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mosclust-package Model order selection for clustering

Description

The mosclust R package (that stands for model order selection for clustering problems) implements
a set of functions to discover significant structures in bio-molecular data. Using multiple perturba-
tions of the data the stability of clustering solutions is assessed. Different perturbations may be
used: resampling techniques, random projections and noise injection. Stability measures for the
estimate of clustering solutions and statistical tests to assess their significance are provided.

Details

Package: mosclust
Type: Package
Version: 1.0.2
Date: 2006-09-08
License: GPL (>= 2)
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Recently, several methods based on the concept of stability have been proposed to estimate the
"optimal" number of clusters in complex bio-molecular data. In this conceptual framework multi-
ple clusterings are obtained by introducing perturbations into the original data, and a clustering is
considered reliable if it is approximately maintained across multiple perturbations.

Several perturbation techniques have been proposed, ranging form bootstrap techniques, to random
projections to lower dimensional subspaces to noise injection procedures. All these perturbation
techniques are implemented in mosclust.

The library implements indices of stability/reliability of the clusterings based on the distribution of
similarity measures between multiple instances of clusterings performed on multiple instances of
data obtained through a given random perturbation of the original data.

These indices provides a "score" that can be used to compare the reliability of different clusterings.
Moreover statistical tests based on χ2 and on the classical Bernstein inequality are implemented in
order to assess the statistical significance of the discovered clustering solutions. By this approach
we could also find multiple structures simultaneously present in the data. For instance, it is possible
that data exhibit a hierarchial structure, with subclusters inside other clusters, and using the indices
and the statistical tests implemented in mosclust we may detect them at a given significance level.

Summarizing, this package may be used for:

• Assessment of the reliability of a given clustering solution

• Clustering model order selection: what about the "natural" number of clusters inside the data?

• Assessment of the statistical significance of a given clustering solution

• Discovery of multiple structures underlying the data: are there multiple reliable clustering
solutions at a given significance level?

The statistical tests implemented in the package have been designed with the theoretical and method-
ological contribution of Alberto Bertoni (DSI, Università degli Studi di Milano).

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References
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Nature, 406:536–540, 2000.
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clusters in a dataset, Genome Biology, 3(7): 1-21, 2002.

Kerr M.K. and Curchill G.A.,Bootstrapping cluster analysis: assessing the reliability of conclusions
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See Also

clusterv

Bernstein.compute.pvalues

Function to compute the stability indices and the p-values associated
to a set of clusterings according to Bernstein inequality.

Description

For a given similarity matrix a list of stability indices, sorted by descending order, from the most
significant clustering to the least significant is given, and the corresponding p-values, computed
according to a Bernstein inequality based test are provided.

Usage

Bernstein.compute.pvalues(sim.matrix)

Bernstein.ind.compute.pvalues(sim.matrix)

Arguments

sim.matrix a matrix that stores the similarity between pairs of clustering across multiple
number of clusters and multiple clusterings. Rows correspond to the different
clusterings; columns to the n repeated clusterings for each number of clusters.
Row 1 corresponds to a 2-clustering, row 2 to a 3-clustering, ... row m to a m+1
clustering.
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Details

The stability index for a given clustering is computed as the mean of the similarity indices between
pairs of k-clusterings obtained from the perturbed data. The similarity matrix given as input can be
obtained from the functions do.similarity.resampling, do.similarity.projection, do.similarity.noise.
A list of p-values, sorted by descending order, from the most significant clustering to the least signif-
icant is given according to a test based on Bernstein inequality. The test is based on the distribution
of the similarity measures between pairs of clustering performed on perturbed data, but differently
from the chi-square based test (see Chi.square.compute.pvalues), no assumptions are made
about the "a priori" distribution of the similarity measures. The function Bernstein.ind.compute.pvalues
assumes also that the the random variables represented by the means of the similarities between
pairs of clusterings are independent, while, on the contrary, the function Bernstein.compute.pvalues
no assumptions are made. Low p-value mean that there is a significant difference between the top
sorted and the given clustering. Please, see the papers cited in the reference section for more tech-
nical details.

Value

a list with 4 components:

ordered.clusterings

a vector with the number of clusters ordered from the most significant to the
least significant

p.value a vector with the corresponding p-values computed according to Bernstein in-
equality and Bonferroni correction in descending order (their values correspond
to the clusterings of the vector ordered.clusterings)

means vector with the mean similarity for each clustering

variance vector with the variance of the similarity for each clustering

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

W. Hoeffding, Probability inequalities for sums of independent random variables, J. Amer. Statist.
Assoc. vol.58 pp. 13-30, 1963.

A.Bertoni, G. Valentini, Discovering significant structures in clustered data through Bernstein in-
equality, CISI ’06, Conferenza Italiana Sistemi Intelligenti, Ancona, Italia, 2006.

See Also

Chi.square.compute.pvalues, Hypothesis.testing,

do.similarity.resampling, do.similarity.projection, do.similarity.noise
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Examples

library("clusterv")
# Computation of the p-values according to Bernstein inequality using
# resampling techniques and a hierarchical clustering algorithm
M <- generate.sample.h2 (n=20, l=10, Delta.h=4, Delta.v=2, sd=0.15);
S.HC <- do.similarity.resampling (M, c=15, nsub=20, f=0.8, s=sFM,

alg.clust.sim=Hierarchical.sim.resampling);
# Bernstein test with no assumption of independence
Bernstein.compute.pvalues(S.HC)
# Bernstein test with assumption of independence
Bernstein.ind.compute.pvalues(S.HC)

Bernstein.p.value Function to compute the p-value according to Bernstein inequality.

Description

The Bernstein inequality gives an upper bound to the probability that the means of two random vari-
ables differ by chance, considering also their variance. This function implements the Berstein in-
equality and it is used by the functions Bernstein.compute.pvalues and Bernstein.ind.compute.pvalues

Usage

Bernstein.p.value(n, Delta, v)

Arguments

n number of observations of the random variable

Delta difference between the means

v variance of the random variable

Value

a real number that provides an upper bound to the probability that the two means differ by chance

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

W. Hoeffding, Probability inequalities for sums of independent random variables, J. Amer. Statist.
Assoc. vol.58 pp. 13-30, 1963.

See Also

Bernstein.compute.pvalues, Bernstein.ind.compute.pvalues
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Examples

# Computation of the upper bounds to the probability that the two means differ by chance
Bernstein.p.value(n=100, Delta=0.1, v=0.01)
Bernstein.p.value(n=100, Delta=0.05, v=0.01)
Bernstein.p.value(n=100, Delta=0.05, v=0.1)
Bernstein.p.value(n=1000, Delta=0.05, v=0.1)

Chi.square.compute.pvalues

Function to compute the stability indices and the p-values associated
to a set of clusterings according to the chi-square test between multiple
proportions.

Description

For a given similarity matrix a list of stability indices, sorted by descending order, from the most
significant clustering to the least significant is given. Moreover the corresponding p-values, com-
puted according to a chi-square based test are provided.

