
Package ‘marinepredator’
February 4, 2026

Type Package

Title Marine Predators Algorithm

Version 0.0.1

Description Implementation of the Marine Predators Algorithm (MPA) in R. MPA is a
nature-inspired optimization algorithm that follows the rules governing optimal
foraging strategy and encounter rate policy between predator and prey in marine
ecosystems. Based on the paper by Faramarzi et al. (2020)
<doi:10.1016/j.eswa.2020.113377>.

URL https://github.com/urbs-dev/marinepredator

BugReports https://github.com/urbs-dev/marinepredator/issues

Language en

Encoding UTF-8

Imports dplyr, stats

Suggests testthat (>= 3.0.0), covr, pkgdown, knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.3

Config/testthat/edition 3

License MIT + file LICENSE

NeedsCompilation no

Author Marc Grossouvre [trl, cre] (R implementation),
URBS company [cph, fnd],
Afshin Faramarzi [aut] (Original MATLAB code),
Seyedali Mirjalili [aut] (Original MATLAB code)

Maintainer Marc Grossouvre <marcgrossouvre@urbs.fr>

Repository CRAN

Date/Publication 2026-02-04 19:20:10 UTC

1

https://doi.org/10.1016/j.eswa.2020.113377
https://github.com/urbs-dev/marinepredator
https://github.com/urbs-dev/marinepredator/issues

2 F01

Contents
F01 . 2
F02 . 3
F03 . 4
F04 . 5
F05 . 7
F06 . 8
F07 . 9
F08 . 10
F09 . 11
F10 . 12
F11 . 13
F12 . 14
F13 . 15
F14 . 16
F15 . 17
F16 . 19
F17 . 20
F18 . 21
F19 . 22
F20 . 23
F21 . 24
F22 . 25
F23 . 26
get_function_details . 27
initialize_population . 28
levy . 28
mpa . 30
print.mpa_result . 32
test-functions . 33

Index 35

F01 Sphere Function (F01)

Description

The Sphere function is a simple unimodal test function commonly used to evaluate the performance
of optimization algorithms. It has a single global minimum at the origin.

Usage

F01(x)

Arguments

x Numeric vector of input values.

F02 3

Details

Formula:

f(x) =

n∑
i=1

x2
i

Global minimum: f(0, 0, ..., 0) = 0

Characteristics:

• Type: Unimodal

• Separable: Yes

• Differentiable: Yes

• Convex: Yes

• Default bounds: [−100, 100]n

• Default dimensions: 50

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F01(c(0, 0, 0)) # Returns 0 (global minimum)
F01(c(1, 2, 3)) # Returns 1 + 4 + 9 = 14
F01(rep(0, 50)) # Returns 0 in 50 dimensions

F02 Sum of Absolute Values and Products (F02)

Description

A unimodal test function that combines the sum of absolute values and the product of absolute
values.

Usage

F02(x)

Arguments

x Numeric vector of input values.

4 F03

Details

Formula:

f(x) =

n∑
i=1

|xi|+
n∏

i=1

|xi|

Global minimum: f(0, 0, ..., 0) = 0

Characteristics:

• Type: Unimodal

• Separable: No (due to product term)

• Differentiable: No (at points where any x_i = 0)

• Convex: Yes

• Default bounds: [−10, 10]n

• Default dimensions: 50

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F02(c(0, 0)) # Returns 0 (global minimum)
F02(c(1, 2)) # Returns |1| + |2| + |1|*|2| = 1 + 2 + 2 = 5
F02(c(-1, -2)) # Returns 1 + 2 + 2 = 5

F03 Sum of Squared Cumulative Sums (F03)

Description

A unimodal test function that calculates the sum of squared cumulative sums, also known as the
Schwefel 2.22 variant.

Usage

F03(x)

Arguments

x Numeric vector of input values.

F04 5

Details

Formula:

f(x) =

n∑
i=1

 i∑
j=1

xj

2

Global minimum: f(0, 0, ..., 0) = 0

Characteristics:

• Type: Unimodal

• Separable: No

• Differentiable: Yes

• Convex: Yes

• Default bounds: [−100, 100]n

• Default dimensions: 50

This function is non-separable because each term depends on all previous variables, making it useful
for testing algorithms’ ability to handle variable dependencies.

