
Package ‘nnlib2Rcpp’
October 10, 2024

Type Package

Title A Tool for Creating Custom Neural Networks in C++ and using Them
in R

Version 0.2.9

Author Vasilis Nikolaidis [aut, cph, cre]
(<https://orcid.org/0000-0003-1471-8788>)

Maintainer Vasilis Nikolaidis <v.nikolaidis@uop.gr>

Description Contains a module to define neural networks from custom components and ver-
sions of Autoencoder, BP, LVQ, MAM NN.

LinkingTo Rcpp

Imports Rcpp , methods, graphics, utils, class

License MIT + file LICENSE

URL https://github.com/VNNikolaidis/nnlib2Rcpp

BugReports https://github.com/VNNikolaidis/nnlib2Rcpp/issues

Encoding UTF-8

Suggests R.rsp

VignetteBuilder R.rsp

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-10-10 09:20:02 UTC

Contents
nnlib2Rcpp-package . 2
Autoencoder . 3
BP-class . 5
LVQs-class . 8
LVQs_recall . 14
LVQs_train . 16
LVQu . 19

1

https://orcid.org/0000-0003-1471-8788
https://github.com/VNNikolaidis/nnlib2Rcpp
https://github.com/VNNikolaidis/nnlib2Rcpp/issues

2 nnlib2Rcpp-package

MAM-class . 20
NN-class . 22
NN_component_names . 36
NN_R_components . 38

Index 46

nnlib2Rcpp-package A collection of Neural Networks and tools to create custom models

Description

This package provides a module (NN module) to define and control neural networks containing
predefined or custom components (layers, sets of connnections etc.). These components may have
been derived from nnlib2 NN components (written in C++) or defined using R.

It also contains a small collection of ready-to-use Neural Networks (NN), i.e. versions of Autoen-
coder, Back-Propagation, Learning Vector Quantization and Matrix Associative Memory NN. More
information and examples for each of the above can be found in its documentation (see below).

Ready-to-use Neural Networks:

• Plain Back-Propagation (BP-supervised) (BP)

• Learning Vector Quantization (LVQ-supervised) (LVQs)

• Learning Vector Quantization (LVQ-unsupervised) (LVQu)

• Matrix Associative Memory (MAM-supervised) (MAM)

• Autoencoder (unsupervised) (Autoencoder)

Custom Neural Networks:

• NN module (NN)

Author(s)

Author/Maintainer:

• Vasilis Nikolaidis <vnnikolaidis@gmail.com>

Contributors:

• Arfon Smith [contributor]

• Dirk Eddelbuettel [contributor]

Autoencoder 3

References

• Nikolaidis, V. N., (2021). The nnlib2 library and nnlib2Rcpp R package for implementing
neural networks. Journal of Open Source Software, 6(61), 2876, doi:10.21105/joss.02876.

References for the ready-to-use NN models (can also be found in related documentation):

• Kohonen, T (1988). Self-Organization and Associative Memory, Springer-Verlag.; Simpson,
P. K. (1991). Artificial neural systems: Foundations, paradigms, applications, and implemen-
tations. New York: Pergamon Press.

• Pao Y (1989). Adaptive Pattern Recognition and Neural Networks. Reading, MA (US);
Addison-Wesley Publishing Co., Inc.

• Simpson, P. K. (1991). Artificial neural systems: Foundations, paradigms, applications, and
implementations. New York: Pergamon Press.

• Philippidis, TP & Nikolaidis, VN & Kolaxis, JG. (1999). Unsupervised pattern recognition
techniques for the prediction of composite failure. Journal of acoustic emission. 17. 69-81.

• Nikolaidis V.N., Makris I.A, Stavroyiannis S, "ANS-based preprocessing of company perfor-
mance indicators." Global Business and Economics Review 15.1 (2013): 49-58, doi:10.1504/
GBER.2013.050667.

See Also

More information and examples on using the package can be found in the following vignette:

vignette("manual", package='nnlib2Rcpp')

Related links:

• https://github.com/VNNikolaidis/nnlib2Rcpp

• Package manual in PDF format at https://github.com/VNNikolaidis/nnlib2Rcpp/blob/
master/support/manual.pdf)

• Report bugs, issues and suggestions at https://github.com/VNNikolaidis/nnlib2Rcpp/
issues

Autoencoder Autoencoder NN

Description

A neural network for autoencoding data, projects data to a new set of variables.