Usage

Chi.square.compute.pvalues(sim.matrix, s0 = 0.9)

Arguments

sim.matrix a matrix that stores the similarity between pairs of clustering across multiple
number of clusters and multiple clusterings. Rows correspond to the different
clusterings; columns to the n repeated clusterings for each number of clusters.
Row 1 corresponds to a 2-clustering, row 2 to a 3-clustering, ... row m to a m+1
clustering.

s0 threshold for the similarity value (default 0.9)

Details

The stability index for a given clustering is computed as the mean of the similarity indices between
pairs of k-clusterings obtained from the perturbed data. The similarity matrix given as input can be
obtained from the functions do.similarity.resampling, do.similarity.projection, do.similarity.noise.
For each k-clustering the proportion of pairs of perturbed clusterings having similarity indices larger
than a given threshold (the parameter s0) is computed. The p-values are obtained according the chi-
square test between multiple proportions (each proportion corresponds to a different k-clustering).
A low p-value means that there is a significant difference between the top sorted and the given
k-clustering.
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Value

a data frame with 4 components:

ordered.clusterings

a vector with the number of clusters ordered from the most significant to the
least significant

p.value a vector with the corresponding p-values computed according to chi-square test
between multiple proportions in descending order (their values correspond to
the clusterings of the vector ordered.clusterings)

means vector with the stability index (mean similarity) for each k-clustering

variance vector with the variance of the similarity for each k-clustering

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

A.Bertoni, G. Valentini, Model order selection for clustered bio-molecular data, In: Probabilistic
Modeling and Machine Learning in Structural and Systems Biology, J. Rousu, S. Kaski and E.
Ukkonen (Eds.), Tuusula, Finland, 17-18 June, 2006

See Also

Bernstein.compute.pvalues, Hypothesis.testing,

do.similarity.resampling, do.similarity.projection, do.similarity.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=10, m=15, dim=800, d=3, s=0.2)
nsubsamples <- 10; # number of pairs of clusterings to be evaluated
max.num.clust <- 6; # maximum number of cluster to be evaluated
fract.resampled <- 0.8; # fraction of samples to subsampled
# building a similarity matrix using resampling methods, considering clusterings
# from 2 to 10 clusters with the k-means algorithm
Sr.Kmeans.sample6 <- do.similarity.resampling(M, c=max.num.clust, nsub=nsubsamples,

f=fract.resampled, s=sFM, alg.clust.sim=Kmeans.sim.resampling);
# computing p-values according to the chi square-based test
dr.Kmeans.sample6 <- Chi.square.compute.pvalues(Sr.Kmeans.sample6);
# the same, using noise to perturbate the data and hierarchical clustering algorithm
Sn.HC.sample6 <- do.similarity.noise(M, c=max.num.clust, nnoisy=nsubsamples, perc=0.5,

s=sFM, alg.clust.sim=Hierarchical.sim.noise);
dn.HC.sample6 <- Chi.square.compute.pvalues(Sn.HC.sample6);
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Compute.Chi.sq Function to evaluate if a set of similarity distributions significantly
differ using the chi square test.

Description

The set of similarity values for a specific value of k (number of clusters) are subdivided in two
groups choosing a threshold for the similarity value (default 0.9). Then different sets are compared
using the chi squared test for multiple proportions. The number of degrees of freedom are equal to
the number of the different sets minus 1. This function is iteratively used by Chi.square.compute.pvalues.

Usage

Compute.Chi.sq(M, s0 = 0.9)

Arguments

M matrix representing the similarity values for different number of clusters. Each
row represents similarity values for a number of clusters. Number of rows ==>
how many numbers of clusters are considered; number of columns ==> cardi-
nality of the similarity values for a given number of clusters

s0 threshold for the similarity value (default 0.9)

Value

p-value (type I error) associated with the null hypothesis (no difference between the considered set
of k-clusterings)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

A.Bertoni, G. Valentini, Model order selection for clustered bio-molecular data, In: Probabilistic
Modeling and Machine Learning in Structural and Systems Biology, J. Rousu, S. Kaski and E.
Ukkonen (Eds.), Tuusula, Finland, 17-18 June, 2006

See Also

Chi.square.compute.pvalues
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Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=10, m=15, dim=800, d=3, s=0.2)
# computing the similarity matrix using random projections and hierarchcial clustering
Sim <- do.similarity.projection(M, c=6, nprojections=20, dim=JL.predict.dim(60,epsilon=0.2))
# Evaluating the p-value for the group of the 5 clusterings (from 2 to 6 clusters)
Compute.Chi.sq(Sim)
# the same, considering only the clusterings wih 2 and 6 clusters:
Compute.Chi.sq(Sim[c(1,5),])

compute.cumulative.multiple

Function to compute the empirical cumulative distribution function
(ECDF) of the similarity measures.

Description

The function compute.cumulative.multiple computes the empirical cumulative distribution func-
tion (ECDF) of the similarity measures for different number of clusters between clusterings. The
function cumulative.values returns the values of the empirical cumulative distribution

Usage

compute.cumulative.multiple(sim.matrix)

cumulative.values(Fun)

Arguments

sim.matrix a matrix that stores the similarity between pairs of clustering across multiple
number of clusters and multiple clusterings. Each row corresponds to a differ-
ent number of clusters; number of columns equal to the number of subsamples
considered for each number of clusters.

Fun Function of class ecdf that stores the discrete values of the cumulative distribu-
tion

Value

Function compute.cumulative.multiple: a list of function of class ecdf.

Function cumulative.values: a list with two elements: the "x" element stores a vector with the
values of the random variable for which the cumulative distribution needs to be computed; the "y"
element stores a vector with the corresponding values of the cumulative distribution (i.e. y = F(x)).

Author(s)

Giorgio Valentini <valentini@di.unimi.it>
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See Also

plot_cumulative.multiple

Examples

library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=1000, d=3, s=0.2);
# generation of multiple similarity measures by resampling
Sr.kmeans.sample6 <- do.similarity.resampling(M, c=10, nsub=20, f=0.8, s=sFM,

alg.clust.sim=Kmeans.sim.resampling);
# computation of multiple ecdf (from 2 to 10 clusters)
list.F <- compute.cumulative.multiple(Sr.kmeans.sample6);
# values of the ecdf for 8 clusters
l <- cumulative.values(list.F[[7]])

compute.integral Functions to compute the integral of the ecdf of the similarity values

Description

The function compute.integral computes the integral of the ecdf form the function of class
ecdf that stores the discrete values of the empirical cumulative distribution, while the function
compute.integral.from.similarity computes the integral of the ecdf exploiting then empiri-
cal mean of the similarity values (see the paper cited in the reference section for details).

Usage

compute.integral(Fun, subdivisions = 1000)

compute.integral.from.similarity(sim.matrix)

Arguments

Fun Function of class ecdf that stores the discrete values of the empirical cumulative
distribution

subdivisions maximum number of subintervals used by the integration process

sim.matrix a matrix that stores the similarity between pairs of clustering across multiple
number of clusters and multiple clusterings performed on subsamples of the
original data. Number or rows equal to the different numbers of clusters con-
sidered; number of columns equal to the number of subsamples considered for
each number of clusters.

Value

The function compute.integral returns the value of the estimate integral.

The function compute.integral.from.similarity returns a vector of the values of the estimate
integrals (one for each row of sim.matrix).
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Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

A.Bertoni, G. Valentini, Discovering significant structures in clustered data through Bernstein in-
equality, CISI ’06, Conferenza Italiana Sistemi Intelligenti, Ancona, Italia, 2006.

