version 0.1.0

Description Analyst oriented utility functions to handle the different quirks of
the Israeli CBS municipal data, harmonize id's and bring together data points
from different years.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.3

Imports dplyr, janitor, purrr, readxl, rlang, stringr, tidyr
Suggests httr2, testthat (>= 3.0.0)
Config/testthat/edition 3

URL https://github.com/matanhakim/il.cbs.muni,
https://matanhakim.github.io/il.cbs.muni/

BugReports https://github.com/matanhakim/il.cbs.muni/issues
Depends R (>=4.1.0)
NeedsCompilation no

Author Matan Hakim [aut, cre, cph] (ORCID:
<https://orcid.org/0009-0002-9372-8975>)

Maintainer Matan Hakim <matanhakim@gmail.com>
Repository CRAN
Date/Publication 2026-02-12 20:50:02 UTC

Contents

clean_ name L. L L e
combine_cbs_muni e e e e e e e e
modify_muni_id e e
pad_yishuv_id

https://github.com/matanhakim/il.cbs.muni
https://matanhakim.github.io/il.cbs.muni/
https://github.com/matanhakim/il.cbs.muni/issues
https://orcid.org/0009-0002-9372-8975

combine_cbs_muni

read_cbs_index e e 5

read_cbs_ muni e e e e 7

read_cbs_yishuv 8

read_muni_id e e e 9

row_to_names_fill 10
Index 12

clean_name Clean a string from characters unwanted in (mostly) yishuv names

Description

Clean a string from characters unwanted in (mostly) yishuv names

Usage

clean_name(name)
Arguments

name a character vector
Value

a character vector without leading and trailing white space, and with characters that are only letters
and digits, excluding the following: '-()\"

Example

S

clean_name("test-123_testx456")

X <-

read_cbs_yishuv(system.file("extdata”, "bycode2021.xlsx",

package = "il.cbs.muni”))[[1]11[c(153, 342)]

X

clean_name(x)

combine_cbs_muni Combine municipalities data frames from different sheets
Description
This function is a wrapper around read_cbs_muni() to help in combining data for cities, local

councils and regional councils. From 2015 and earlier, the Israeli CBS publishes municipal data on
different sheets and formats for cities and local councils, and for regional councils. This function
enables the user to combine the two data frames for selected columns. It is up to the user to take
care of the specific match between specific columns.

combine_cbs_muni

Usage

combine_cbs_mu
path,
year,
cols_city,
cols_rc,
data_domain
col_names =
col_names_fr

Arguments

path

year

cols_city

cols_rc

data_domain

col_names

col_names_from

Value

ni(

= c("physical”, "budget"),
NULL,
om = c("city_lc",

n

r.cn)

A character vector of length 1, denoting the local file path to the municipal data
file. A full list of available files by the CBS is at the relevant CBS page.

A numeric vector of length 1 denoting which year the data file pointed in path
is for. Currently supporting 2003-2015, since before 2003 the data structure is
very different, and after 2015 the file is already combined.

<tidy-select> Columns to keep from the cities and local councils sheet.

<tidy-select> Columns to keep from the regional councils sheet. Should be in the
same order of desired columns as in cols_city, since the columns are matched
by order.

A character vector of length 1, one of c("physical”, "budget”). Every Excel
municipal data file has a few different data domains, most notably physical and
population data, and budget data.

A character vector containing the new column names of the output tibble. If
NULL then the tibble uses the original column names. Must be the same length
as the number of columns picked in cols. If not NULL, overrides the choice in
col_names_from.

A character vector of length 1, one of c("city_lc"”, "rc"). Denotes which
column names should be kept - those from the cities and local councils sheet, or
those from the regional councils sheet.

A tibble with municipal data for a specific year, with the columns from cols_city and cols_rc
bound by rows and matched by order of columns. Every row is a municipality and every column is
a different variable for this municipality in that year. Be advised all columns are of type character,
so you need to parse the data types yourself at will. Column names are merged from the relevant

headers, and only

single whitespaces are kept. Rows with more than 90% empty cells (usually rows

with non-data notes) are removed.