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F03(c(0, 0, 0)) # Returns 0 (global minimum)
F03(c(1, 2, 3)) # Returns 1^2 + (1+2)^2 + (1+2+3)^2 = 1 + 9 + 36 = 46

F04 Maximum Absolute Value (F04)

Description

A unimodal test function that returns the maximum absolute value in the input vector, also known
as the Schwefel 2.21 function.

Usage

F04(x)

6 F04

Arguments

x Numeric vector of input values.

Details

Formula:

f(x) = max
i

|xi|

Global minimum: f(0, 0, ..., 0) = 0

Characteristics:

• Type: Unimodal

• Separable: No

• Differentiable: No

• Convex: Yes

• Default bounds: [−100, 100]n

• Default dimensions: 50

This function is particularly challenging because it only depends on the single variable with the
largest absolute value, making gradient-based information less useful.

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F04(c(0, 0, 0)) # Returns 0 (global minimum)
F04(c(-1, 2, -3)) # Returns 3
F04(c(5, -5, 5)) # Returns 5

F05 7

F05 Rosenbrock Function (F05)

Description

The Rosenbrock function (also known as Rosenbrock’s valley or banana function) is a classic test
function with a narrow, curved valley. While often described as unimodal, it is technically multi-
modal for n ≥ 4.

Usage

F05(x)

Arguments

x Numeric vector of input values (minimum length 2).

Details

Formula:

f(x) =

n−1∑
i=1

[
100(xi+1 − x2

i)
2 + (xi − 1)2

]
Global minimum: f(1, 1, ..., 1) = 0

Characteristics:

• Type: Unimodal (for n < 4), Multimodal (for n >= 4)

• Separable: No

• Differentiable: Yes

• Convex: No

• Default bounds: [−30, 30]n

• Default dimensions: 50

The global minimum lies inside a long, narrow, parabolic-shaped flat valley. Finding the valley is
trivial, but converging to the global minimum is difficult.

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

8 F06

Examples

F05(c(1, 1)) # Returns 0 (global minimum)
F05(c(0, 0)) # Returns 1
F05(c(1, 1, 1, 1)) # Returns 0 (global minimum in 4D)

F06 Step Function / Shifted Sphere (F06)

Description

A shifted version of the Sphere function with the minimum at (−0.5,−0.5, ...,−0.5), also known
as the Step function.

Usage

F06(x)

Arguments

x Numeric vector of input values.

Details

Formula:

f(x) =

n∑
i=1

(xi + 0.5)2

Global minimum: f(−0.5,−0.5, ...,−0.5) = 0

Characteristics:

• Type: Unimodal

• Separable: Yes

• Differentiable: Yes

• Convex: Yes

• Default bounds: [−100, 100]n

• Default dimensions: 50

This function tests the algorithm’s ability to find optima that are not located at the origin.

Value

Numeric scalar representing the function value.

F07 9

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F06(c(-0.5, -0.5)) # Returns 0 (global minimum)
F06(c(0, 0)) # Returns 0.5
F06(rep(-0.5, 50)) # Returns 0 in 50 dimensions

F07 Quartic Function with Noise (F07)

Description

A unimodal test function with quartic terms and added uniform random noise. The noise makes this
a stochastic function, useful for testing robustness.

Usage

F07(x)

Arguments

x Numeric vector of input values.

Details

Formula:

f(x) =

n∑
i=1

i · x4
i + random[0, 1)

Global minimum: f(0, 0, ..., 0) ≈ 0 (stochastic, depends on noise)

Characteristics:

• Type: Unimodal (with noise)

• Separable: Yes (deterministic part)

• Differentiable: Yes

• Stochastic: Yes (random noise added)

• Default bounds: [−1.28, 1.28]n

• Default dimensions: 50

The random noise component makes function evaluations non-deterministic, testing an algorithm’s
ability to handle noisy objective functions.

10 F08

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F07(c(0, 0, 0)) # Returns a value close to 0 (with some noise)
Multiple calls may return different values due to noise:
replicate(5, F07(c(0, 0, 0)))

F08 Schwefel Function (F08)

Description

A multimodal test function with many local minima. The global minimum is geometrically distant
from the next best local minima, making this function deceptive and challenging for optimization
algorithms.

Usage

F08(x)

Arguments

x Numeric vector of input values.

Details

Formula:

f(x) = −
n∑

i=1

xi sin(
√

|xi|)

Global minimum: f(420.9687, ..., 420.9687) ≈ −418.9829× n

Characteristics:

• Type: Multimodal
• Separable: Yes
• Differentiable: Yes (except at x_i = 0)
• Default bounds: [−500, 500]n

• Default dimensions: 50

The Schwefel function is deceptive in that the global minimum is geometrically distant from the
next best local minima. This tests an algorithm’s ability to escape local optima and explore widely.