Examples

library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=1000, d=3, s=0.2);
# generation of multiple similarity measures by resampling
Sr.kmeans.sample6 <- do.similarity.resampling(M, c=10, nsub=20, f=0.8, s=sFM,

alg.clust.sim=Kmeans.sim.resampling);
# computation of multiple ecdf (from 2 to 10 clusters)
list.F <- compute.cumulative.multiple(Sr.kmeans.sample6);
# computation of the integral of the ecdf with 2 clusters
compute.integral(list.F[[1]])
# computation of the integral of the ecdf with 8 clusters
compute.integral(list.F[[7]])
# computation of the integral of the ecdfs from 2 to 10 clusters
compute.integral.from.similarity(Sr.kmeans.sample6)

Do.boolean.membership.matrix

Function to compute and build up a pairwise boolean membership
matrix.

Description

It computes the pairwise membership matrix for a given clustering. The number of rows is equal to
the number of columns (the number of examples). The element mij is set to 1 if the examples i and
j belong to the same cluster, otherwise to 0. This function may be used also with clusterings that do
not define strictly a partition of the data and using diferent number of clusters for each clustering.

Usage

Do.boolean.membership.matrix(cl, dim.M, examplelabels)

Arguments

cl a clustering (list of vectors defining a clustering)

dim.M dimension of the similarity matrix (number of examples)

examplelabels labels of the examples drawn from the original data
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Value

the pairwise boolean membership square matrix.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

Examples

library("clusterv")
library("stats")
# Synthetic data set generation (3 clusters with 20 examples for each cluster)
M <- generate.sample3(n=20, m=2)
# k-means clustering with 3 clusters
r<-kmeans(t(M), c=3, iter.max = 1000);
# this function is implemented in the clusterv package:
cl <- Transform.vector.to.list(r$cluster);
# generation of boolean membership square matrix:
B <- Do.boolean.membership.matrix(cl, 60, 1:60)

do.similarity.noise Function that computes sets of similarity indices using injection of
gaussian noise.

Description

This function may use different clustering algorithms and different similarity measures to compute
similarity indices. Injection of gaussian noise is applied to perturb the data. The gaussian noise
added to the data has 0 mean and the standard deviation is estimated from the data (it is set to
a given percentile value of the standard deviations computed for each variable). More precisely
pairs of data sets are perturbed with noise and then are clustered and the resulting clusterings are
compared using similarity indices between pairs of clusterings (e.g. Rand Index, Jaccard or Fowlkes
and Mallows indices). These indices are computed multiple times for different number of clusters.

Usage

do.similarity.noise(X, c = 2, nnoisy = 100, perc = 0.5, seed = 100, s = sFM,
alg.clust.sim = Hierarchical.sim.noise, distance = "euclidean", hmethod = "ward.D")

Arguments

X matrix of data (variables are rows, examples columns)

c if it is a vector of length 1, number of clusters from 2 to c are considered; other-
wise are considered the number of clusters stored in the vector c.

nnoisy number of pairs of noisy data

perc percentile of the standard deviations to be used for the added gaussian noise
(default: median)
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seed numerical seed for the random generator

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

alg.clust.sim method that computes the similarity indices using subsampling techniques and
a specific clustering algorithm. It may be one of the following: - Hierarchi-
cal.sim.resampling (hierarchical clustering algorithm, default) - Kmeans.sim.resampling
(c - mean algorithm) - PAM.sim.resampling (Prediction Around Medoid algo-
rithm) - Fuzzy.kmeans.sim.resampling (Fuzzy c-mean)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod the agglomeration method to be used. This parameter is used only by the hier-
archical clustering algorithm. This should be one of the following: "ward.D",
"single", "complete", "average", "mcquitty", "median" or "centroid", according
of the hclust method of the package stats.

Value

a matrix that stores the similarity between pairs of clustering across multiple number of clusters
and multiple clusterings performed on subsamples of the original data. Number of rows equal
to the length of c (number of clusters); number of columns equal to nsub, that is the number of
subsamples considered for each number of clusters.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

McShane, L.M., Radmacher, D., Freidlin, B., Yu, R., Li, M.C. and Simon, R., Method for assess-
ing reproducibility of clustering patterns observed in analyses of microarray data, Bioinformatics,
11(8), pp. 1462-1469, 2002.

See Also

do.similarity.projection, do.similarity.resampling

Examples

library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing similarity indices with the fuzzy c-mean algorithm
Sn.Fuzzy.kmeans.sample6 <- do.similarity.noise(M, c=8, nnoisy=30, perc=0.5, s=sFM,

alg.clust.sim=Fuzzy.kmeans.sim.noise);
# computing similarity indices using the c-mean algorithm
Sn.Fuzzy.kmeans.sample6 <- do.similarity.noise(M, c=8, nnoisy=30, perc=0.5, s=sFM,

alg.clust.sim=Fuzzy.kmeans.sim.noise);
# computing similarity indices using the hierarchical clustering algorithm
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Sn.HC.sample6 <- do.similarity.noise(M, c=8, nnoisy=30, perc=0.5, s=sFM,
alg.clust.sim=Hierarchical.sim.noise);

do.similarity.projection

Function that computes sets of similarity indices using randomized
maps.

Description

This function may use different clustering algorithms and different similarity measures to compute
similarity indices. Random projections techniques are applied to perturb the data. More precisely
pairs of data sets are projected into lower dimensional subspaces using randomized maps, and then
are clustered and the resulting clusterings are compared using similarity indices between pairs of
clusterings (e.g. Rand Index, Jaccard or Fowlkes and Mallows indices). These indices are computed
multiple times for different number of clusters.

Usage

do.similarity.projection(X, c = 2, nprojections = 100, dim = 2, pmethod = "PMO",
scale = TRUE, seed = 100, s = sFM, alg.clust.sim = Hierarchical.sim.projection,
distance = "euclidean", hmethod = "ward.D")

Arguments

X matrix of data (variables are rows, examples columns)

c if it is a vector of length 1, number of clusters from 2 to c are considered; other-
wise are considered the number of clusters stored in the vector c.

nprojections number of pairs of projected data

dim dimension of the projected data

pmethod pmethod : projection method. It must be one of the following: "RS" (ran-
dom subspace projection) "PMO" (Plus Minus One random projection) (default)
"Norm" (normal random projection) "Achlioptas" (Achlioptas random projec-
tion)

scale if TRUE randomized projections are scaled (default)

seed numerical seed for the random generator

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

alg.clust.sim method that computes the similarity indices using subsampling techniques and
a specific clustering algorithm. It may be one of the following: - Hierarchi-
cal.sim.resampling (hierarchical clustering algorithm, default) - Kmeans.sim.resampling
(c - mean algorithm) - PAM.sim.resampling (Prediction Around Medoid algo-
rithm) - Fuzzy.kmeans.sim.resampling (Fuzzy c-mean)
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distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod the agglomeration method to be used. This parameter is used only by the hier-
archical clustering algorithm. This should be one of the following: "ward.D",
"single", "complete", "average", "mcquitty", "median" or "centroid", according
of the hclust method of the package stats.

