Package ‘mascarade’

January 12, 2026
Type Package

Title Generating Cluster Masks for Single-Cell Dimensional Reduction
Plots

Version 0.3.0

Description Implements a procedure to automatically generate 2D masks
for clusters on dimensional reduction plots from methods like
t-SNE (t-distributed stochastic neighbor embedding) or
UMAP (uniform manifold approximation and projection),
with a focus on single-cell RNA-sequencing data.

Imports data.table, spatstat.geom, spatstat.explore, lifecycle,
ggplot2, scales, polyclip, ggforce, vctrs, rlang, cli,
systemfonts

License MIT + file LICENSE
Encoding UTF-8

LazyData true
RoxygenNote 7.3.3
Depends R (>=3.5)

Suggests testthat (>= 3.0.0), rmarkdown, knitr, patchwork, ggnewscale,
ggsci, Seurat, SeuratObject

Config/testthat/edition 3
VignetteBuilder knitr

URL https://alserglab.github.io/mascarade/

BugReports https://github.com/alserglab/mascarade/issues
NeedsCompilation no

Author Alexey Sergushichev [aut, cre]

Maintainer Alexey Sergushichev <alsergbox@gmail.com>
Repository CRAN

Date/Publication 2026-01-12 20:20:02 UTC

https://alserglab.github.io/mascarade/
https://github.com/alserglab/mascarade/issues

2 fancyMask

Contents
exampleMascarade 2
fancyMask e 2
generateMask L. L e 4
generateMaskSeurat L. 5
geom_mark_shape L 6

Index 11

exampleMascarade Example data with UMAP points from PBMC3K dataset.
Description

The object is a list with three elements:

1. dims — matrix of UMAP coordinates of the cells,
2. clusters — vector of cell population annotations,

3. features — matrix withgene expression for several genes.

fancyMask Generate ggplot2 layers for a labeled cluster mask

Description

Convenience helper that returns a list of ggplot2 components that draws polygon-like outlines and
places cluster labels. The plotting limits are expanded (via 1imits.expand) to provide extra room
for labels.

Usage

fancyMask(
maskTable,
ratio = NULL,
limits.expand = ifelse(label, 0.1, 0.05),
linewidth = 1,
shape.expand = linewidth * unit(-1, "pt"),
label = TRUE,
label.fontsize = 10,
label.buffer = unit(@, "cm"),
label.fontface = "plain”,
label.margin = margin(2, 2, 2, 2, "pt")

fancyMask 3

Arguments
maskTable A data.frame of mask coordinates. The first two columns are interpreted as x/y
coordinates (in that order). Must contain at least the columns cluster (a factor)
and group (grouping identifier passed to geom_mark_shape()).
ratio Optional aspect ratio passed to ggplot2: : coord_cartesian(). Use 1 for equal

scaling. Default is NULL (no fixed ratio).

limits.expand Numeric scalar giving the fraction of the x/y range to expand on both sides when
setting plot limits. Default is @. 1 with labels and 0.05 with no labels.

linewidth Line width passed to geom_mark_shape () for the outline. Default is 1.

shape.expand Expansion or contraction applied to the marked shapes, passed to geom_mark_shape (expand
=...). Defaultis unit(-linewidth, "pt").

label Boolean flag wheter the labels should be displayed.

label.fontsize Label font size passed to geom_mark_shape(). Default is 10.

label.buffer Label buffer distance passed to geom_mark_shape (). Defaultisunit(@, "cm").
label.fontface Label font face passed to geom_mark_shape(). Default is "plain”.

label.margin Label margin passed to geom_mark_shape(). Default is margin(2, 2, 2, 2,
Hptll)-

Details

The first two columns of maskTable are used as x/y coordinates. Cluster labels are taken from
maskTable$cluster. Shapes are grouped by maskTable$group.

Value

A list of ggplot2 components suitable for adding to a plot with +, containing:

1. aggplot2::coord_cartesian() specification, and

2. a geom_mark_shape() layer.

See Also

* geom_mark_shape()

Examples

data("exampleMascarade")
maskTable <- generateMask(dims=exampleMascarade$dims,
clusters=exampleMascarade$clusters)

library(ggplot2)

ggplot(do.call(cbind, exampleMascarade)) +
geom_point(aes(x=UMAP_1, y=UMAP_2, color=GNLY)) +
fancyMask(maskTable, ratio=1) +
theme_classic()

generateMask

generateMask

Generate mask for clusters on 2D dimensional reduction plots

Description

Internally the function rasterizes and smoothes the density plots.