Usage

Autoencoder(
data_in,
desired_new_dimension,
number_of_training_epochs,
learning_rate,
num_hidden_layers = 1L,

https://doi.org/10.21105/joss.02876
https://doi.org/10.1504/GBER.2013.050667
https://doi.org/10.1504/GBER.2013.050667
https://github.com/VNNikolaidis/nnlib2Rcpp
https://github.com/VNNikolaidis/nnlib2Rcpp/blob/master/support/manual.pdf
https://github.com/VNNikolaidis/nnlib2Rcpp/blob/master/support/manual.pdf
https://github.com/VNNikolaidis/nnlib2Rcpp/issues
https://github.com/VNNikolaidis/nnlib2Rcpp/issues

4 Autoencoder

hidden_layer_size = 5L,
show_nn = FALSE,
error_type = "MAE",
acceptable_error_level = 0,
display_rate = 1000)

Arguments

data_in data to be autoencoded, a numeric matrix, (2d, cases in rows, variables in columns).
It is recommended to be in [0 1] range.

desired_new_dimension

number of new variables to be produced. This is effectively the size (length) of
the special hidden layer that outputs the new variable values, thus the dimension
of the output vector space.

number_of_training_epochs

number of training epochs, aka presentations of all training data to ANN during
training.

learning_rate the learning rate parameter of the Back-Propagation (BP) NN.
num_hidden_layers

number of hidden layers on each side of the special layer.
hidden_layer_size

number of nodes (processing elements or PEs) in each of the hidden layers. In
this implementation of Autoencoder all hidden layers are of the same length
(defined here), except for the special hidden layer (whose size is defined by
desired_new_dimension above).

show_nn boolean, option to display the (trained) ANN internal structure.

error_type string, error to display and possibly use to stop training (must be ’MSE’ or
’MAE’).

acceptable_error_level

stops training when error is below this level.

display_rate number of epochs that pass before current error level is displayed (0 = never
display current error).

Value

Returns a numeric matrix containing the projected data.

Note

This Autoencoder NN employs a BP-type NN to perform a data pre-processing step baring simi-
larities to PCA since it too can be used for dimensionality reduction (Kramer 1991)(DeMers and
Cottrell 1993)(Hinton and Salakhutdinov 2006). Unlike PCA, an autoencoding NN can also ex-
pand the feature-space dimensions (as feature expansion methods do). The NN maps input vectors
to themselves via a special hidden layer (the coding layer, usually of different size than the input
vector length) from which the new data vectors are produced. Note: The internal BP PEs in com-
puting layers apply the logistic sigmoid threshold function, and their output is in [0 1] range. It

BP-class 5

is recommended to use this range in your data as well. More for this particular autoencoder im-
plementation can be found in (Nikolaidis, Makris, and Stavroyiannis 2013). The method is not
deterministic and the mappings may be non-linear, depending on the NN topology.

(This function uses Rcpp to employ ’bpu_autoencoder_nn’ class in nnlib2.)

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Nikolaidis V.N., Makris I.A, Stavroyiannis S, "ANS-based preprocessing of company performance
indicators." Global Business and Economics Review 15.1 (2013): 49-58.

See Also

BP.

Examples

iris_s <- as.matrix(scale(iris[1:4]))
output_dim <- 2
epochs <- 100
learning_rate <- 0.73
num_hidden_layers <-2
hidden_layer_size <- 5

out_data <- Autoencoder(iris_s, output_dim,
epochs, learning_rate,
num_hidden_layers, hidden_layer_size, FALSE)

plot(out_data,pch=21,
bg=c("red","green3","blue")[unclass(iris$Species)],
main="Randomly autoencoded Iris data")

BP-class Class "BP"

Description

Supervised Back-Propagation (BP) NN module, for encoding input-output mappings.

Extends

Class "RcppClass", directly.

All reference classes extend and inherit methods from "envRefClass".

6 BP-class

Fields

.CppObject: Object of class C++Object ~~

.CppClassDef: Object of class activeBindingFunction ~~

.CppGenerator: Object of class activeBindingFunction ~~

Methods

encode(data_in, data_out, learning_rate, training_epochs, hidden_layers, hidden_layer_size):
Setup a new BP NN and encode input-output data pairs. Parameters are:

• data_in: numeric matrix, containing input vectors as rows. . It is recommended that
these values are in 0 to 1 range.

• data_out: numeric matrix, containing corresponding (desired) output vectors. It is rec-
ommended that these values are in 0 to 1 range.

• learning_rate: a number (preferably greater than 0 and less than 1) used in training.
• training_epochs: number of training epochs, aka single presentation iterations of all

training data pairs to the NN during training.
• hidden_layers: number of hidden layers to be created between input and output layers.
• hidden_layer_size: number of nodes (processing elements or PEs) in each of the hid-

den layers (all hidden layers are of the same length in this implementation of BP).