Value

a matrix that stores the similarity between pairs of clustering across multiple number of clusters
and multiple clusterings performed on subsamples of the original data. Number of rows equal
to the length of c (number of clusters); number of columns equal to nsub, that is the number of
subsamples considered for each number of clusters.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

A.Bertoni, G. Valentini, Randomized maps for assessing the reliability of patients clusters in DNA
microarray data analyses, Artificial Intelligence in Medicine 37(2):85-109 2006

See Also

do.similarity.resampling, do.similarity.noise

Examples

library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing similarity indices with the fuzzy c-mean algorithm
Sp.fuzzy.kmeans.sample6 <- do.similarity.projection(M, c=8, nprojections=30,
dim=JL.predict.dim(120,0.2), pmethod="PMO", alg.clust.sim=Fuzzy.kmeans.sim.projection);

# computing similarity indices using the c-mean algorithm
Sp.kmeans.sample6 <- do.similarity.projection(M, c=8, nprojections=30,

dim=JL.predict.dim(120,0.2), pmethod="PMO", alg.clust.sim=Kmeans.sim.projection);
# computing similarity indices using the hierarchical clustering algorithm
Sp.HC.sample6 <- do.similarity.projection(M, c=8, nprojections=30,
dim=JL.predict.dim(120,0.2), pmethod="PMO", alg.clust.sim=Hierarchical.sim.projection);
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do.similarity.resampling

Function that computes sets of similarity indices using resampling
techniques.

Description

This function may use different clustering algorithms and different similarity measures to compute
similarity indices. Subsampling techniques are applied to perturb the data. More precisely pairs
of data sets are sampled according to an uniform distribution without replacement and then are
clustered and the resulting clusterings are compared using similarity indices between pairs of clus-
terings (e.g. Rand Index, Jaccard or Fowlkes and Mallows indices). These indices are computed
multiple times for different number of clusters.

Usage

do.similarity.resampling(X, c = 2, nsub = 100, f = 0.8, s = sFM,
alg.clust.sim = Hierarchical.sim.resampling, distance = "euclidean", hmethod = "ward.D")

Arguments

X matrix of data (variables are rows, examples columns)
c if it is a vector of length 1, number of clusters from 2 to c are considered; other-

wise are considered the number of clusters stored in the vector c.
nsub number of pairs of subsamples
f fraction of the data resampled without replacement
s similarity function to be used. It may be one of the following: - sFM (Fowlkes

and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

alg.clust.sim method that computes the similarity indices using subsampling techniques and
a specific clustering algorithm. It may be one of the following: - Hierarchi-
cal.sim.resampling (hierarchical clustering algorithm, default) - Kmeans.sim.resampling
(c - mean algorithm) - PAM.sim.resampling (Prediction Around Medoid algo-
rithm) - Fuzzy.kmeans.sim.resampling (Fuzzy c-mean)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod the agglomeration method to be used. This parameter is used only by the hier-
archical clustering algorithm. This should be one of the following: "ward.D",
"single", "complete", "average", "mcquitty", "median" or "centroid", according
of the hclust method of the package stats.

Value

a matrix that stores the similarity between pairs of clustering across multiple number of clusters
and multiple clusterings performed on subsamples of the original data. Number of rows equal
to the length of c (number of clusters); number of columns equal to nsub, that is the number of
subsamples considered for each number of clusters.
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Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

Ben-Hur, A. Ellisseeff, A. and Guyon, I., A stability based method for discovering structure in
clustered data, In: "Pacific Symposium on Biocomputing", Altman, R.B. et al (eds.), pp, 6-17,
2002.

See Also

do.similarity.projection, do.similarity.noise

Examples

library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing similarity indices with the fuzzy c-mean algorithm
Sr.Fuzzy.kmeans.sample6 <- do.similarity.resampling(M, c=8, nsub=30, f=0.8, s=sFM,

alg.clust.sim=Fuzzy.kmeans.sim.resampling);
# computing similarity indices using the c-mean algorithm
Sr.Kmeans.sample6 <- do.similarity.resampling(M, c=8, nsub=30, f=0.8, s=sFM,

alg.clust.sim=Kmeans.sim.resampling)
# computing similarity indices using the hierarchical clustering algorithm
Sr.HC.sample6 <- do.similarity.resampling(M, c=8, nsub=30, f=0.8, s=sFM);

Fuzzy.kmeans.sim.noise

Function to compute similarity indices using noise injection tech-
niques and fuzzy c-mean clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with random noise is com-
puted for a given number of clusters. The variance of the added gaussian noise, estimated from the
data as the perc percentile of the standard deviations of the input variables, the percentile itself and
the similarity measure can be selected.

Usage

Fuzzy.kmeans.sim.noise(X, c = 2, nnoisy = 100, perc = 0.5, s = sFM,
distance = "euclidean", hmethod = NULL)
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Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nnoisy number of pairs of noisy data

perc percentile of the standard deviations to be used for the added gaussian noise
(def. 0.5)

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod parameter used for internal compatibility.

Value

vector of the computed similarity measures (length equal to nnoisy)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Fuzzy.kmeans.sim.projection, Fuzzy.kmeans.sim.resampling, perturb.by.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- Fuzzy.kmeans.sim.noise(M, c = 2, nnoisy = 20, s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- Fuzzy.kmeans.sim.noise(M, c = 3, nnoisy = 20, s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- Fuzzy.kmeans.sim.noise(M, c = 2, nnoisy = 20, s = sJaccard)
# 2 clusters using 0.95 percentile (more noise)
v095 <- Fuzzy.kmeans.sim.noise(M, c = 2, nnoisy = 20, s = sFM, perc=0.95)
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Fuzzy.kmeans.sim.projection

Function to compute similarity indices using random projections and
fuzzy c-mean clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with random projections
is computed for a given number of clusters. The dimension of the projected data, the type of
randomized map and the similarity measure may be selected.

Usage

Fuzzy.kmeans.sim.projection(X, c = 2, nprojections = 100, dim = 2, pmethod = "PMO",
scale = TRUE, seed = 100, s = sFM, distance = "euclidean", hmethod = NULL)

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nprojections number of pairs of projected data

dim dimension of the projected data

pmethod projection method. It must be one of the following: - "RS" (random subspace
projection) - "PMO" (Plus Minus One random projection) - "Norm" (normal
random projection) - "Achlioptas" (Achlioptas random projection)

scale if TRUE randomized projections are scaled (default)

seed numerical seed for the random generator

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod parameter used for internal compatibility.

Value

vector of the computed similarity measures (length equal to nprojections)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Fuzzy.kmeans.sim.resampling, Fuzzy.kmeans.sim.noise
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Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- Fuzzy.kmeans.sim.projection(M, c = 2, nprojections = 20, dim = 200,

pmethod = "PMO", s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- Fuzzy.kmeans.sim.projection(M, c = 3, nprojections = 20, dim = 200,

pmethod = "PMO", s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- Fuzzy.kmeans.sim.projection(M, c = 2, nprojections = 20, dim = 200,

pmethod = "PMO", s = sJaccard)

Fuzzy.kmeans.sim.resampling

Function to compute similarity indices using resampling techniques
and fuzzy c-mean clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with resampling techniques
is computed for a given number of clusters, using the fuzzy c-mean algorithm. The fraction of the
resampled data (without replacement) and the similarity measure can be selected.