F09 11

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F08(c(420.9687, 420.9687)) # Returns approximately -837.97 (near global minimum)
F08(c(0, 0)) # Returns 0

F09 Rastrigin Function (F09)

Description

A highly multimodal test function with many local minima arranged in a regular lattice pattern. The
global minimum is at the origin.

Usage

F09(x)

Arguments

x Numeric vector of input values.

Details

Formula:

f(x) = 10n+

n∑
i=1

[
x2
i − 10 cos(2πxi)

]
Global minimum: f(0, 0, ..., 0) = 0

Characteristics:

• Type: Multimodal
• Separable: Yes
• Differentiable: Yes
• Number of local minima: ≈ 10n

• Default bounds: [−5.12, 5.12]n

• Default dimensions: 50

The Rastrigin function is a typical example of non-linear multimodal function. The large number
of local minima makes it difficult for optimization algorithms to find the global minimum.

12 F10

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F09(c(0, 0)) # Returns 0 (global minimum)
F09(c(1, 1)) # Returns approximately 2
F09(rep(0, 10)) # Returns 0 in 10 dimensions

F10 Ackley Function (F10)

Description

A widely used multimodal test function characterized by a nearly flat outer region with a large
central hole at the origin. It poses a risk for optimization algorithms to be trapped in local minima.

Usage

F10(x)

Arguments

x Numeric vector of input values.

Details

Formula:

f(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i

− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e

Global minimum: f(0, 0, ..., 0) = 0

Characteristics:

• Type: Multimodal
• Separable: No
• Differentiable: Yes
• Default bounds: [−32, 32]n

• Default dimensions: 50

The Ackley function has an exponential term covering its surface with numerous local minima. The
function poses a risk of premature convergence for hill-climbing algorithms.

F11 13

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F10(c(0, 0)) # Returns approximately 0 (global minimum)
F10(c(1, 1)) # Returns approximately 3.6

F11 Griewank Function (F11)

Description

A multimodal test function with many regularly distributed local minima. The complexity increases
with the number of dimensions.

Usage

F11(x)

Arguments

x Numeric vector of input values.

Details

Formula:

f(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1

Global minimum: f(0, 0, ..., 0) = 0

Characteristics:

• Type: Multimodal

• Separable: No

• Differentiable: Yes

• Default bounds: [−600, 600]n

• Default dimensions: 50

The Griewank function has a product term that introduces interdependence among the variables. As
dimension increases, the function becomes more difficult to optimize.

14 F12

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F11(c(0, 0)) # Returns 0 (global minimum)
F11(c(1, 1)) # Returns approximately 0.007

F12 Penalized Function 1 (F12)

Description

A multimodal test function with penalty terms that create a complex search landscape. Uses the
Ufun helper function.

Usage

F12(x)

Arguments

x Numeric vector of input values (minimum length 2).

Details

Formula:

f(x) =
π

n

{
10 sin2(πy1) +

n−1∑
i=1

(yi − 1)2(1 + 10 sin2(πyi+1)) + (yn − 1)2

}
+

n∑
i=1

u(xi, 10, 100, 4)

where yi = 1 + (xi + 1)/4 and u(x, a, k,m) is a penalty function.

Global minimum: f(−1,−1, ...,−1) = 0

Characteristics:

• Type: Multimodal

• Separable: No

• Differentiable: Yes (in the interior)

• Penalized: Yes (boundary penalty)

• Default bounds: [−50, 50]n

F13 15

• Default dimensions: 50

The penalty term u(x, a, k,m) adds a cost when variables exceed the threshold a, helping to con-
strain solutions to a feasible region.

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters, Ufun for the penalty function.

Examples

F12(c(-1, -1, -1)) # Returns approximately 0 (near global minimum)
F12(c(0, 0, 0)) # Returns a small positive value

F13 Penalized Function 2 (F13)

Description

A multimodal test function with different penalty terms than F12, creating a complex search land-
scape. Uses the Ufun helper function.

Usage

F13(x)

Arguments

x Numeric vector of input values (minimum length 2).

Details

Formula:

f(x) = 0.1

{
sin2(3πx1) +

n−1∑
i=1

(xi − 1)2(1 + sin2(3πxi+1)) + (xn − 1)2(1 + sin2(2πxn))

}
+

n∑
i=1

u(xi, 5, 100, 4)

where u(x, a, k,m) is a penalty function.