Examples

df_1 <- combine_cbs_muni(
system.file("extdata”, "2009.x1s", package = "il.cbs.muni"),

year = 2009,

https://www.cbs.gov.il/he/publications/Pages/2019/%D7%94%D7%A8%D7%A9%D7%95%D7%99%D7%95%D7%AA-%D7%94%D7%9E%D7%A7%D7%95%D7%9E%D7%99%D7%95%D7%AA-%D7%91%D7%99%D7%A9%D7%A8%D7%90%D7%9C-%D7%A7%D7%95%D7%91%D7%A6%D7%99-%D7%A0%D7%AA%D7%95%D7%A0%D7%99%D7%9D-%D7%9C%D7%A2%D7%99%D7%91%D7%95%D7%93-1999-2017.aspx
https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html
https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html

4 modify_muni_id

cols_city = c(1:7, 11),
cols_rc = c(1:7, 25)
)

df_1 |>
dplyr::glimpse()

df_2 <- combine_cbs_muni(
system.file("extdata”, "2009.xls"”, package = "il.cbs.muni”),
year = 2009,
cols_city = c(1:12),
cols_rc = c(1:12),
data_domain = "budget”,

n n

col_names_from = "rc
)
daf_2 |>
dplyr::glimpse()
modify_muni_id Modify a municipal id depending on the municipal status and yishuv
id

Description

In the context of working with cbs municipal and yishuvim data, there is a difference in the treatment
of a yishuv and a municipality. In the cases of cities and local councils the yishuv id and the
municipality id are the same. But in the case of regional councils, the municipality id is for the
regional council, while every yishuv within that municipality has a different yishuv id. The Israeli
CBS uses a concept of "municipal status" to differentiate between the two. A municipal status of "0"
represents a city, and "99" represents a local council. Every other 2-digit number is the municipal id
of a regional council. This function modifies a municipal status based on itself and the yishuv_id.
It returns the correct municipal id after accounting for the "0" or "99" values.

Usage

modify_muni_id(muni_id, yishuv_id)

Arguments
muni_id A character or numeric vector indicating the municipal status, where "0" or "99"
represents a city or a local council, and every other two-digit number or character
represents a regional council.
yishuv_id A character or numeric vector representing the yishuv id. Should be 4 digits
long according to the il.verse conventions.
Value

A character vector with 4 digits municipal id for cities and local councils and 2 digits municipal id
for regional councils.

pad_yishuv_id 5

Examples

muni_id <- c(@, 99, 1, 2)
yishuv_id <- c("0001", "1000", "1234", "1567")
modify_muni_id(muni_id, yishuv_id)

pad_yishuv_id Pad a yishuv id to a 4-digit character vector

Description

Pad a yishuv id to a 4-digit character vector

Usage

pad_yishuv_id(yishuv_id)

Arguments
yishuv_id a character vector containing only characters and numbers, where each element
is no longer than 4 characters or digits.
Value

A character or numeric vector, where each element is 4 characters long, containing only numbers
and left-padded with O’s.

Examples

x <= c(1, "23", "4000", 5600)
pad_yishuv_id(x)

read_cbs_index Read a CBS index data file to a tibble

Description

This function is a wrapper around readxl: :read_excel (), reading a specific CBS index data file
for a specific year and a specific data domain. Its added value is in its pre-defined parameters for
every year and its specific quirks in the Excel headers. For advanced users,the full set of options is
available with i1.cbs.muni:: :df_cbs_index_params.

6 read_cbs_index

Usage
read_chs_index(
path,
year,
index_type = c("ses", "peri"),
unit_type = c¢("muni”, "yishuv"”, "sa"),
cols = NULL,
col_names = NULL
)
Arguments
path A character vector of length 1, denoting the local file path to the CBS index data
file. A full list of available files by the CBS is at the relevant CBS page for either
Socio-Economic Status (SES) or for peripheral level.
year A numeric vector of length 1 denoting which year the data file pointed in path
is for. Be aware that the year in question is the year the data is for, not the year
the data was published in.
index_type A character vector of length 1, one of c("ses”, "peri").
unit_type A character vector of length 1, one of c("muni”, "yishuv", "sa").
* "muni” - every row is a municipality.
e "yishuv” - every row is a yishuv. In some years and indices this includes
all yishuvim, in others only yishuvim within regional councils.
* "sa" - every row is a statistical area within a city or local council.
cols <tidy-select> Columns to keep. The default NULL keeps all columns.
col_names A character vector containing the new column names of the output tibble. If
NULL then the tibble uses the original column names. Must be the same length
as the number of columns picked in cols.
Value

A tibble with CBS index data for a specific year, where every row is a unit_type and every column
is a different variable for this unit_type in that year. Be advised all columns are of type character,
so you need to parse the data types yourself at will. Column names are merged from the relevant
headers, and only single whitespaces are kept. Rows with more than 90% empty cells (usually rows
with non-data notes) are removed.