Usage

generateMask(

dims,
clusters,

gridSize =
expand = @
minDensity

00,
05,
1

ifecycle: :deprecated(),

smoothSigma = NA,

minSize = 10,

kernel = lifecycle::deprecated(),
type = lifecycle::deprecated()

Arguments

dims

clusters

gridSize

expand

minDensity

smoothSigma

minSize

kernel

type

Value

matrix of point coordinates. Rows are points, columns are dimensions. Only the
first two columns are used.

vector of cluster annotations. Should be the same length as the number of rows
in dims.

target width and height of the raster used internally

distance used to expand borders, represented as a fraction of sqrt(width*height).
Default: 1/200.

Deprecated. Doesn’t do anything.

Deprecated. Parameter controlling smoothing and joining close cells into groups,
represented as a fraction of sqrt(width*height). Increasing this parameter can
help dealing with sparse regions.

Groups of less than minSize points are ignored, unless it is the only group for a
cluster

Deprecated. Doesn’t do anything.
Deprecated. Doesn’t do anything.

data.table with points representing the mask borders. Each individual border line corresponds to a
single level of group column. Cluster assignment is in cluster column.

generateMaskSeurat 5

Examples

data("exampleMascarade")
maskTable <- generateMask(dims=exampleMascarade$dims,
clusters=exampleMascarade$clusters)
data <- data.frame(exampleMascarade$dims,
cluster=exampleMascarade$clusters,
exampleMascarade$features)
library(ggplot2)
ggplot(data, aes(x=UMAP_1, y=UMAP_2)) +
geom_point(aes(color=cluster)) +
geom_path(data=maskTable, aes(group=group)) +
coord_fixed() +
theme_classic()

generateMaskSeurat Generates mask from a Seurat object. Requires SeuratObject pack-

age.

Description

Generates mask from a Seurat object. Requires SeuratObject package.

Usage
generateMaskSeurat(
object,
reduction = NULL,
group.by = NULL,
gridSize = 200,
expand = 0.005,
minSize = 10
)
Arguments
object Seurat object
reduction character vector specifying which reduction to use (default: DefaultDimReduc(object))
group. by character vector specifying which field to use for clusters (default: "ident")
gridSize target width and height of the raster used internally
expand distance used to expand borders, represented as a fraction of sqrt(width*height).
Default: 1/200.
minSize Groups of less than minSize points are ignored, unless it is the only group for a
cluster
Value

data.table with points representing the mask borders. Each individual border line corresponds to a
single level of group column. Cluster assignment is in cluster column.

6 geom_mark_shape

Examples

only run if Seurat is installed
if (require(”Seurat”)) {
data("pbmc_small")
maskTable <- generateMaskSeurat(pbmc_small)

library(ggplot2)
not the best plot, see vignettes for better examples
DimPlot(pbmc_small) +

geom_path(data=maskTable, aes(x=tSNE_1, y=tSNE_2, group=group))

geom_mark_shape Annotate areas with polygonal shapes

Description

This geom lets you annotate sets of points via polygonal shapes. Unlike other ggforce: : geom_mark_x
functions, geom_mark_shape should be explicitly provided with the shape coordinates. As in
ggforce: :geom_shape, the polygon can be expanded/contracted and corners can be rounded,
which is controlled by expand and radius parameters.

Usage

geom_mark_shape(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity",
expand = 0,
radius = 0,
label.margin = margin(2, 2, 2, 2, "mm"),
label.width = NULL,
label.minwidth = unit(5@, "mm"),
label.hjust = 0,
label.fontsize = 12,
label.family = "",
label.lineheight = 1,
label.fontface = c("bold”, "plain”),
label.fill = "white”,
label.colour = "black”,
label.buffer = unit(10, "mm"),

con.colour = "black”,
con.size = 0.5,
con.type = "elbow",

con.linetype = 1,
con.border = "one",

geom_mark_shape

con.cap = unit(3, "mm"),

con.arrow

L

na.rm

NULL,

FALSE,

show.legend = NA,

inherit.aes

Arguments

mapping

data

stat

position

expand

radius

TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot ().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_x () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

* A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

* For more information and other ways to specify the position, see the layer
position documentation.

A numeric or unit vector of length one, specifying the expansion amount. Neg-
ative values will result in contraction instead. If the value is given as a numeric
it will be understood as a proportion of the plot area width.

As expand but specifying the corner radius.

label.margin
label.width
label.minwidth

label.hjust

label.fontsize

label.family

geom_mark_shape

The margin around the annotation boxes, given by a call to ggplot2: :margin().
A fixed width for the label. Set to NULL to let the text or 1abel .minwidth decide.