Global minimum: f(1, 1, ..., 1) = 0

Characteristics:

• Type: Multimodal

16 F14

• Separable: No

• Differentiable: Yes (in the interior)

• Penalized: Yes (boundary penalty)

• Default bounds: [−50, 50]n

• Default dimensions: 50

This function differs from F12 in the sinusoidal terms and penalty threshold, resulting in different
landscape characteristics.

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters, Ufun for the penalty function.

Examples

F13(c(1, 1, 1)) # Returns approximately 0 (near global minimum)
F13(c(0, 0, 0)) # Returns a small positive value

F14 Shekel’s Foxholes Function (F14)

Description

A multimodal test function with 25 local minima of different depths, arranged in a grid pattern.
Fixed dimension of 2.

Usage

F14(x)

Arguments

x Numeric vector of length 2 (2-dimensional input).

F15 17

Details

Formula:

f(x) =

 1

500
+

25∑
j=1

1

j +
∑2

i=1(xi − aij)6

−1

where aij are predefined constants forming a 5x5 grid.

Global minimum: f(−32,−32) ≈ 0.998

Characteristics:

• Type: Multimodal

• Separable: No

• Differentiable: Yes

• Fixed dimension: 2

• Number of local minima: 25

• Default bounds: [−65.536, 65.536]2

The 25 minima are located at points from a 5x5 grid with coordinates (−32,−16, 0, 16, 32) in each
dimension.

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F14(c(-32, -32)) # Returns approximately 0.998 (global minimum)
F14(c(0, 0)) # Returns approximately 10

F15 Kowalik Function (F15)

Description

A multimodal test function used for testing optimization algorithms, based on fitting experimental
data. Fixed dimension of 4.

Usage

F15(x)

18 F15

Arguments

x Numeric vector of length 4 (4-dimensional input).

Details

Formula:

f(x) =

11∑
i=1

(
ai −

x1(b
2
i + bix2)

b2i + bix3 + x4

)2

where ai and bi are predefined constants from experimental data.

Global minimum: f(0.1928, 0.1908, 0.1231, 0.1358) ≈ 0.0003075

Characteristics:

• Type: Multimodal

• Separable: No

• Differentiable: Yes

• Fixed dimension: 4

• Default bounds: [−5, 5]4

This function is derived from a curve-fitting problem and has several local minima near the global
minimum.

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F15(c(0.1928, 0.1908, 0.1231, 0.1358)) # Returns approximately 0.0003
F15(c(0, 0, 0, 0)) # Returns a larger value

F16 19

F16 Six-Hump Camel Back Function (F16)

Description

A multimodal test function with six local minima, two of which are global. Fixed dimension of 2.

Usage

F16(x)

Arguments

x Numeric vector of length 2 (2-dimensional input).

Details

Formula:

f(x) = 4x2
1 − 2.1x4

1 +
x6
1

3
+ x1x2 − 4x2

2 + 4x4
2

Global minimum: f(±0.0898,∓0.7126) ≈ −1.0316

There are two global minima at approximately (0.0898,−0.7126) and (−0.0898, 0.7126).

Characteristics:

• Type: Multimodal

• Separable: No

• Differentiable: Yes

• Fixed dimension: 2

• Number of local minima: 6

• Number of global minima: 2

• Default bounds: [−5, 5]2

The function has a shape resembling a camel’s back with six humps (minima).

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

20 F17

Examples

F16(c(0.0898, -0.7126)) # Returns approximately -1.0316 (global minimum)
F16(c(-0.0898, 0.7126)) # Returns approximately -1.0316 (global minimum)
F16(c(0, 0)) # Returns 0

F17 Branin Function (F17)

Description

A multimodal test function with three global minima, commonly used for testing optimization al-
gorithms. Fixed dimension of 2.

Usage

F17(x)

Arguments

x Numeric vector of length 2 (2-dimensional input).

Details

Formula:

f(x) =

(
x2 −

5.1

4π2
x2
1 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10

Global minimum: f∗ ≈ 0.397887 at three locations:

• (−π, 12.275)

• (π, 2.275)

• (9.42478, 2.475)

Characteristics:

• Type: Multimodal

• Separable: No

• Differentiable: Yes

• Fixed dimension: 2

• Number of global minima: 3

• Default bounds: x1 ∈ [−5, 10], x2 ∈ [0, 15]

The Branin function is often used as a benchmark because it has three global minima that are well-
separated.

