Package 'nbpInference'

October 17, 2025
Title Inference on Average Treatment Effects for Continuous Treatments
Version 1.0.3
Maintainer Anthony Frazier <anthony.frazier@colostate.edu></anthony.frazier@colostate.edu>
Description Conduct inference on the sample average treatment effect for a matched (observational) dataset with a continuous treatment. Equipped with calipered non-bipartite matching, bias-corrected sample average treatment effect estimation, and covariate-adjusted variance estimation. Matching, estimation, and inference methods are described in Frazier, Heng and Zhou (2024) <doi:10.48550 arxiv.2409.11701="">.</doi:10.48550>
Imports nbpMatching, stats, Rdpack
RdMacros Rdpack
<pre>URL https://github.com/AnthonyFrazierCSU/nbpInference</pre> License CPL (> - 3)
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.1
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
BugReports https://github.com/AnthonyFrazierCSU/nbpInference/issues
NeedsCompilation no
Author Anthony Frazier [aut, cre, cph], Siyu Heng [aut], Wen Zhou [aut]
Repository CRAN
Date/Publication 2025-10-17 20:10:07 UTC
Contents
bias.corrected.neyman

2 bias.corrected.neyman

generate.data.dose . generate.data.dose2															
make.pmatrix	 													 	
nbp.caliper	 													 	

bias.corrected.neyman Bias-corrected Neyman Sample Average Treatment Effect Estimator

Description

Index

This function estimates the sample average treatment effect for a set of matched pairs using the bias-corrected Neyman estimator, defined in Frazier et al. (2024).

Usage

```
bias.corrected.neyman(Y, Z, pairs, pmat, xi)
```

Arguments

Υ	a 2I-length vector of outcome values
Z	a 2I-length vector of treatment values
pairs	an I x 2 dataframe containing the indices of observations that form our set of matched pairs. An appropriate pairs dataframe can be formed using the nbp.caliper function.
pmat	a 2I x 2I matrix where the diagonals equal zero, and the off-diagonal elements (i, j) contain the probability the ith observation has $Z = \max(Z_i, Z_j)$ and the jth observation has $Z = \min(Z_i, Z_j)$. We can create a p-matrix using the make.pmatrix function. A p-matrix can be created using the make.pmatrix function.
хi	a number in the range 0 to 0.5 , the cutoff related to the treatment assignment probability caliper.

Value

I x 2 dataframe

See Also

```
Other inference: classic.neyman(), covAdj.variance(), make.pmatrix(), nbp.caliper()
```

classic.neyman 3

Examples

```
set.seed(12345)
X <- rnorm(100, 0, 5)
Z <- X + rnorm(100, 0, (1+sqrt(abs(X))))
Y <- X + Z + rnorm(100, 0, 0.5)
pmat <- make.pmatrix(Z, X)
pairs <- nbp.caliper(Z, X, pmat, xi = 0.1, M = 10000)
bias.corrected.neyman(Y, Z, pairs, pmat, xi = 0.1)</pre>
```

classic.neyman

Classic Neyman Sample Average Treatment Effect Estimator

Description

This function estimates the sample average treatment effect for a set of matched pairs using the classic Neyman estimator. For references on the classic Neyman estimator, see Baiocchi et al. (2010); Zhang et al. (2022); Heng et al. (2023)

Usage

```
classic.neyman(Y, Z, pairs)
```

Arguments

Y a 2I-length vector of outcome values, which must be numeric.

Z a 2I-length vector of treatment values, which must be numeric.

pairs an I x 2 dataframe containing the indices of observations that form our set

of matched pairs. An appropriate pairs dataframe can be formed using the

nbp.caliper function.

Value

the sample average treatment effect (numeric)

See Also

```
Other inference: bias.corrected.neyman(), covAdj.variance(), make.pmatrix(), nbp.caliper()
```

```
set.seed(12345)
X <- rnorm(100, 0, 5)
Z <- X + rnorm(100, 0, (1+sqrt(abs(X))))
Y <- X + Z + rnorm(100, 0, 0.5)
pmat <- make.pmatrix(Z, X)
pairs <- nbp.caliper(Z, X, pmat, xi = 0.1, M = 10000)
classic.neyman(Y, Z, pairs)</pre>
```

4 covAdj.variance

covAdj.variance

Covariate-Adjusted Variance Estimation

Description

This function calculates the covariate-adjusted conservative variance estimator For the (classic or bias-corrected) Neyman estimator. For details on the definition of the covariate-adjusted Neyman estimator, see Fogarty (2018) and Frazier et al. (2024).

Usage

```
covAdj.variance(Y, Z, X, pairs, pmat, xi, Q)
```

Arguments

Υ	a 2I-length vector of outcome values
Z	a 2I-length vector of treatment values
Χ	a 2I x k matrix of covariate values
pairs	an I x 2 dataframe containing the indices of observations that form our set of matched pairs. An appropriate pairs dataframe can be formed using the nbp.caliper function.
pmat	a 2I x 2I matrix where the diagonals equal zero, and the off-diagonal elements (i, j) contain the probability the ith observation has $Z = \max(Z_i, Z_j)$ and the jth observation has $Z = \min(Z_i, Z_j)$. We can create a p-matrix using the make.pmatrix function. A p-matrix can be created using the make.pmatrix function.
xi	a number in the range 0 to 0.5, the cutoff related to the treatment assignment probability caliper.
Q	an arbitrary I x L numeric (real-valued) matrix, where L < I