Note: to encode additional input-output vector pairs in an existing BP, use train_single or
train_multiple methods (see below).

recall(data_in): Get output for a dataset (numeric matrix data_in) from the (trained) BP NN.

setup(input_dim, output_dim, learning_rate, hidden_layers, hidden_layer_size): Setup
the BP NN so it can be trained and used. Note: this is not needed if using encode. Parameters
are:

• input_dim: integer length of input vectors.
• output_dim: integer length of output vectors.
• learning_rate: a number (preferably greater than 0 and less than 1) used in training.
• hidden_layers: number of hidden layers to be created between input and output layers.
• hidden_layer_size: number of nodes (processing elements or PEs) in each of the hid-

den layers (all hidden layers are of the same length in this implementation of BP).

train_single (data_in, data_out): Encode an input-output vector pair in the BP NN. Only
performs a single training iteration (multiple may be required for proper encoding). Vector
sizes should be compatible to the current NN (as resulted from the encode or setup methods).
Returns error level indicator value.

train_multiple (data_in, data_out, training_epochs): Encode multiple input-output vec-
tor pairs stored in corresponding datasets. Performs multiple iterations in epochs (see encode).
Vector sizes should be compatible to the current NN (as resulted from the encode or setup
methods). Returns error level indicator value.

set_error_level(error_type, acceptable_error_level): Set options that stop training when
an acceptable error level has been reached (when a subsequent encode or train_multiple is
performed). Parameters are:

• error_type: string, error type to display and use to stop training (must be ’MSE’ or
’MAE’).

BP-class 7

• acceptable_error_level: training stops when error is below this level.

mute(on): Disable output of current error level when training (if parameter on is TRUE).

print(): Print NN structure.

show(): Print NN structure.

load(filename): Retrieve the NN from specified file.

save(filename): Save the NN to specified file.

The following methods are inherited (from the corresponding class): objectPointer ("RcppClass"),
initialize ("RcppClass"), show ("RcppClass")

Note

This R module maintains an internal Back-Propagation (BP) multilayer perceptron NN (described
in Simpson (1991) as the vanilla back-propagation algorithm), which can be used to store input-
output vector pairs. Since the nodes (PEs) in computing layers of this BP implementation apply the
logistic sigmoid threshold function, their output is in [0 1] range (and so should the desired output
vector values).

(This object uses Rcpp to employ ’bp_nn’ class in nnlib2.)

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Simpson, P. K. (1991). Artificial neural systems: Foundations, paradigms, applications, and imple-
mentations. New York: Pergamon Press.

See Also

Autoencoder.

Examples

create some data...
iris_s <- as.matrix(scale(iris[1:4]))

use a randomly picked subset of (scaled) iris data for training.
training_cases <- sample(1:nrow(iris_s), nrow(iris_s)/2,replace=FALSE)
train_set <- iris_s[training_cases,]
train_class_ids <- as.integer(iris$Species[training_cases])
train_num_cases <- nrow(train_set)
train_num_variables <- ncol(train_set)
train_num_classes <- max(train_class_ids)

create output dataset to be used for training.
Here we encode class as 0s and 1s (one-hot encoding).

train_set_data_out <- matrix(
data = 0,

8 LVQs-class

nrow = train_num_cases,
ncol = train_num_classes)

now for each case, assign a 1 to the column corresponding to its class, 0 otherwise
(note: there are better R ways to do this in R)
for(r in 1:train_num_cases) train_set_data_out[r,train_class_ids[r]]=1

done with data, let's use BP...
bp<-new("BP")

bp$encode(train_set,train_set_data_out,0.8,10000,2,4)

let's test by recalling the original training set...
bp_output <- bp$recall(train_set)

cat("- Using this demo's encoding, recalled class is:\n")
print(apply(bp_output,1,which.max))
cat("- BP success in recalling correct class is: ",

sum(apply(bp_output,1,which.max)==train_class_ids)," out of ",
train_num_cases, "\n")

Let's see how well it recalls the entire Iris set:
bp_output <- bp$recall(iris_s)

show output
cat("\n- Recalling entire Iris set returns:\n")
print(bp_output)
cat("- Using this demo's encoding, original class is:\n")
print(as.integer(iris$Species))
cat("- Using this demo's encoding, recalled class is:\n")
bp_classification <- apply(bp_output,1,which.max)
print(bp_classification)
cat("- BP success in recalling correct class is: ",

sum(apply(bp_output,1,which.max)==as.integer(iris$Species)),
"out of ", nrow(iris_s), "\n")

plot(iris_s, pch=bp_classification, main="Iris classified by a partialy trained BP (module)")

LVQs-class Class "LVQs"

Description

Supervised Learning Vector Quantization (LVQ) NN module, for data classification.

Extends

Class "RcppClass", directly.

All reference classes extend and inherit methods from "envRefClass".

LVQs-class 9

Fields

.CppObject: Object of class C++Object ~~

.CppClassDef: Object of class activeBindingFunction ~~

.CppGenerator: Object of class activeBindingFunction ~~

Methods

encode(data, desired_class_ids, training_epochs): Encode input and output (classification)
for a dataset using a LVQ NN (which sets up accordingly if required). Parameters are:

• data: training data, a numeric matrix, (2d, cases in rows, variables in columns). Data
should be in 0 to 1 range.