Usage

Fuzzy.kmeans.sim.resampling(X, c = 2, nsub = 100, f = 0.8, s = sFM,
distance = "euclidean", hmethod = NULL)

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nsub number of subsamples

f fraction of the data resampled without replacement

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod parameter used for internal compatibility.

Value

vector of the computed similarity measures (length equal to nsub)
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Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Fuzzy.kmeans.sim.projection, Fuzzy.kmeans.sim.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- Fuzzy.kmeans.sim.resampling(M, c = 2, nsub = 20, f = 0.8, s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- Fuzzy.kmeans.sim.resampling(M, c = 3, nsub = 20, f = 0.8, s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- Fuzzy.kmeans.sim.resampling(M, c = 2, nsub = 20, f = 0.8, s = sJaccard)

Hierarchical.sim.noise

Function to compute similarity indices using noise injection tech-
niques and hierarchical clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with random noise is com-
puted for a given number of clusters. The variance of the added gaussian noise, estimated from the
data as the perc percentile of the standard deviations of the input variables, the percentile itself, the
similarity measure and the type of hierarchical clustering may be selected.

Usage

Hierarchical.sim.noise(X, c = 2, nnoisy = 100, perc = 0.5, s = sFM,
distance = "euclidean", hmethod = "ward.D")

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nnoisy number of pairs of noisy data

perc percentile of the standard deviations to be used for the added gaussian noise
(def. 0.5)

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)
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distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod the agglomeration method to be used. This parameter is used only by the hier-
archical clustering algorithm. This should be one of the following: "ward.D",
"single", "complete", "average", "mcquitty", "median" or "centroid", according
of the hclust method of the package stats.

Value

vector of the computed similarity measures (length equal to nnoisy)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Hierarchical.sim.projection, Hierarchical.sim.resampling, perturb.by.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- Hierarchical.sim.noise(M, c = 2, nnoisy = 20, s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- Hierarchical.sim.noise(M, c = 3, nnoisy = 20, s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- Hierarchical.sim.noise(M, c = 2, nnoisy = 20, s = sJaccard)
# 2 clusters using the Jaccard index and Pearson correlation
v2JP <- Hierarchical.sim.noise(M, c = 2, nnoisy = 20, s = sJaccard, distance="pearson")
# 2 clusters using 0.95 percentile (more noise)
v095 <- Hierarchical.sim.noise(M, c = 2, nnoisy = 20, s = sFM, perc=0.95)

Hierarchical.sim.projection

Function to compute similarity indices using random projections and
hierarchical clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with random projections
is computed for a given number of clusters. The dimension of the projected data, the type of
randomized map, the similarity measure and the type of hierarchical clustering may be selected.
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Usage

Hierarchical.sim.projection(X, c = 2, nprojections = 100, dim = 2, pmethod = "RS",
scale = TRUE, seed = 100, s = sFM, distance = "euclidean", hmethod = "ward.D")

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nprojections number of pairs of projected data

dim dimension of the projected data

pmethod projection method. It must be one of the following: - "RS" (random subspace
projection) - "PMO" (Plus Minus One random projection) - "Norm" (normal
random projection) - "Achlioptas" (Achlioptas random projection)

scale if TRUE randomized projections are scaled (default)

seed numerical seed for the random generator

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod the agglomeration method to be used. This parameter is used only by the hier-
archical clustering algorithm. This should be one of the following: "ward.D",
"single", "complete", "average", "mcquitty", "median" or "centroid", according
of the hclust method of the package stats.

Value

vector of the computed similarity measures (length equal to nprojections)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Hierarchical.sim.resampling, Hierarchical.sim.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- Hierarchical.sim.projection(M, c = 2, nprojections = 20, dim = 200,

pmethod = "PMO", s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- Hierarchical.sim.projection(M, c = 3, nprojections = 20, dim = 200,
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pmethod = "PMO", s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- Hierarchical.sim.projection(M, c = 2, nprojections = 20, dim = 200,

pmethod = "PMO", s = sJaccard)
# 2 clusters using the Jaccard index and Pearson correlation
v2JP <- Hierarchical.sim.projection(M, c = 2, nprojections = 20, dim = 200,

pmethod = "PMO", s = sJaccard, distance="pearson")

Hierarchical.sim.resampling

Function to compute similarity indices using resampling techniques
and hierarchical clustering.

Description

Function to compute similarity indices using resampling techniques and hierarchical clustering. A
vector of similarity measures between pairs of clusterings perturbed with resampling techniques is
computed for a given number of clusters. The fraction of the resampled data (without replacement),
the similarity measure and the type of hierarchical clustering may be selected.

Usage

Hierarchical.sim.resampling(X, c = 2, nsub = 100, f = 0.8, s = sFM,
distance = "euclidean", hmethod = "ward.D")

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nsub number of subsamples

f fraction of the data resampled without replacement

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod the agglomeration method to be used. This parameter is used only by the hier-
archical clustering algorithm. This should be one of the following: "ward.D",
"single", "complete", "average", "mcquitty", "median" or "centroid", according
of the hclust method of the package stats.

Value

vector of the computed similarity measures (length equal to nsub)
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Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Hierarchical.sim.projection, Hierarchical.sim.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- Hierarchical.sim.resampling(M, c = 2, nsub = 20, f = 0.8, s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- Hierarchical.sim.resampling(M, c = 3, nsub = 20, f = 0.8, s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- Hierarchical.sim.resampling(M, c = 2, nsub = 20, f = 0.8, s = sJaccard)
# 2 clusters using the Jaccard index and Pearson correlation
v2JP <- Hierarchical.sim.resampling(M, c = 2, nsub = 20, f = 0.8, s = sJaccard,

distance="pearson")

Hybrid.testing Statistical test based on stability methods for model order selection.

Description

Statistical test to estimate if there is a significant difference between a set of clustering solutions.
Given a set of clustering solutions (that is solutions for different number k of clusters), the statistical
test using both the Bernstein inequality-based test and the χ2 based test evaluates what are the
significant solutions at a given significance level.

Usage

Hybrid.testing(sim.matrix, alpha = 0.01, s0 = 0.9)

Arguments

sim.matrix a matrix that stores the similarity between pairs of clustering across multiple
number of clusters and multiple clusterings.

alpha significance level (default 0.01)

s0 threshold for the similarity value used in the χ2 based test (default 0.9)
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Details

The function accepts as input a similarity matrix that stores the similarity measure between multiple
pairs of clusterings considering different number of clusters. Each row of the matrix corresponds
to a k-clustering, each column to different repeated measures. Note that the similarities can be
computed using different clustering algorithms, different perturbations methods (resampling tech-
niques, random projections or noise-injection methods) and different similarity measures. The sta-
bility index for a given clustering is computed as the mean of the similarity indices between pairs of
k-clusterings obtained from the perturbed data. The similarity matrix given as input can be obtained
from the functions do.similarity.resampling, do.similarity.projection, do.similarity.noise. The clus-
terings are ranked according to the values of the stability indices and the Bernstein inequality-based
test is iteratively performed between the top ranked and upward from the last ranked clustering un-
til the null hypothesis (that is no significant difference between the clustering solutions) cannot be
rejected. Then, to refine the solutions, the chi square-based test is performed on the remaining top
ranked clusterings. The significant solutions at a given α significance level, as well as the computed
p-values are returned.