F18 21

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F17(c(-pi, 12.275)) # Returns approximately 0.398 (global minimum)
F17(c(pi, 2.275)) # Returns approximately 0.398 (global minimum)
F17(c(9.42478, 2.475)) # Returns approximately 0.398 (global minimum)

F18 Goldstein-Price Function (F18)

Description

A multimodal test function with four local minima and one global minimum. Fixed dimension of
2.

Usage

F18(x)

Arguments

x Numeric vector of length 2 (2-dimensional input).

Details

Formula:

f(x) = (1+(x1+x2+1)2(19−14x1+3x2
1−14x2+6x1x2+3x2

2))×(30+(2x1−3x2)
2(18−32x1+12x2

1+48x2−36x1x2+27x2
2))

Global minimum: f(0,−1) = 3

Characteristics:

• Type: Multimodal
• Separable: No
• Differentiable: Yes
• Fixed dimension: 2
• Number of local minima: 4
• Default bounds: [−2, 2]2

The Goldstein-Price function has a complex landscape with the global minimum surrounded by
local minima of increasing value.

22 F19

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters.

Examples

F18(c(0, -1)) # Returns 3 (global minimum)
F18(c(0, 0)) # Returns 600

F19 Hartmann 3D Function (F19)

Description

A multimodal test function with 4 local minima in 3 dimensions. Fixed dimension of 3.

Usage

F19(x)

Arguments

x Numeric vector of length 3 (3-dimensional input).

Details

Formula:

f(x) = −
4∑

i=1

ci exp

−
3∑

j=1

aij(xj − pij)
2


where aij , ci, and pij are predefined constants.

Global minimum: f(0.114614, 0.555649, 0.852547) ≈ −3.86278

Characteristics:

• Type: Multimodal
• Separable: No
• Differentiable: Yes
• Fixed dimension: 3
• Number of local minima: 4
• Default bounds: [0, 1]3

The Hartmann functions are a family of multimodal test functions commonly used in optimization
benchmarks.

F20 23

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters, F20 for the 6D version.

Examples

F19(c(0.114614, 0.555649, 0.852547)) # Returns approximately -3.86278
F19(c(0.5, 0.5, 0.5)) # Returns a value > -3.86

F20 Hartmann 6D Function (F20)

Description

A multimodal test function with 6 local minima in 6 dimensions. Fixed dimension of 6.

Usage

F20(x)

Arguments

x Numeric vector of length 6 (6-dimensional input).

Details

Formula:

f(x) = −
4∑

i=1

ci exp

−
6∑

j=1

aij(xj − pij)
2


where aij , ci, and pij are predefined constants.

Global minimum: f(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573) ≈ −3.32237

Characteristics:

• Type: Multimodal
• Separable: No
• Differentiable: Yes
• Fixed dimension: 6
• Number of local minima: 6
• Default bounds: [0, 1]6

The Hartmann 6D function is more challenging than the 3D version due to the higher dimensional-
ity.

24 F21

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters, F19 for the 3D version.

Examples

F20(c(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573))
Returns approximately -3.32237

F21 Shekel 5 Function (F21)

Description

A multimodal test function from the Shekel family with 5 local minima. Fixed dimension of 4.

Usage

F21(x)

Arguments

x Numeric vector of length 4 (4-dimensional input).

Details

Formula:

f(x) = −
5∑

i=1

1

(x− ai)T (x− ai) + ci

where ai are 4-dimensional vectors and ci are scalars.

Global minimum: f(4, 4, 4, 4) ≈ −10.1532

Characteristics:

• Type: Multimodal
• Separable: No
• Differentiable: Yes
• Fixed dimension: 4
• Number of local minima: 5
• Default bounds: [0, 10]4

The Shekel functions are parameterized by the number of terms m (here m=5). As m increases, the
function becomes more challenging.

F22 25

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters, F22 for Shekel 7, F23 for Shekel 10.

Examples

F21(c(4, 4, 4, 4)) # Returns approximately -10.15 (near global minimum)
F21(c(0, 0, 0, 0)) # Returns a value close to 0

F22 Shekel 7 Function (F22)

Description

A multimodal test function from the Shekel family with 7 local minima. Fixed dimension of 4.

Usage

F22(x)

Arguments

x Numeric vector of length 4 (4-dimensional input).

Details

Formula:

f(x) = −
7∑

i=1

1

(x− ai)T (x− ai) + ci

where ai are 4-dimensional vectors and ci are scalars.