• desired_class_ids : vector of integers containing a desired class id for each training
data case (row). Should contain integers in 0 to n-1 range, where n is the number of
classes.

• training_epochs: integer, number of training epochs, aka presentations of all training
data to the NN during training.

recall(data_in, min_rewards): Get output (classification) for a dataset (numeric matrix data_in)
from the (trained) LVQ NN. The data_in dataset should be 2-d containing data cases (rows)
to be presented to the NN and is expected to have same number or columns as the original
training data. Returns a vector of integers containing a class id for each case (row).Parameters
are:

• data_in: numeric 2-d matrix containing data cases (as rows).
• min_rewards: (optional) integer, ignore output nodes that (during encoding/training)

were rewarded less times that this number (default is 0, i.e. use all nodes).

setup(input_length, int number_of_classes, number_of_nodes_per_class): Setup an un-
trained supervised LVQ for given input data vector dimension and number of classes. Param-
eters are:

• input_length: integer, dimension (length) of input data vectors.
• number_of_classes: integer, number of classes in data (including empty ones).
• number_of_nodes_per_class: (optional) integer, number of output nodes (PE) to be

used per class. Default is 1.

train_single (data_in, class_id, epoch): Encode a single [input vector,class] pair in the LVQ
NN. Only performs a single training iteration (multiple may be required for proper encod-
ing). Vector length and class id should be compatible to the current NN (as resulted from the
encode, setup or load methods). Returns TRUE if succesfull, FALSE otherwise. Parameters
are:

• data_in: numeric, data vector to be encoded.
• class_id: integer, id of class corresponding to the data vector.(ids start from 0).
• epoch: integer, presumed epoch during which this encoding occurs (learning rate de-

creases with epochs in supervised LVQ).

get_weights(): Get the current weights (codebook vector coordinates) of the 2nd component
(connection_set). If successful, returns NumericVector of connection weights (otherwise
vector of zero length).

10 LVQs-class

set_weights(data_in): Set the weights of the 2nd component (connection_set), i.e. directly
define the LVQ’s codebook vectors. If successful, returns TRUE. Parameters are:

• data_in: NumericVector, data to be used for new values in weight registers of connec-
tions (sizes must match).

set_number_of_nodes_per_class(n): Set the number of nodes in the output layer (and thus
incoming connections whose weights form codebook vectors) that will be used per class.
Default is 1, i.e. each class in the data to be encoded in the NN corresponds to a single
node (PE) in it’s output layer. This method affects how the new NN topology will be created,
therefore this method should be used before the NN has been set up (either by encode or
setup) or after a NN topology (and NN state) has been loaded from file via load). Returns
number of nodes to be used per class. Parameters are:

• n: integer, number of nodes to be used per each class.

get_number_of_nodes_per_class(): Get the number of nodes in the output layer that are used
per class.

enable_punishment(): Enables negative reinfoncement. During encoding incorrect winner nodes
will be notified and incoming weights will be adjusted accordingly. Returns TRUE if punish-
ment is enabled, FALSE otherwise.

disable_punishment(): Disables negative reinfoncement. During encoding incorrect winner
nodes will not be notified, thus incoming weights will not be adjusted accordingly. Adjust-
ments will only occur in correct winning nodes. Returns TRUE if punishment is enabled,
FALSE otherwise.

get_number_of_rewards(): Get the number of times an output node was positively reinforced
during data encoding. Returns NumericVector containing results per output node.

set_weight_limits(min, max): Define the minimum and maximum values that will be allowed
in connection weights during encoding (limiting results of punishment). The NN must have
been set up before using this method (either by encode, setup or load). Parameters are:

• min: numeric, minimum weight allowed.
• max: numeric, maximum weight allowed.

set_encoding_coefficients(reward, punish): Define coefficients used for reward and pun-
ishment during encoding. In this version, the actual learning rate a(t) also depends on the
epoch t, i.e. a(t) = coefficient * (1 - (t/10000)). The NN must have been set up before using
this method (either by encode, setup or load). Parameters are:

• reward: numeric, coefficient used to reward a node that classified data correctly (usually
positive, e.g. 0.2).

• punish: numeric, coefficient used to punish a node that classified data incorrectly (usu-
ally negative, e.g. -0.2).

print(): print NN structure.

show(): print NN structure.

load(filename): Retrieve the state of the NN from specified file. Note: parameters such as num-
ber of nodes per class or reward/punish coefficients are not retrieved.

save(filename): Store the state of the current NN to specified file. Note: parameters such as
number of nodes per class or reward/punish coefficients are not stored.