Examples

read_cbs_index(
path = system.file("extdata”, "24_22_375t1.x1sx", package = "il.cbs.muni"),

year = 2019,

index_type = "ses",

unit_type = "muni”
) 1>

dplyr::glimpse()

https://www.cbs.gov.il/he/subjects/Pages/%D7%9E%D7%93%D7%93-%D7%97%D7%91%D7%A8%D7%AA%D7%99-%D7%9B%D7%9C%D7%9B%D7%9C%D7%99-%D7%A9%D7%9C-%D7%94%D7%A8%D7%A9%D7%95%D7%99%D7%95%D7%AA-%D7%94%D7%9E%D7%A7%D7%95%D7%9E%D7%99%D7%95%D7%AA.aspx
https://www.cbs.gov.il/he/subjects/Pages/%D7%9E%D7%93%D7%93-%D7%A4%D7%A8%D7%99%D7%A4%D7%A8%D7%99%D7%90%D7%9C%D7%99%D7%95%D7%AA-%D7%A9%D7%9C-%D7%A8%D7%A9%D7%95%D7%99%D7%95%D7%AA-%D7%9E%D7%A7%D7%95%D7%9E%D7%99%D7%95%D7%AA.aspx
https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html

read_cbs_muni 7

read_cbs_muni Read a municipal data file to a tibble

Description

This function is a wrapper around readxl: :read_excel(), reading a specific municipal data file
for a specific year and a specific data domain. Its added value is in its use of row_to_names_fill()
and its pre-defined parameters for every year and its specific quirks in the Excel headers. For
advanced users, the full set of options is available with il1.cbs.muni:: :df_cbs_muni_params.

Usage

read_cbhs_muni (
path,
year,
muni_type = c("all”, "city_lc", "rc"),
data_domain = c("physical”, "budget”, "summary"”, "labor_force_survey"”, "social_survey"),

cols = NULL,
col_names = NULL
)
Arguments

path A character vector of length 1, denoting the local file path to the municipal data
file. A full list of available files by the CBS is at the relevant CBS page.

year A numeric vector of length 1 denoting which year the data file pointed in path
is for. Currently supporting only 2003 and later, since before 2003 the data
structure is very different.

muni_type A character vector of length 1, one of c("all”, "city_lc”, "rc"). Since
2016, all municipal types are bundled together in the same sheets, but before
2016 there are different sheets for cities and local councils ("city_lc") and
regional councils ("rc"). This parameter chooses which sheet you would read.

data_domain A character vector of length 1, one of c("physical”, "budget”, "summary”,
"labor_force_survey"”, "social_survey"). Every Excel municipal data file
has a few different data domains, most notably physical and population data,
and budget data.

cols <tidy-select> Columns to keep. The default NULL keeps all columns.

col_names A character vector containing the new column names of the output tibble. If
NULL then the tibble uses the original column names. Must be the same length
as the number of columns picked in cols.

Value

A tibble with municipal data for a specific year, where every row is a municipality and every column
is a different variable for this municipality in that year. Be advised all columns are of type character,
so you need to parse the data types yourself at will. Column names are merged from the relevant

https://www.cbs.gov.il/he/publications/Pages/2019/%D7%94%D7%A8%D7%A9%D7%95%D7%99%D7%95%D7%AA-%D7%94%D7%9E%D7%A7%D7%95%D7%9E%D7%99%D7%95%D7%AA-%D7%91%D7%99%D7%A9%D7%A8%D7%90%D7%9C-%D7%A7%D7%95%D7%91%D7%A6%D7%99-%D7%A0%D7%AA%D7%95%D7%A0%D7%99%D7%9D-%D7%9C%D7%A2%D7%99%D7%91%D7%95%D7%93-1999-2017.aspx
https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html

8 read_cbs_yishuv

headers, and only single whitespaces are kept. Rows with more than 90% empty cells (usually rows
with non-data notes) are removed.

Examples

df <- read_cbs_muni(
system.file("extdata”, "p_libud_2021.x1sx", package = "il.cbs.muni"),

year = 2021,

data_domain = "physical”
)
df |>

dplyr::select(1:15) |>
dplyr::glimpse()

read_cbs_yishuv Read a yishuvim data file to a tibble

Description

This function is a wrapper around readxl: :read_excel(), reading a specific yishuvim data file
or a part of it. A yishuv, or a point of residence, is a geographically defined place where people
live. Some yishuvim are municipalities, in the case of of cities and local councils, but most are not.
most yishuvim are part of municipalities that are regional councils. Also, some yishuvim are not
themselves and are not part of a municipality, like some Bedouin places in southern Israel, some
industry areas, Mikveh Israel, and more.