Value

a 2I x 2I numeric matrix

See Also

```
Other inference: bias.corrected.neyman(), classic.neyman(), make.pmatrix(), nbp.caliper()
```

```
set.seed(12345)
X <- rnorm(100, 0, 5)
Z <- X + rnorm(100, 0, (1+sqrt(abs(X))))
Y <- X + Z + rnorm(100, 0, 0.5)
pmat <- make.pmatrix(Z, X)
pairs <- nbp.caliper(Z, X, pmat, xi = 0.1, M = 10000)
covAdj.variance(Y, Z, X, pairs, pmat, xi = 0.1)</pre>
```

generate.data.dose 5

generate.data.dose

Generate example data with five covariates

Description

This function creates some example data using the data generation process described in simulation 1 of (Frazier et al. 2024). The dataframe contains a treatment variable Z, outcome variable Y, and five covariates X1,...,X5.

Usage

```
generate.data.dose(N)
```

Arguments

Ν

Number of observations to simulate, which should be a positive whole number.

Value

an N x 7 matrix containing treatment, outcome, and covariates.

See Also

```
Other data generation: generate.data.dose2()
```

Examples

```
generate.data.dose(N = 100)
```

generate.data.dose2

Generate sample data with six covariates

Description

This function creates some example data using the data generation process for the secondary set of simulations described in the supplementary materials of Frazier A, Heng S, Zhou W (2024). "Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference." *arXiv e-prints*, arXiv–2409.. The dataframe contains a treatment variable Z, outcome variable Y, and five covariate X1,...,X6

Usage

```
generate.data.dose2(N)
```

Arguments

Ν

Number of observations to simulate, which should be a positive whole number.

6 make.pmatrix

Value

an N x 8 matrix containing treatment, outcome, and covariates.

See Also

```
Other data generation: generate.data.dose()
```

Examples

```
generate.data.dose2(N = 100)
```

make.pmatrix

Make matrix of treatment assignment probabilities

Description

This function creates a N x N matrix where the diagonals equal zero, and the off-diagonal elements (i, j) contain the probability the ith observation has $Z = max(Z_i, Z_j)$ and the jth observation has $Z = min(Z_i, Z_j)$, conditioned on covariates. Uses the "model-based" conditional density estimation method described in (Frazier et al. 2024).

Usage

```
make.pmatrix(Z, X)
```

Arguments

- Z an N-length vector of treatment values, which must be numeric.
- X an N x k matrix of covariate values, which must be numeric.

Value

an N x N numeric matrix. Each entry represents the probability the ith observation has $Z = \max(Z_i, Z_j)$ and the jth observation has $Z = \min(Z_i, Z_j)$, conditioned on covariates.

See Also

```
Other inference: bias.corrected.neyman(), classic.neyman(), covAdj.variance(), nbp.caliper()
```

```
set.seed(12345)
X <- rnorm(100, 0, 5)
Z <- X + rnorm(100, 0, (1+sqrt(abs(X))))
make.pmatrix(Z, X)</pre>
```

nbp.caliper 7

nbp.	caliper	

non-bipartite matching with treatment assignment caliper

Description

This function creates a I x 2 dataframe containing the indices of observations that form our set of matched pairs. It uses the nbpMatch package (Lu et al. 2011) along with a p-matrix in order to create I matched pairs using a treatment assignment caliper. A p-matrix can be created using the make.pmatrix function.

Usage

```
nbp.caliper(Z, X, pmat, xi = 0, M = 0)
```

Arguments

Z	a 2I-length vector of treatment values, which must be numeric.
---	--

X a 2I x k matrix of covariate values, which must be numeric.

pmat a 2I x 2I symmetric matrix where the diagonals equal zero, and the off-diagonal

elements (i, j) contain the probability the ith observation has $Z = max(Z_i, Z_j)$ and the jth observation has $Z = min(Z_i, Z_j)$. A p-matrix can be made using

the make.pmatrix function.

xi a number in the range 0 to 0.5, the cutoff related to the treatment assignment

probability caliper.

M an integer determining the penalty of the treatment assignment probability caliper.

If a potential matched pair between observations i and j has treatment assignment probability less than xi or greater than 1-xi, add M to the distance matrix

in the (i, j) and (j, i) entry.

Value

I x 2 dataframe

See Also

Other inference: bias.corrected.neyman(), classic.neyman(), covAdj.variance(), make.pmatrix()

```
set.seed(12345)
X <- rnorm(100, 0, 5)
Z <- X + rnorm(100, 0, (1+sqrt(abs(X))))
pmat <- make.pmatrix(Z, X)
nbp.caliper(Z, X, pmat, xi = 0.1, M = 10000)</pre>
```

Index

```
* \ data \ generation
    generate.data.dose, 5
    generate.data.dose2,5
* inference
    bias.corrected.neyman, 2
    {\tt classic.neyman}, {\tt 3}
    covAdj.variance, 4
    make.pmatrix, 6
    nbp.caliper, 7
bias.corrected.neyman, 2, 3, 4, 6, 7
classic.neyman, 2, 3, 4, 6, 7
covAdj.variance, 2, 3, 4, 6, 7
generate.data.dose, 5, 6
generate.data.dose2, 5, 5
make.pmatrix, 2-4, 6, 7
nbp.caliper, 2-4, 6, 7
```