The following methods are inherited (from the corresponding class): objectPointer ("RcppClass"),
initialize ("RcppClass"), show ("RcppClass")

LVQs-class 11

Note

This module uses Rcpp to employ ’lvq_nn’ class in nnlib2. The NN used in this module uses super-
vised training for data classification (described as Supervised Learning LVQ in Simpson (1991)).
By default, initial weights are random values (uniform distribution) in 0 to 1 range. As these weights
represent vector coordinates (forming the class reference, prototype or codebook vectors), it is im-
portant that input data is also scaled to 0 to 1 range.

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Simpson, P. K. (1991). Artificial neural systems: Foundations, paradigms, applications, and imple-
mentations. New York: Pergamon Press. p.88.

See Also

LVQs_train, LVQs_recall (LVQs helper functions) and LVQu (unsupervised LVQ function)

Examples

Create some compatible data (here, from iris data set):

Data should be in 0 to 1 range if random values in that range are used
as initial weights (the default method).
Thus, LVQ expects data in 0 to 1 range, scale the (numeric) data...

DATA <- as.matrix(iris[1:4])
c_min <- apply(DATA, 2, FUN = "min")
c_max <- apply(DATA, 2, FUN = "max")
c_rng <- c_max - c_min
DATA <- sweep(DATA, 2, FUN = "-", c_min)
DATA <- sweep(DATA, 2, FUN = "/", c_rng)
NUM_VARIABLES <- ncol(DATA)

create a vector of desired class ids (consecutive ids, starting from 0):
CLASS <- as.integer(iris$Species) - 1
NUM_CLASSES <- length(unique(CLASS))

avoid using data with NA or other special values:
if (sum(is.na(DATA)) > 0)

stop("NAs found in DATA")
if (sum(is.na(CLASS)) > 0)

stop("NAs found in CLASS")

Example 1:
(Note: the example uses DATA and CLASS variables defined earlier).

use half of the data to train, the other half to evaluate how well LVQ was
trained (interlaced half is used to select members of these data sets):

12 LVQs-class

l1_train_dataset <- DATA[c(TRUE, FALSE),]
l1_train_class <- CLASS[c(TRUE, FALSE)]
l1_test_dataset <- DATA[c(FALSE, TRUE),]
l1_test_class <- CLASS[c(FALSE, TRUE)]

now create the NN:
l1 <- new("LVQs")

train it:
l1$encode(l1_train_dataset, l1_train_class, 100)

recall the same data (a simple check of how well the LVQ was trained):
l1_recalled_class_ids <- l1$recall(l1_test_dataset)

show results:
cat(

"Example 1 results: Correct ",
sum(l1_recalled_class_ids == l1_test_class),
"out of",
nrow(l1_test_dataset),
".\n"

)

Example 2: (playing around with some optional settings)
(Note: the example uses DATA, CLASS, NUM_CLASSES variables defined earlier).

create the NN:
l2 <- new("LVQs")

Optionally, the output layer could be expanded, e.g. use 2 nodes per each class:
l2$set_number_of_nodes_per_class(2)

Optionally, for experimentation negative reinforcement can be disabled:
l2$disable_punishment()

train it:
l2$encode(DATA, CLASS, 100)

recall the same data (a simple check of how well the LVQ was trained):
l2_recalled_class_ids <- l2$recall(DATA)

Done. Optional part for further examining results of training:

collect the connection weights (codebook vector coordinates), number
of rewards per node and corresponding class:

l2_codebook_vector_info <-
cbind(

matrix(l2$get_weights(),
ncol = ncol(DATA),
byrow = TRUE),

l2$get_number_of_rewards(),

LVQs-class 13

rep(
0:(NUM_CLASSES - 1),
rep(l2$get_number_of_nodes_per_class(),

NUM_CLASSES)
)

)

colnames(l2_codebook_vector_info) <-
c(colnames(DATA), "Rewarded", "Class")

print(l2_codebook_vector_info)

plot recalled classification:

plot(
DATA,
pch = l2_recalled_class_ids,
main = "LVQ recalled clusters (LVQs module)",
xlim = c(-0.2, 1.2),
ylim = c(-0.2, 1.2)

)

plot connection weights (a.k.a codebook vectors):
the big circles are codebook vectors, (crossed-out if they were never used
to assign a training data point to the correct class, i.e. never rewarded)

points(
l2_codebook_vector_info[, 1:2],
cex = 4,
pch = ifelse(l2_codebook_vector_info[, "Rewarded"] > 0,1, 13),
col = l2_codebook_vector_info[, "Class"] + 10

)

show results:
cat(

"Example 2 results: Correct ",
sum(l2_recalled_class_ids == CLASS),
"out of",
nrow(DATA),
".\n"

)

Example 3 (demonstrate 'setup' and some other methods it allows):
(Note: uses DATA, CLASS, NUM_VARIABLES, NUM_CLASSES defined earlier).