Global minimum: f(4, 4, 4, 4) ≈ −10.4029

Characteristics:

• Type: Multimodal

• Separable: No

• Differentiable: Yes

• Fixed dimension: 4

• Number of local minima: 7

• Default bounds: [0, 10]4

The Shekel 7 function has more local minima than Shekel 5, making it slightly more challenging.

26 F23

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters, F21 for Shekel 5, F23 for Shekel 10.

Examples

F22(c(4, 4, 4, 4)) # Returns approximately -10.40 (near global minimum)
F22(c(0, 0, 0, 0)) # Returns a value close to 0

F23 Shekel 10 Function (F23)

Description

A multimodal test function from the Shekel family with 10 local minima. Fixed dimension of 4.

Usage

F23(x)

Arguments

x Numeric vector of length 4 (4-dimensional input).

Details

Formula:

f(x) = −
10∑
i=1

1

(x− ai)T (x− ai) + ci

where ai are 4-dimensional vectors and ci are scalars.

Global minimum: f(4, 4, 4, 4) ≈ −10.5364

Characteristics:

• Type: Multimodal
• Separable: No
• Differentiable: Yes
• Fixed dimension: 4
• Number of local minima: 10
• Default bounds: [0, 10]4

The Shekel 10 function is the most challenging of the Shekel family due to having the most local
minima.

get_function_details 27

Value

Numeric scalar representing the function value.

See Also

test-functions for an overview of all test functions, get_function_details to retrieve function
parameters, F21 for Shekel 5, F22 for Shekel 7.

Examples

F23(c(4, 4, 4, 4)) # Returns approximately -10.54 (near global minimum)
F23(c(0, 0, 0, 0)) # Returns a value close to 0

get_function_details Get Function Details

Description

Retrieves the details (bounds, dimension, and function object) for a specific benchmark test func-
tion.

Usage

get_function_details(function_name)

Arguments

function_name Name of the test function (e.g., "F01", "F02", ..., "F23")

Value

A list containing:

lb Lower bounds for the function

ub Upper bounds for the function

dim Number of dimensions

fobj The objective function

Examples

Get details for the Sphere function (F01)
details <- get_function_details("F01")
str(details)

28 levy

initialize_population Initialize Population

Description

Initializes the first population of search agents (prey) for the Marine Predators Algorithm.

Usage

initialize_population(SearchAgents_no, dim, ub, lb)

Arguments

SearchAgents_no

Number of search agents

dim Number of dimensions

ub Upper bounds for each dimension

lb Lower bounds for each dimension

Value

A matrix of initialized positions

Examples

Initialize a population of 25 agents in 30 dimensions with bounds [-100, 100]
population <- initialize_population(25, 30, 100, -100)

levy Levy Flight Random Step Generator

Description

Generates Levy flight random steps for optimization algorithms. Levy flight is characterized by a
heavy-tailed power-law distribution and is used to model the movement patterns of marine preda-
tors, allowing for occasional long jumps that help escape local optima.

Usage

levy(n, m, beta)

levy 29

Arguments

n Number of rows (typically the number of search agents).

m Number of columns (typically the number of dimensions).

beta Power law exponent controlling the tail heaviness of the distribution. Must
satisfy 1 < beta < 2. Lower values produce heavier tails (more frequent long
jumps). The value 1.5 is commonly used.

Details

The Levy flight step is computed using Mantegna’s algorithm:

L = u/|v|1/β

where u ∼ N(0, σ2
u) and v ∼ N(0, 1), with:

σu =

(
Γ(1 + β) · sin(πβ/2)

Γ((1 + β)/2) · β · 2(β−1)/2

)1/β

Levy flights are used in MPA during Phase 2 (for half the population) and Phase 3 (for all agents)
to balance exploration and exploitation.

Value

A numeric matrix of dimension n x m containing Levy flight step values. Each element represents a
random step drawn from the Levy distribution.

References

Mantegna, R. N. (1994). Fast, accurate algorithm for numerical simulation of Levy stable stochastic
processes. Physical Review E, 49(5), 4677.

Yang, X. S., & Deb, S. (2013). Multiobjective cuckoo search for design optimization. Computers
& Operations Research, 40(6), 1616-1624.

See Also

[mpa()] for the main algorithm that uses Levy flights.