The minimum width to provide for the description. If the size of the label ex-
ceeds this, the description is allowed to fill as much as the label.

The horizontal justification for the annotation. If it contains two elements the
first will be used for the label and the second for the description.

The size of the text for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

The font family used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

label.lineheight

label.fontface

label.fill

label.colour

label.buffer

con.colour

con.size

con.type

con.linetype

con.border

con.cap

con.arrow

The height of a line as a multipler of the fontsize. If it contains two elements the
first will be used for the label and the second for the description.

The font face used for the annotation. If it contains two elements the first will
be used for the label and the second for the description.

The fill colour for the annotation box. Use "inherit” to use the fill from the
enclosure or "inherit_col” to use the border colour of the enclosure.

The text colour for the annotation. If it contains two elements the first will be
used for the label and the second for the description. Use "inherit” to use the
border colour of the enclosure or "inherit_fill"” to use the fill colour from
the enclosure.

The size of the region around the mark where labels cannot be placed.

The colour for the line connecting the annotation to the mark. Use "inherit"” to
use the border colour of the enclosure or "inherit_fill” to use the fill colour
from the enclosure.

The width of the connector. Use "inherit” to use the border width of the
enclosure.

n on

The type of the connector. Either "elbow"”, "straight”, or "none”.

The linetype of the connector. Use "inherit"” to use the border linetype of the
enclosure.

The bordertype of the connector. Either "one” (to draw a line on the horizontal
side closest to the mark), "all"” (to draw a border on all sides), or "none"” (not
going to explain that one).

The distance before the mark that the line should stop at.

An arrow specification for the connection using grid::arrow() for the end
pointing towards the mark.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

» Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the

geom_mark_shape 9

available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_*() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,

missing values are silently removed.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if

any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

Value

This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

A ggplot2 layer (ggplot2: : layer) that adds polygonal shape annotations to a plot.

Aesthetics

geom_mark_shape understand the following aesthetics (required aesthetics are in bold):

X
y

X0 (used to anchor the label)
yO0 (used to anchor the label)
filter

label

description

color

fill

group

size

linetype

alpha

10 geom_mark_shape

Annotation

All geom_mark_x allow you to put descriptive textboxes connected to the mark on the plot, using
the 1label and description aesthetics. The textboxes are automatically placed close to the mark,
but without obscuring any of the datapoints in the layer. The placement is dynamic so if you resize
the plot you’ll see that the annotation might move around as areas become big enough or too small
to fit the annotation. If there’s not enough space for the annotation without overlapping data it will
not get drawn. In these cases try resizing the plot, change the size of the annotation, or decrease the
buffer region around the marks.

Filtering

Often marks are used to draw attention to, or annotate specific features of the plot and it is thus not
desirable to have marks around everything. While it is possible to simply pre-filter the data used for
the mark layer, the geom_mark_* geoms also comes with a dedicated filter aesthetic that, if set,
will remove all rows where it evalutates to FALSE. There are multiple benefits of using this instead
of prefiltering. First, you don’t have to change your data source, making your code more adaptable
for exploration. Second, the data removed by the filter aesthetic is remembered by the geom, and
any annotation will take care not to overlap with the removed data.

Examples

library(ggplot2)
shapel <- data.frame(
x =c(o, 3, 3, 2, 2,1, 1, 0,
y =c(o, o0, 3, 3, 1, 1, 3, 3),
label="bracket”
)
shape2 <- data.frame(
x = c(0, 3, 3, 0)+4,
y = c(o, 0, 3, 3),
label="square"
)
shape3 <- data.frame(
x = c(0, 1.5, 3, 1.5)+8,
y = c(1.5, o, 1.5, 3),
label="diamond"
)

ggplot(rbind(shapel, shape2, shape3), aes(x=x, y=y, label=label, color=label, fill=label)) +
geom_mark_shape() +
ylim(@, 5)

Index

* mark geoms
geom_mark_shape, 6

aes(), 7
borders(), 9
exampleMascarade, 2

fancyMask, 2
fortify(),7

generateMask, 4
generateMaskSeurat, 5
geom_mark_shape, 6
ggplot(), 7
ggplot2::margin(), 8
grid::arrow(), 8

key glyphs, 9
layer position, 7

layer stat, 7”7
layer(), 8, 9

11

	exampleMascarade
	fancyMask
	generateMask
	generateMaskSeurat
	geom_mark_shape
	Index