create the NN:
l3 <- new("LVQs")

l3_number_of_output_nodes_per_class <- 3

setup the LVQ:
l3$setup(NUM_VARIABLES,

NUM_CLASSES,

14 LVQs_recall

l3_number_of_output_nodes_per_class)
l3$set_weight_limits(-0.5 , 1.5)
l3$set_encoding_coefficients(0.2,-sum(CLASS == 0) / length(CLASS))

experiment with setting initial weights (codebook vectors) per output node;
here, weights are set to the mean vector of the training set data for the
class the output node corresponds to:

class_means <- aggregate(DATA, list(CLASS), FUN = mean)
class_means <- t(class_means)[-1,]
l3_initial_weights <- NULL
for (i in 1:l3_number_of_output_nodes_per_class)
l3_initial_weights <- rbind(l3_initial_weights, class_means)

l3$set_weights(as.vector(l3_initial_weights))

now train it:
l3$encode(DATA, CLASS, 100)

recall the same data (a simple check of how well the LVQ was trained):
l3_recalled_class_ids <- l3$recall(DATA, 0)

show results:
cat(

"Example 3 results: Correct ",
sum(l3_recalled_class_ids == CLASS),
"out of",
nrow(DATA),
".\n"

)

LVQs_recall LVQs Helper Function: Classify Data Using Supervised LVQ Code-
Book Vectors

Description

This function simplifies using a Supervised Learning Vector Quantizer Neural Network on data (as
compared to using the LVQs module directly). It employs the codebook vector information returned
by LVQs_train to assign data to classes.

Usage

LVQs_recall(codebook_info,
data,
k = 1,
recall_rewards_limit = 1,
verbose = FALSE,
...)

LVQs_recall 15

Arguments

codebook_info LVQ codebook vector information (as returned by LVQs_train).

data data to be classified, numeric matrix (2d, cases in rows, variables in columns).

k number of neighbours (codebook vectors) considered. See help("knn",package
= class).

recall_rewards_limit

do not use codebook vectors that were rewarded less that this limit during train-
ing.

verbose show extra information and plots.

... additional parameters for k-Nearest Neighbour Classification function (class::knn),
see help("knn",package = class).

Details

This is a k-Nearest Neighbor Classifier (employs class::knn), customized for LVQs codebook
vectors and related information returned by LVQs_train function.

Value

Factor of classifications ids for data (as returned by function class::knn, see help("knn",package
= class)).

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Simpson, P. K. (1991). Artificial neural systems: Foundations, paradigms, applications, and imple-
mentations. New York: Pergamon Press. p.88.

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer,
New York. ISBN 0-387-95457-0

See Also

LVQs_train, LVQs.

Examples

start with the well-know iris dataset:

DATA <- iris[,1:4]
CLASS <- as.factor(iris$Species)

Randomly split the data into training and testing sets:

indices <- sample(1:nrow(DATA), size = .5 * nrow(DATA))

16 LVQs_train

train_data <- DATA[indices,]
train_class <- CLASS[indices]

test_data <- DATA[-indices,]
test_class <- CLASS[-indices]

train LVQ using train data and class:

cv <- LVQs_train(train_data,
train_class,
number_of_output_nodes_per_class = 4)

recall (classify) test data:

cl <- LVQs_recall(cv, test_data)

Compare known and returned test data classifications:

print(table(test_class, cl))

LVQs_train LVQs Helper Function: Train a Supervised LVQ

Description

This function simplifies using a Supervised Learning Vector Quantizer Neural Network on data (as
compared to using the LVQs module directly). It trains a supervised Learning Vector Quantizer
Neural Network (LVQs). Once the NN is trained, the function returns a matrix containing codebook
vectors and related information. This matrix can then be used by LVQs_recall to classify data.

Usage

LVQs_train(train_data,
train_class,
iterations = 1000,
number_of_output_nodes_per_class = 1,
reward_coef = +0.2,
punish_coef = -0.2,
training_order = "reorder_once",
initialization_method = "sample",
recall_train_data = FALSE,
initial_codebook_vectors = NULL
)

Arguments

train_data training data, numeric matrix (2d, cases in rows, variables in columns).

LVQs_train 17

train_class vector of integers or factor containing the desired class id for each training data
case (row). Expected ids start from 1. Number of classes is assumed to be equal
to the maximum class id found here.

iterations integer, number of training epochs, i.e. number of times the entire training data
set will be presented to the NN during training. Maximum allowed is 10000.

number_of_output_nodes_per_class

integer, number of output nodes (and thus codebook vectors) to be used per
class. A single value is expected, all classes are assigned this (same) number of
output nodes.