Value

a list with 6 elements:

n.Bernstein.selected

number of clusterings selected as significant by the Bernstein test

n.chi.sq.selected

number of clusterings selected as significant by chi square test. It may be equal
to 0 if Bernstein test selects only 1 clustering.

Bernstein.res data frame with the p-values obtained from Bernstein inequality

chi.sq.res data frame with the p-values obtained from chi square test. If through Bernstein
inequality test only 1 clustering is significant this component is NULL

selected.res data frame with the results relative to the clusterings selected by the overall
hybrid test

F a list of cumulative distribution functions (of class ecdf) (not sorted).

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

W. Hoeffding, Probability inequalities for sums of independent random variables, J. Amer. Statist.
Assoc. vol.58 pp. 13-30, 1963.

A.Bertoni, G. Valentini, Model order selection for clustered bio-molecular data, In: Probabilistic
Modeling and Machine Learning in Structural and Systems Biology, J. Rousu, S. Kaski and E.
Ukkonen (Eds.), Tuusula, Finland, 17-18 June, 2006

A.Bertoni, G. Valentini, Discovering significant structures in clustered data through Bernstein in-
equality, CISI ’06, Conferenza Italiana Sistemi Intelligenti, Ancona, Italia, 2006.
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See Also

Bernstein.compute.pvalues, Chi.square.compute.pvalues,

Hypothesis.testing, do.similarity.resampling,

do.similarity.projection, do.similarity.noise

Examples

library("clusterv")
# Generation of a synthetic data set with a three-levels hierarchical structure
M1 <- generate.sample.h2 (n=20, l=20, Delta.h=6, Delta.v=3, sd=0.1)
# building a similarity matrix using resampling methods, considering clusterings
# from 2 to 15 clusters
S1.HC <- do.similarity.resampling (M1, c=15, nsub=20, f=0.8, s=sFM,

alg.clust.sim=Hierarchical.sim.resampling)
# Application of the Hybrid statistical test
l1.HC <- Hybrid.testing(S1.HC, alpha=0.01, s0=0.95)
# 3 clusterings are selected, according to the hierarchical structure of the data:
l1.HC$selected.res

Hypothesis.testing Function to select significant clusterings from a given set of p-values

Description

For a given set of p-values returned from a given hypothesis testing, it returns the items for which
there is no significant difference at alpha significance level (that is the items for which p > alpha).

Usage

Hypothesis.testing(d, alpha = 0.01)

Arguments

d data frame with the p-values returned by a given test of hypothesis (e.g. Bern-
stein or Chi square-based tests)

alpha significance level

Value

a data frame corresponding to the clusterings significant at alpha level

Author(s)

Giorgio Valentini <valentini@di.unimi.it>
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See Also

Bernstein.compute.pvalues Chi.square.compute.pvalues

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=1000, d=3, s=0.2)
nsubsamples <- 10; # number of pairs of clusterings to be evaluated
max.num.clust <- 6; # maximum number of cluster to be evaluated
fract.resampled <- 0.8; # fraction of samples to subsampled
# building a similarity matrix using resampling methods, considering clusterings
# from 2 to 10 clusters with the k-means algorithm
Sr.Kmeans.sample6 <- do.similarity.resampling(M, c=max.num.clust, nsub=nsubsamples,

f=fract.resampled, s=sFM, alg.clust.sim=Kmeans.sim.resampling);
# computing p-values according to the chi square-based test
dr.Kmeans.sample6 <- Chi.square.compute.pvalues(Sr.Kmeans.sample6);
# test of hypothesis based on the obtained set of p-values
hr.Kmeans.sample6 <- Hypothesis.testing(dr.Kmeans.sample6, alpha=0.01);
# at the given significance level (0.01) the clustering with 2 clusters is selected:
hr.Kmeans.sample6

Intersect Function to compute the intersection between elements of two vectors

Description

Having as input two sets of elements represented by two vectors, the intersection between the two
sets is performed and the corresponding vector is returned.

Usage

Intersect(sub1, sub2)

Arguments

sub1 first vector representing the first set

sub2 second vector representing the second set

Value

vector that stores the elements common to the two input vectors

Author(s)

Giorgio Valentini <valentini@di.unimi.it>
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Examples

# Intesection between two sets of elements represented by vectors
s1 <- 1:10;
s2 <- 3:12;
Intersect(s1, s2)

Kmeans.sim.noise Function to compute similarity indices using noise injection tech-
niques and kmeans clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with random noise is com-
puted for a given number of clusters. The variance of the added gaussian noise, estimated from the
data as the perc percentile of the standard deviations of the input variables, the percentile itself and
the similarity measure can be selected.

Usage

Kmeans.sim.noise(X, c = 2, nnoisy = 100, perc = 0.5, s = sFM,
distance = "euclidean", hmethod = NULL)

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nnoisy number of pairs of noisy data

perc percentile of the standard deviations to be used for the added gaussian noise
(def. 0.5)

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance actually only the euclidean distance is available "euclidean" (default)

hmethod parameter used for internal compatibility.

Value

vector of the computed similarity measures (length equal to nnoisy)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Kmeans.sim.projection, Kmeans.sim.resampling, perturb.by.noise
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Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- Kmeans.sim.noise(M, c = 2, nnoisy = 20, s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- Kmeans.sim.noise(M, c = 3, nnoisy = 20, s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- Kmeans.sim.noise(M, c = 2, nnoisy = 20, s = sJaccard)
# 2 clusters using 0.95 percentile (more noise)
v095 <- Kmeans.sim.noise(M, c = 2, nnoisy = 20, s = sFM, perc=0.95)

Kmeans.sim.projection Function to compute similarity indices using random projections and
kmeans clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with random projections
is computed for a given number of clusters. The dimension of the projected data, the type of
randomized map and the similarity measure may be selected.

Usage

Kmeans.sim.projection(X, c = 2, nprojections = 100, dim = 2, pmethod = "PMO",
scale = TRUE, seed = 100, s = sFM, distance = "euclidean", hmethod = "ward.D")

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nprojections number of pairs of projected data

dim dimension of the projected data

pmethod projection method. It must be one of the following: - "RS" (random subspace
projection) - "PMO" (Plus Minus One random projection) - "Norm" (normal
random projection) - "Achlioptas" (Achlioptas random projection)

scale if TRUE randomized projections are scaled (default)

seed numerical seed for the random generator

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance actually only the euclidean distance is available "euclidean" (default)

hmethod parameter used for internal compatibility.
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Value

vector of the computed similarity measures (length equal to nprojections)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Kmeans.sim.resampling, Kmeans.sim.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- Kmeans.sim.projection(M, c = 2, nprojections = 20, dim = 200,

pmethod = "PMO", s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- Kmeans.sim.projection(M, c = 3, nprojections = 20, dim = 200,

pmethod = "PMO", s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- Kmeans.sim.projection(M, c = 2, nprojections = 20, dim = 200,

pmethod = "PMO", s = sJaccard)

Kmeans.sim.resampling Function to compute similarity indices using resampling techniques
and kmeans clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with resampling techniques is
computed for a given number of clusters, using the kmeans algorithm. The fraction of the resampled
data (without replacement) and the similarity measure can be selected.