Examples

Generate 10 Levy flight steps in 2 dimensions with beta = 1.5
steps <- levy(10, 2, 1.5)
dim(steps) # 10 x 2

Visualize the distribution of Levy steps
steps_1d <- levy(1000, 1, 1.5)
hist(steps_1d, breaks = 50, main = "Levy Flight Distribution")

30 mpa

mpa Marine Predators Algorithm (MPA)

Description

Implementation of the Marine Predators Algorithm (MPA) in R. MPA is a nature-inspired optimiza-
tion algorithm that follows the rules governing optimal foraging strategy and encounter rate policy
between predator and prey in marine ecosystems.

Usage

mpa(SearchAgents_no, Max_iter, lb, ub, dim, fobj, logFile = NULL, ...)

Arguments

SearchAgents_no

Number of search agents (predators). At least 2. Typical values range from 20
to 50.

Max_iter Maximum number of iterations. At least 3. Typical values range from 100 to
500 depending on problem complexity.

lb Lower bounds for each dimension. Can be a single value (applied to all dimen-
sions) or a vector of length dim.

ub Upper bounds for each dimension. Can be a single value (applied to all dimen-
sions) or a vector of length dim.

dim Number of dimensions (decision variables) in the optimization problem.
fobj Objective function to minimize. Must accept a numeric vector of length dim and

return a single numeric value.
logFile A path for logging (text file). Defaulted to NULL. If NULL, no logging is per-

formed.
... Additional arguments. Currently supports prefix for log message prefixing.

See Details.

Details

This is a minimization algorithm. To maximize a function, negate its output (e.g., use function(x)
-f(x) instead of f).

Value

An object of class mpa_result, which is a list containing:

Top_predator_fit

Best fitness value found (numeric scalar)
Top_predator_pos

Best position found (numeric vector of length dim)
Convergence_curve

Convergence curve over iterations (numeric vector of length Max_iter)

mpa 31

Algorithm Phases

The MPA algorithm operates in three distinct phases based on the iteration count:

Phase 1 (iterations 0 to Max_iter/3) High velocity ratio - The prey moves faster than the preda-
tor. Exploration is emphasized using Brownian motion. This phase promotes global search
across the solution space.

Phase 2 (iterations Max_iter/3 to 2*Max_iter/3) Unit velocity ratio - Predator and prey move at
similar speeds. The population is split: half uses Brownian motion (exploitation), half uses
Levy flight (exploration). This balances exploration and exploitation.

Phase 3 (iterations 2*Max_iter/3 to Max_iter) Low velocity ratio - The predator moves faster
than the prey. Levy flight is used for all agents, focusing on exploitation around the best
solution found.

Internal Parameters

The algorithm uses two internal parameters that are not exposed:

FADs Fish Aggregating Devices effect parameter, set to 0.2. Controls the probability of applying
the FADs effect which helps escape local optima.

P Prey movement probability, set to 0.5. Controls the step size scaling factor during position up-
dates.

Memory Mechanism

MPA implements a memory mechanism (Marine Memory) that preserves the best positions found
by each agent. If a new position has worse fitness than the previous one, the agent reverts to its
previous position.

Additional Arguments

The ... parameter currently accepts:

prefix A character string to prefix log messages. Defaults to empty string if not provided.

References

Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Algo-
rithm: A Nature-inspired Metaheuristic. Expert Systems with Applications, 152, 113377. doi:10.1016/
j.eswa.2020.113377

See Also

[get_function_details()] for benchmark functions, [levy()] for Levy flight implementation, [initial-
ize_population()] for population initialization.

https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1016/j.eswa.2020.113377

32 print.mpa_result

Examples

Basic usage with the Sphere function (F01)
result <- mpa(

SearchAgents_no = 25, Max_iter = 100, lb = -100, ub = 100,
dim = 30, fobj = F01

)
print(result)

Using different bounds per dimension
result2 <- mpa(

SearchAgents_no = 20, Max_iter = 50,
lb = c(-5, 0), ub = c(10, 15),
dim = 2, fobj = F17

)

Maximization example (negate the objective function)
maximize_f <- function(x) -sum(x^2)
result3 <- mpa(

SearchAgents_no = 20, Max_iter = 50,
lb = -10, ub = 10, dim = 5,
fobj = function(x) -maximize_f(x)

)
The actual maximum value is -result3$Top_predator_fit

print.mpa_result Print method for MPA results

Description

Prints a summary of the Marine Predators Algorithm optimization results.

Usage

S3 method for class 'mpa_result'
print(x, ...)