reward_coef coefficient used when a output node (and thus codebook vector) is rewarded (has
been correctly selected when a training data vector is encoded) and is adjusted
closer to the data. For more, see set_encoding_coefficients method of LVQs

punish_coef coefficient used when a output node (and thus codebook vector) is punished (has
been incorrectly selected when a training data vector is encoded) and is adjusted
away from the data. For more, see set_encoding_coefficients method of
LVQs

training_order order by which the data set vectors will be presented to LVQs for encoding dur-
ing each training iteration (epoch). Options are: 'original' (vectors are pre-
sented in the order in which they are stored, i.e. first row to last), 'reorder_once'
(vectors are randomly reordered once, then presented in this same order in all
iterations), and 'reorder' (vectors are randomly reordered before each itera-
tion).

initialization_method

defines how the connections weights (codebook vectors) will be initialized. Op-
tions are: '0to1' (random values in [0 1] range, note: internal training data will
also be scaled to the same range), 'means' codebook vectors will be the cor-
responding class’s mean vector), 'first' (the first data vector(s) of each class
will be used as initial codebook vector(s), randomly re-selected if not enough are
available), 'sample' (randomly selected data vectors of each class will be used
as initial codebook vectors, with replacement if not enough are available), and
'user-defined' (weights specified in parameter initial_codebook_vectors
are used to initialize the LVQ).

recall_train_data

once training completes, recall the training data and show accuracy and confu-
sion matrix.

initial_codebook_vectors

a matrix of codebook vectors to be used as initial weight values when initialization_method
parameter is set to 'user-defined' (see above). Must have the same number of
columns as train_data and sufficient codebook vectors (rows) to initialize all
connections (i.e. number of classes found in train_class * number_of_output_nodes_per_class).
Note: the matrix returned by a previous invocation of LVQs_train can be used
here, excluding its last two columns (those named 'Rewards' and 'Class').

Details

This is a wrapper function which internally employs an instance of the LVQs module. For more
details, see LVQs.

18 LVQs_train

Value

A numeric matrix containing the codebook vector coordinates, the number of times each vector
was rewarded during encoding (second from last column named 'Rewards',) and the class it
corresponds to (last column, named 'Class'). This matrix can be used by LVQs_recall function
to classify other data.

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Simpson, P. K. (1991). Artificial neural systems: Foundations, paradigms, applications, and imple-
mentations. New York: Pergamon Press. p.88.

See Also

LVQs_recall, LVQs.

Examples

start with the well-know iris dataset:

DATA <- iris[,1:4]
CLASS <- as.factor(iris$Species)

Randomly split the data into training and testing sets:

indices <- sample(1:nrow(DATA), size = .5 * nrow(DATA))

train_data <- DATA[indices,]
train_class <- CLASS[indices]

test_data <- DATA[-indices,]
test_class <- CLASS[-indices]

train LVQ using train data and class:

cvi <- LVQs_train(train_data,
train_class,
number_of_output_nodes_per_class = 4)

recall (classify) test data:

cl <- LVQs_recall(cvi, test_data)

Compare known and returned test data classifications:

print(table(test_class, cl))

LVQu 19

LVQu Unsupervised LVQ

Description

Unsupervised (clustering) Learning Vector Quantization (LVQ) NN.

Usage

LVQu(
data,
max_number_of_desired_clusters,
number_of_training_epochs,
neighborhood_size,
show_nn)

Arguments

data data to be clustered, a numeric matrix, (2d, cases in rows, variables in columns).
By default, initial weights are set to random values in [0 1], so data should also
be in 0 to 1 range.

max_number_of_desired_clusters

clusters to be produced (at most)
number_of_training_epochs

number of training epochs, aka presentations of all training data to ANN during
training.

neighborhood_size

integer >=1, specifies affected neighbor output nodes during training. if 1 (Sin-
gle Winner) the ANN is somewhat similar to k-means.

show_nn boolean, option to display the (trained) ANN internal structure.

Value

Returns a vector of integers containing a cluster id for each data case (row).

Note

Function LVQu employs an unsupervised LVQ for clustering data (Kohonen 1988). This LVQ vari-
ant is described as Unsupervised Learning LVQ in Simpson (1991) and is a simplified 1-D version
of Self-Organizing-Map (SOM). Its parameter neighborhood_size controls the encoding mode
(where neighborhood_size=1 is Single-Winner Unsupervised encoding, similar to k-means, while
an odd valued neighborhood_size > 1 means Multiple-Winner Unsupervised encoding mode).
Initial weights are random (uniform distribution) in 0 to 1 range. As these weights represent cluster
center coordinates (the class reference vector), it is important that input data is also scaled to this
range.

(This function uses Rcpp to employ ’som_nn’ class in nnlib2.)

20 MAM-class

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Kohonen, T (1988). Self-Organization and Associative Memory, Springer-Verlag.; Simpson, P. K.
(1991). Artificial neural systems: Foundations, paradigms, applications, and implementations. New
York: Pergamon Press.

