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1 Introduction

This note presents in some detail the formulae for the test statistics used
by the kanova() function from the kanova package. These statistics are
based on, and generalise, the ideas discussed in Diggle et al. (2000) and in
Hahn (2012). They consist of sums of integrals (over the argument r of the
K-function) of the usual sort of analysis of variance “regression” sums of
squares, down-weighted over r by the estimated variance of the quantities
being squared. The limits of integration ry and r; could be specified in the
software (e.g. in the related spatstat function studpermu.test() they can
be specified in the argument rinterval). However there is currently no
provision for this in kanova(), and ry and r; are taken to be the min and
max of the r component of the "fv" object returned by Kest (). Usually rg
is 0 and r; is 1/4 of the length of the shorter side of the bounding box of the
observation window in question.

There are test statistics for:

e one-way analysis of variance (one grouping factor),
e main effects in a two-way (two grouping factors) additive model, and

e a model with interaction versus an additive model in a two-way context.



2 The data

. In the context of a single classification factor A, with a levels, the data
consist of K-functions K;;(r), i = 1,...,a, k = 1,...,n;. The function
K;j(r) is constructed (estimated) from an observed point pattern X;.

In the context of two classification factors A and B, with a levels and b
levels respectively, the data consist of K-functions K;j,(r), ¢ = 1,...,aq,
j=1,...,b, k=1,...,n;. The function K,jx(r) is constructed (estimated)
from an observed point pattern Xjjp.

The observations have associated weights. The weight associated with K;;(r),
in the single classification context, is w;; = m?j where m;; is the number of
points in the pattern X;; The exponent 7 is a constant that may be specified
by the user of the kanova package. In the code 7 is denoted by expo, and
defaults to 2.

In the context of two classification factors, the weight associated with K;;;(r)
is wyjp = m?jk where m;;;, is the number of points in the pattern Xj.

The test statistics used are calculated in terms of various weighted means of
the observed K-functions. Explicitly we define
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3 Variance functions

The variances of the K-functions are assumed to be proportional to functions
which are constant over indices within each cell of the model. In the context
of a single classification factor, the variance of K;;(r) is taken to be o7(r) /w;;.
It is assumed that under the null hypothesis of “no A effect”, the functions
o2(r) are all equal to a single function, o%(r). Le. they do not vary with 4.
In the context of two classification factors, the variance of Kj;;,(r) is taken
to be o7 (r) /wij.-

It is assumed that under the null hypothesis of “no A effect”, the functions
O'Zj( r) do not vary with 4, and for each j are all equal to a smgle function

o3 (r).

4 Estimating the variance functions

In the setting of a single classification factor, the variance function (unique
under the null hypothesis), 0'2(7“) is estimated by

S(r) =

Kij(r) — Ki(r))* .
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Under the null hypothesis this is an unbiased estimate of o(r).

In the setting of two classification factors, where we are testing for an A
effect, allowing for a B effect, the variance functions (depending only on the
B effect under the null hypothesis), o3(r)) are estimated by
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Under the null hypothesis these are a unbiased estimates of the o7(r).

In the setting of two classification factors, where we are testing for interaction
against an additive model (unlikely to arise as these circumstances may be)
we need estimates of o7;(r). These are given by
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These are a unbiased estimates of the o7;(r).

5 The test statistics

In the setting of a single classification factor A, the statistic for testing for
an A effect is

T Zm/ (Ri(r) — K(r)2/Vilr) dr

where Vj(r) is the estimated variance of K;(r) — K (r). This is given by
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In the setting of two classification factors A and B, the statistic for testing
for an A effect allowing for a B effect is
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where V;(r) is the estimated variance of K;,(r) — K (r). This is given by
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The foregoing expression may be re-written, more compactly, and in a form
which makes it more obvious that the quantity is positive, as:

where

In the setting in which there are two classification factors and we are testing
for interaction, against an additive models, the test statistic is

Tap = ZZ”” /T:l(f(z‘j.(r) — Ki(r) = K. (r) + K(r)?/Vii P (r) dr

i=1 j=1

where V/2(r) is the (sample) variance of Kij(r) — Ki(r) — K (r) + K(r).
The function V;/*?(r) is even messier than V;*(r). It is given by
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Note that (1) is just (4), and (2) is just (3) (see below) with population
quantities replaced by sample (estimated) quantities.
Here are some (terse) details about the variance of Ky;.(r) — Ki.(r) — K.;.(r) + K(r)
as given by (4).

Var(K;.(r)) = 75(r)

Var(K,.(r)) = —=

Var(f(,j,(r) =

Var(f(,.,(r)) = o (r)

where
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Sample calculation: to see that Cov(Ki;.(r), Ki.) = 07, /wi.., note that K;.(r)
is a weighted sum over £, of terms Ky,(r).The K-functions involved corre-
spond to independent patterns, and so are likewise independent. Conse-
quently f(w(r) is independent of Kj.(r), and the corresponding covariances
are 0, except when ¢ = j. We thus get only a single non-zero term from the
sum of the covariances, explicitly
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Finally we can obtain the variance term of interest, which is Var(K (r) —
Ki.(r) — K;.(r) + K..(r)). This expression is equal to

Var(K;.(r)) + Var(Ki.(r)) +V&r(f(‘( ) + Var(K...(r))

— 2Cov(Ky.(r), Ki(r)) —2Cov( (7 ) f(] )+2Cov(f(ij,(7’),f(,,,(r))
+ 2Cov(K;.(r), f( )—2Cov( (), K..(1))

— 2Cov(K;.(r), K..(7)) -

Collecting terms in the foregoing expression, and using the previously stated
symbolic representations of these terms, we obtain
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Replacing the population variances by their corresponding estimates (sample
quantities) we obtain (1).
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