Arguments

x An object of class mpa_result returned by [mpa()].

... Additional arguments (currently unused).

Value

Invisibly returns the input object x.

test-functions 33

Examples

result <- mpa(SearchAgents_no = 10, Max_iter = 20, lb = -10, ub = 10,
dim = 5, fobj = F01)

print(result)

test-functions Test Functions for Optimization

Description

Collection of benchmark test functions for evaluating optimization algorithms. These functions are
commonly used in the literature to test the performance of metaheuristic optimization algorithms.

Details

The following test functions are implemented:
Unimodal Functions:

• F01 - Sphere function: Simple quadratic function with a single minimum at the origin. F01
• F02 - Sum of absolute values and products: Combines sum and product of absolute values.
F02

• F03 - Sum of squared terms: Sum of squared cumulative sums. F03
• F04 - Maximum absolute value: Returns the maximum absolute value in the vector. F04
• F05 - Rosenbrock function: Classic test function with a banana-shaped valley. F05
• F06 - Shifted sphere function: Sphere function shifted to (-0.5, -0.5, ...). F06
• F07 - Quartic function with noise: Quartic terms with added random noise. F07

Multimodal Functions:

• F08 - Schwefel function: Multimodal function with many local minima. F08
• F09 - Rastrigin function: Many local minima arranged in a regular pattern. F09
• F10 - Ackley function: Global minimum at origin with many local minima. F10
• F11 - Griewank function: Many local minima regularly distributed. F11
• F12 - Penalized function 1: Complex landscape with penalty terms. F12
• F13 - Penalized function 2: Different penalty terms creating complex landscape. F13
• F14 - Shekel’s Foxholes: 25 minima of different depths. F14
• F15 - Kowalik function: Multimodal function for testing optimization. F15
• F16 - Six-Hump Camel Back: Six local minima, two global. F16
• F17 - Branin function: Commonly used for testing optimization algorithms. F17
• F18 - Goldstein-Price function: Four local minima. F18
• F19 - Hartman 3D function: 3 dimensions with multiple local minima. F19
• F20 - Hartman 6D function: 6 dimensions with multiple local minima. F20
• F21 - Shekel 5 function: Based on Shekel’s family with 5 terms. F21
• F22 - Shekel 7 function: Based on Shekel’s family with 7 terms. F22
• F23 - Shekel 10 function: Based on Shekel’s family with 10 terms. F23

34 test-functions

References

Faramarzi, A., Heidarinejad, M., Mirjalili, S., & Gandomi, A. H. (2020). Marine Predators Al-
gorithm: A Nature-inspired Metaheuristic. Expert Systems with Applications, 113377. DOI:
10.1016/j.eswa.2020.113377

See Also

F01 through F23 for individual function documentation. get_function_details to retrieve func-
tion details programmatically.

Examples

Get details for a specific function
details <- get_function_details("F01")

Use a test function directly
F01(c(0, 0, 0)) # Returns 0 (global minimum)

List all available test functions
available_functions <- c("F01", "F02", "F03", "F04", "F05", "F06", "F07", "F08", "F09", "F10",

"F11", "F12", "F13", "F14", "F15", "F16", "F17", "F18", "F19", "F20",
"F21", "F22", "F23")

Index

∗ benchmark
test-functions, 33

∗ optimization
test-functions, 33

∗ testing
test-functions, 33

F01, 2, 33, 34
F02, 3, 33
F03, 4, 33
F04, 5, 33
F05, 7, 33
F06, 8, 33
F07, 9, 33
F08, 10, 33
F09, 11, 33
F10, 12, 33
F11, 13, 33
F12, 14, 33
F13, 15, 33
F14, 16, 33
F15, 17, 33
F16, 19, 33
F17, 20, 33
F18, 21, 33
F19, 22, 24, 33
F20, 23, 23, 33
F21, 24, 26, 27, 33
F22, 25, 25, 27, 33
F23, 25, 26, 26, 33, 34

get_function_details, 3–7, 9–19, 21–27,
27, 34

initialize_population, 28

levy, 28

mpa, 30

print.mpa_result, 32

test-functions, 33

Ufun, 14–16

35

	F01
	F02
	F03
	F04
	F05
	F06
	F07
	F08
	F09
	F10
	F11
	F12
	F13
	F14
	F15
	F16
	F17
	F18
	F19
	F20
	F21
	F22
	F23
	get_function_details
	initialize_population
	levy
	mpa
	print.mpa_result
	test-functions
	Index