Usage

Kmeans.sim.resampling(X, c = 2, nsub = 100, f = 0.8, s = sFM,
distance = "euclidean", hmethod = NULL)

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nsub number of subsamples

f fraction of the data resampled without replacement
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s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance actually only the euclidean distance is available "euclidean" (default)

hmethod parameter used for internal compatibility.

Value

vector of the computed similarity measures (length equal to nsub)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

Kmeans.sim.projection, Kmeans.sim.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- Kmeans.sim.resampling(M, c = 2, nsub = 20, f = 0.8, s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- Kmeans.sim.resampling(M, c = 3, nsub = 20, f = 0.8, s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- Kmeans.sim.resampling(M, c = 2, nsub = 20, f = 0.8, s = sJaccard)

PAM.sim.noise Function to compute similarity indices using noise injection tech-
niques and PAM clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with random noise is com-
puted for a given number of clusters. The variance of the added gaussian noise, estimated from the
data as the perc percentile of the standard deviations of the input variables, the percentile itself and
the similarity measure can be selected.

Usage

PAM.sim.noise(X, c = 2, nnoisy = 100, perc = 0.5, s = sFM,
distance = "euclidean", hmethod = NULL)
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Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nnoisy number of pairs of noisy data

perc percentile of the standard deviations to be used for the added gaussian noise
(def. 0.5)

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod parameter used for internal compatibility.

Value

vector of the computed similarity measures (length equal to nnoisy)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

PAM.sim.projection, PAM.sim.resampling, perturb.by.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- PAM.sim.noise(M, c = 2, nnoisy = 20, s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- PAM.sim.noise(M, c = 3, nnoisy = 20, s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- PAM.sim.noise(M, c = 2, nnoisy = 20, s = sJaccard)
# 2 clusters using 0.95 percentile (more noise)
v095 <- PAM.sim.noise(M, c = 2, nnoisy = 20, s = sFM, perc=0.95)
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PAM.sim.projection Function to compute similarity indices using random projections and
PAM clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with random projections
is computed for a given number of clusters. The dimension of the projected data, the type of
randomized map and the similarity measure may be selected.

Usage

PAM.sim.projection(X, c = 2, nprojections = 100, dim = 2, pmethod = "PMO",
scale = TRUE, seed = 100, s = sFM, distance = "euclidean", hmethod = NULL)

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nprojections number of pairs of projected data

dim dimension of the projected data

pmethod projection method. It must be one of the following: - "RS" (random subspace
projection) - "PMO" (Plus Minus One random projection) - "Norm" (normal
random projection) - "Achlioptas" (Achlioptas random projection)

scale if TRUE randomized projections are scaled (default)

seed numerical seed for the random generator

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod parameter used for internal compatibility.

Value

vector of the computed similarity measures (length equal to nprojections)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

PAM.sim.resampling, PAM.sim.noise
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Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- PAM.sim.projection(M, c = 2, nprojections = 20, dim = 200,

pmethod = "PMO", s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- PAM.sim.projection(M, c = 3, nprojections = 20, dim = 200,

pmethod = "PMO", s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- PAM.sim.projection(M, c = 2, nprojections = 20, dim = 200,

pmethod = "PMO", s = sJaccard)

PAM.sim.resampling Function to compute similarity indices using resampling techniques
and PAM clustering.

Description

A vector of similarity measures between pairs of clusterings perturbed with resampling techniques
is computed for a given number of clusters, using the PAM algorithm. The fraction of the resampled
data (without replacement) and the similarity measure can be selected.

Usage

PAM.sim.resampling(X, c = 2, nsub = 100, f = 0.8, s = sFM,
distance = "euclidean", hmethod = NULL)

Arguments

X matrix of data (variables are rows, examples columns)

c number of clusters

nsub number of subsamples

f fraction of the data resampled without replacement

s similarity function to be used. It may be one of the following: - sFM (Fowlkes
and Mallows) - sJaccard (Jaccard) - sM (matching coefficient) (default Fowlkes
and Mallows)

distance it must be one of the two: "euclidean" (default) or "pearson" (that is 1 - Pearson
correlation)

hmethod parameter used for internal compatibility.

Value

vector of the computed similarity measures (length equal to nsub)
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Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

PAM.sim.projection, PAM.sim.noise

Examples

library("clusterv")
# Synthetic data set generation
M <- generate.sample6 (n=20, m=10, dim=600, d=3, s=0.2);
# computing a vector of similarity indices with 2 clusters:
v2 <- PAM.sim.resampling(M, c = 2, nsub = 20, f = 0.8, s = sFM)
# computing a vector of similarity indices with 3 clusters:
v3 <- PAM.sim.resampling(M, c = 3, nsub = 20, f = 0.8, s = sFM)
# computing a vector of similarity indices with 2 clusters using the Jaccard index
v2J <- PAM.sim.resampling(M, c = 2, nsub = 20, f = 0.8, s = sJaccard)

perturb.by.noise Function to generate a data set perturbed by noise.

Description

This funtion adds gaussian noise to the data. The mean of the gaussian noise is 0 and the standard
deviation is estimated from the data. The gaussian noise added to the data has 0 mean and the
standard deviation is estimated from the data (it is set to a given percentile value of the standard
deviations computed for each variable).

Usage

perturb.by.noise(X, perc = 0.5)

Arguments

X matrix of data (variables are rows, examples columns)

perc percentile of the standard deviation (def: 0.5)

Value

matrix of perturbed data (variables are rows, examples columns)

Author(s)

Giorgio Valentini <valentini@di.unimi.it>
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References

McShane, L.M., Radmacher, D., Freidlin, B., Yu, R., Li, M.C. and Simon, R., Method for assess-
ing reproducibility of clustering patterns observed in analyses of microarray data, Bioinformatics,
11(8), pp. 1462-1469, 2002.

See Also

do.similarity.noise

Examples

library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=100, d=3, s=0.2);
# generation of a data set perturbed by noise
M.perturbed <- perturb.by.noise(M);
# generation of a data set more perturbed by noise
M.more.perturbed <- perturb.by.noise(M, perc=0.95);

plot_cumulative Function to plot the empirical cumulative distribution function of the
similarity values

Description

The function plot_cumulative plots the ecdf of the similarity values between pairs of clusterings
for a specific number of clusters. The function plot_cumulative.multiple plots the graphs of
the empirical cumulative distributions corresponding to different number of clusters, using different
patterns and/or different colors for each graph. Up to 15 ecdf graphs can be plotted simultaneously.