Usage

read_cbs_yishuv(path, cols = NULL, col_names = NULL)

Arguments
path A character vector of length 1, denoting the local file path to the yishuvim data
file. A full list of available files by the CBS is at the relevant CBS page.
cols <tidy-select> Columns to keep. The default NULL keeps all columns.
col_names A character vector containing the new column names of the output tibble. If
NULL then the tibble uses the original column names. Must be the same length
as the number of columns picked in cols.
Value

A tibble with yishuvim data for a specific year, where every row is a yishuv and every column is a
different variable for this yishuv in that year. Be advised all columns are of type character, so you
need to parse the data types yourself at will. Column names are cleaned so only single whitespaces
are kept.

https://www.cbs.gov.il/he/publications/Pages/2019/%D7%99%D7%99%D7%A9%D7%95%D7%91%D7%99%D7%9D-%D7%91%D7%99%D7%A9%D7%A8%D7%90%D7%9C.aspx
https://dplyr.tidyverse.org/reference/dplyr_tidy_select.html

read_muni_id 9

Examples

library(dplyr)
read_cbs_yishuv(system.file("extdata", "bycode2021.x1sx”, package = "il.cbs.muni")) |>
dplyr::glimpse()

read_cbs_yishuv(
system.file("extdata”, "bycode2021.x1lsx", package = "il.cbs.muni"),
cols = c(1, 2, 5, 13)

) 1>
mutate(across(2, pad_yishuv_id)) |>
glimpse()
read_muni_id Read municipalities id’s and names
Description

Israeli municipalities have different id’s and sometimes even different names across different gov-
ernment organizations. This function allows you to read different municipality id’s and names , so
interchanging between the different specifications would be easier.

Usage

n

read_muni_id(id_types = c("muni”, "edu”, "tax"), include_names = FALSE)

Arguments

id_types A character vector of length between 1 and 3, containing at least one (or two,
or all of) of the possible values. id’s (and possibly names) of municipalities are
kept for the selected sources:

e "muni” is for CBS id’s and (cleaned) names.

* "edu" is for Ministry of Education municipal symbol ("Semel Reshut" in
Hebrew)

e "tax" is for Israel Tax Authority municipal id (also known as a "H.P. num-
ber")

include_names A logical vector of length 1, denoting if the names of municipalities (for each of
the id_types chosen) should be included. Be aware that some municipal names
might differ between different agencies.

Value

A tibble, where every row is a municipality and the columns include id’s (and possibly names) of
the municipalities from the chosen agencies.

10 row_to_names_fill

Examples

read_muni_id() |>
dplyr::glimpse()

read_muni_id(id_types = c("muni”, "edu"), include_names = TRUE) |>
dplyr::glimpse()

row_to_names_fill Elevate rows to be the column names of a data.frame and fill row-wise
if needed

Description

Casts data from rows to the column names of a data frame, with the option to fill missing values row-
wise. This utility is helpful in the case of merged cells in Microsoft Excel, where the merged range
has data only in the first (unmerged) cell. This function is similar to janitor: :row_to_names(),
with the exception of the fill utility.

Usage

row_to_names_fill(
data,
row_number,
fill_missing = TRUE,
remove_row = TRUE,
remove_rows_above = TRUE,

n on

sep = "_
)
Arguments
data A data frame.
row_number A numeric vector with he row indices of data containing the variable names.

Allows for multiple rows input as a numeric vector. If multiple rows, values in
the same column would be pasted with the sep argument as a separator. NAs
are ignored.

fill_missing A logical vector of length 1 or of length length(row_number). Every value
in the vector denotes for the matching row in datalrow_number,] if the row
should fill missing values (from left to right). If TRUE for a row, all missing
values following a non-missing value will be replaced with that preceding non-
missing value.

remove_row A logical vector of length 1, denoting if the row row_number should be removed
from the resulting data.frame.

remove_rows_above
A logical vector of length 1, denoting if the rows above row_number - that is,
between 1: (row_number-1) - should be removed from the resulting data.frame,
in the case that row_number !=1.

row_to_names_fill 11

sep A character vector of length 1 to separate the values in the case of multiple rows
input to row_number.

Value

A data frame (class data. frame) with the same structure as the input data, but with column names
derived from the specified row(s). The returned data frame has the same number of columns as the
input, with rows removed according to the remove_row and remove_rows_above parameters. All
data types and values are preserved from the original data frame.

Examples

df <- data.frame(
a=1:6,
b = rep(c("x", NA), 3),
c = letters[1:6]

)

df
row_to_names_fill(df, 2:3)

row_to_names_fill(df, 2:3, sep = ".")
row_to_names_fill(df, 2:4, fill_missing = c(TRUE, FALSE, FALSE))

Index

clean_name, 2
combine_cbs_muni, 2

modify_muni_id, 4
pad_yishuv_id, 5

read_cbs_index, 5
read_cbs_muni, 7
read_cbs_yishuv, 8
read_muni_id, 9
row_to_names_fill, 10

12

	clean_name
	combine_cbs_muni
	modify_muni_id
	pad_yishuv_id
	read_cbs_index
	read_cbs_muni
	read_cbs_yishuv
	read_muni_id
	row_to_names_fill
	Index