Usage

plot_cumulative(Fun)

plot_cumulative.multiple(list.F, labels = NULL, min.x = -1, colors = TRUE)

Arguments

Fun Function of class ecdf that stores the discrete values of the cumulative distribu-
tion

list.F a list of function of class ecdf

labels vector of the labels associated to the CDF. If NULL (default), then a vector of
labels from 2 to lenght(list.F)+1 is used.

min.x minimum value to be plotted for similarities. If -1 (default) the minimum of the
similarity value is obtained from list.F

colors if TRUE (default) different colors are used to plot the different ECDF, otherwise
black lines are used
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Value

No return value, the function is called for its side-effect of drawing a plot on the current graphics
device.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

compute.cumulative.multiple

Examples

library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=1000, d=3, s=0.2);
# generation of multiple similarity measures by resampling
Sr.kmeans.sample6 <- do.similarity.resampling(M, c=10, nsub=20, f=0.8, s=sFM,

alg.clust.sim=Kmeans.sim.resampling);
# computation of multiple ecdf (from 2 to 10 clusters)
list.F <- compute.cumulative.multiple(Sr.kmeans.sample6);
# values of the ecdf for 8 clusters
l <- cumulative.values(list.F[[7]])
# plot of the ecdf for 8 clusters
plot_cumulative(list.F[[7]])
# plot of the empirical cumulative distributions from 2 to 10 clusters
plot_cumulative.multiple(list.F)

plot_histograms.similarity

Plotting histograms of similarity measures between clusterings

Description

These functions plot histograms of a set of similarity measures obtained through perturbation meth-
ods. In particular plot_hist.similarity plots a single histogram referred to a specific number
of clusters, while plot_multiple.hist.similarity plots multiple histograms referred to differ-
ent numbers of clusters (one for each number of clusters, i.e. one for each row of the matrix S of
similarity values).

Usage

plot_hist.similarity(sim, nbins = 25)

plot_multiple.hist.similarity(S, n.col = 3, labels = NULL, nbins = 25)
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Arguments

sim vector of similarity values
nbins number of the bins of the histogram
S Matrix of similarity values, rows correspond to diferent number of clusters
n.col number of columns in the grid of the histograms (default = 3)
labels label of the histograms. If NULL (default) the number of clusters from 2 to

nrow(S)+1 are used

Value

No return value, the function is called for its side-effect of drawing a plot on the current graphics
device.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

plot_cumulative, plot_cumulative.multiple

Examples

library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=1000, d=3, s=0.2);
# generation of multiple similarity measures by resampling
Sr.kmeans.sample6 <- do.similarity.resampling(M, c=10, nsub=20, f=0.8, s=sFM,

alg.clust.sim=Kmeans.sim.resampling);
# plot of the histograms of similarity measures for clusterings from 2 to 10 clusters:
plot_multiple.hist.similarity (Sr.kmeans.sample6, n.col=3, labels=NULL, nbins=25);
# the same as postrcript file
postscript(file="histograms.eps", horizontal=FALSE, onefile = FALSE);
plot_multiple.hist.similarity (Sr.kmeans.sample6, n.col=3, labels=NULL, nbins=25);
dev.off();
unlink("histograms.eps");
# plot of a single histogram
plot_hist.similarity(Sr.kmeans.sample6[2,], nbins = 25)

plot_pvalues Function to plot p-values for different tests of hypothesis

Description

The p-values corresponding to different k-clusterings according to different hypothesis testing are
plotted. A horizontal line corresponding to a given alpha value (significance) is also plotted. In the
x axis is represented the number of clusters sorted according to the value of the stability index, and
in the y axis the corresponding p-value. In this way the results of different tests of hypothesis can
be compared.
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Usage

plot_pvalues(l,alpha=1e-02,legendy=0, leg_label=NULL, colors=TRUE)

Arguments

l a list of lists. Each component list represents a different test of hypothesis, and
it has in turn 4 components: ordered.clusterings : a vector with the number
of clusters ordered from the most significant to the least significant; p.value
: a vector with the corresponding p-values computed according to chi-square
test between multiple proportions in descending order (their values correspond
to the clusterings of the vector ordered.clusterings); means : vector with the
mean similarity (stability index) for each clustering; variance : vector with the
variance of the similarity for each clustering.

alpha alpha value for which the straight line is plotted

legendy ordinate of the legend. If 0 (def.) no legend is plotted.

leg_label labels of the legend. If NULL (def.) the text "test 1, test 2, ... test n" for the n
tests is printed. Otherwise it is a vector of characters specifying the text to be
printed

colors if TRUE (def.) lines are printed with colors, otherwise using only different line
pattern

Value

No return value, the function is called for its side-effect of drawing a plot on the current graphics
device.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

See Also

plot_cumulative.multiple

Examples

library("clusterv")
# Data set generation
M <- generate.sample6 (n=20, m=10, dim=1000, d=3, s=0.2);
# generation of multiple similarity measures by resampling
Sr.kmeans.sample6 <- do.similarity.resampling(M, c=10, nsub=20, f=0.8, s=sFM,

alg.clust.sim=Kmeans.sim.resampling);
# hypothesis testing using the chi-square based test
d.chi <- Chi.square.compute.pvalues(Sr.kmeans.sample6)
# hypothesis testing using the Bernstein based test
d.Bern <- Bernstein.compute.pvalues(Sr.kmeans.sample6)
# hypothesis testing using the Bernstein based test (with independence assumption)
d.Bern.ind <- Bernstein.ind.compute.pvalues(Sr.kmeans.sample6)
l <- list(d.chi, d.Bern, d.Bern.ind);
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# plot of the corresponding computed p-values
plot_pvalues(l, alpha = 1e-05, legendy = 1e-12)

Similarity.measures Similarity measures between pairs of clusterings

Description

Classical similarity measures between pairs of clusterings are implemented. These measures use
the pairwise boolean membership matrix (Do.boolean.membership.matrix) to compute the sim-
ilarity between two clusterings, using the matrix as a vector and computing the result as an internal
product. It may be shown that the same result may be obtained using contingency matrices and the
classical definition of Fowlkes and Mallows (implemented with the function sFM), Jaccard (imple-
mented with the function sJaccard) and Matching (Rand Index, implemented with the function sM)
coefficients. Their values range from 0 to 1 (0 no similarity, 1 identity).

Usage

sFM(M1, M2)
sJaccard(M1, M2)
sM(M1, M2)

Arguments

M1 boolean membership matrix representing the first clustering

M2 boolean membership matrix representing the second clustering

Value

similarity measure between the two clusterings according to Fowlkes and Mallows (sFM), Jaccard
(sJaccard) and Matching (sM) coefficients.

Author(s)

Giorgio Valentini <valentini@di.unimi.it>

References

Ben-Hur, A. Ellisseeff, A. and Guyon, I., A stability based method for discovering structure in
clustered data, In: "Pacific Symposium on Biocomputing", Altman, R.B. et al (eds.), pp, 6-17,
2002.

See Also

Do.boolean.membership.matrix
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Examples

library("clusterv")
library("stats")
library("cluster")
# Synthetic data set generation (3 clusters with 20 examples for each cluster)
M <- generate.sample3(n=20, m=2)
# k-means clustering with 3 clusters
r1<-kmeans(t(M), c=3, iter.max = 1000);
# this function is implemented in the clusterv package:
cl1 <- Transform.vector.to.list(r1$cluster);
# generation of a boolean membership square matrix:
Bkmeans <- Do.boolean.membership.matrix(cl1, 60, 1:60)
# the same as above, using PAM clustering with 3 clusters
d <- dist (t(M));
r2 <- pam (d,3,cluster.only=TRUE);
cl2 <- Transform.vector.to.list(r2);
BPAM <- Do.boolean.membership.matrix(cl2, 60, 1:60)
# computation of the Fowlkes and Mallows index between the k-means and the PAM clustering:
sFM(Bkmeans, BPAM)
# computation of the Jaccard index between the k-means and the PAM clustering:
sJaccard(Bkmeans, BPAM)
# computation of the Matching coefficient between the k-means and the PAM clustering:
sM(Bkmeans, BPAM)
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