Philippidis, TP & Nikolaidis, VN & Kolaxis, JG. (1999). Unsupervised pattern recognition tech-
niques for the prediction of composite failure. Journal of acoustic emission. 17. 69-81.

See Also

LVQs (supervised LVQ module),

Examples

LVQ expects data in 0 to 1 range, so scale...
iris_s<-as.matrix(iris[1:4])
c_min<-apply(iris_s,2,FUN = "min")
c_max<-apply(iris_s,2,FUN = "max")
c_rng<-c_max-c_min
iris_s<-sweep(iris_s,2,FUN="-",c_min)
iris_s<-sweep(iris_s,2,FUN="/",c_rng)

cluster_ids<-LVQu(iris_s,5,100)
plot(iris_s, pch=cluster_ids, main="LVQ-clustered Iris data")

MAM-class Class "MAM"

Description

A single Matrix Associative Memory (MAM) implemented as a (supervised) NN.

Extends

Class "RcppClass", directly.

All reference classes extend and inherit methods from "envRefClass".

Fields

.CppObject: Object of class C++Object ~~

.CppClassDef: Object of class activeBindingFunction ~~

.CppGenerator: Object of class activeBindingFunction ~~

MAM-class 21

Methods

encode(data_in, data_out): Setup a new MAM NN and encode input-output data pairs. Pa-
rameters are:

• data_in: numeric matrix, input data to be encoded in MAM, a numeric matrix (2d, of
n rows). Each row will be paired to the corresponding data_out row, forming an input-
output vector pair.

• data_out: numeric matrix, output data to be encoded in MAM, a numeric matrix (2d,
also of n rows). Each row will be paired to the corresponding data_in row, forming an
input-output vector pair.

Note: to encode additional input-output vector pairs in an existing MAM, use train_single
method (see below).

recall(data): Get output for a dataset (numeric matrix data) from the (trained) MAM NN.

train_single (data_in, data_out): Encode an input-output vector pair in the MAM NN. Vec-
tor sizes should be compatible to the current NN (as resulted from the encode method).

print(): print NN structure.

show(): print NN structure.

load(filename): retrieve the NN from specified file.

save(filename): save the NN to specified file.

The following methods are inherited (from the corresponding class): objectPointer ("RcppClass"),
initialize ("RcppClass"), show ("RcppClass")

Note

The NN in this module uses supervised training to store input-output vector pairs.

(This function uses Rcpp to employ ’mam_nn’ class in nnlib2.)

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

References

Pao Y (1989). Adaptive Pattern Recognition and Neural Networks. Reading, MA (US); Addison-
Wesley Publishing Co., Inc.

See Also

BP,LVQs.

Examples

iris_s <- as.matrix(scale(iris[1:4]))
class_ids <- as.integer(iris$Species)
num_classes <- max(class_ids)

create output dataset to be used for training, Here we encode class as -1s and 1s

22 NN-class

iris_data_out <- matrix(data = -1, nrow = nrow(iris_s), ncol = num_classes)

now for each case, assign a 1 to the column corresponding to its class
for(r in 1:nrow(iris_data_out)) iris_data_out[r,class_ids[r]]=1

Finally apply MAM:
Encode train pairs in MAM and then get output dataset by recalling the test data.

mam <- new("MAM")

mam$encode(iris_s,iris_data_out)

test the encoding by recalling the original input data...
mam_data_out <- mam$recall(iris_s)

find which MAM output has the largest value and use this as the final cluster tag.
mam_recalled_cluster_ids = apply(mam_data_out,1,which.max)

plot(iris_s, pch=mam_recalled_cluster_ids, main="MAM recalled Iris data classes")

cat("MAM recalled these IDs:\n")
print(mam_recalled_cluster_ids)

NN-class Class "NN"

Description

NN module, for defining and manipulating custom neural networks.

Extends

Class "RcppClass", directly.

All reference classes extend and inherit methods from "envRefClass".

Fields

.CppObject: Object of class C++Object ~~

.CppClassDef: Object of class activeBindingFunction ~~

.CppGenerator: Object of class activeBindingFunction ~~

Methods

add_layer(name, size, optional_parameter):

add_layer(parameters): Setup a new layer component (a layer of processing nodes) and ap-
pend it to the NN topology. Returns TRUE if successful. Parameters are:

NN-class 23

• name: string, containing name (that also Specifies type) of new layer. Names of prede-
fined layers currently include 'pe'(same as 'generic'), 'pass-through', 'which-max',
'MAM', 'LVQ-input', 'LVQ-output', 'BP-hidden', 'BP-output', 'perceptron' (Some
of the available names are listed in NN_component_names, additional names for user-
defined components may be added, see note.)

• size: integer, layer size i.e. number of pe (Processing Elements or nodes) to create in
the layer.

• optional_parameter: (optional) double, parameter to be used by specific layer im-
plementations (for example, BP layer implementations 'BP-hidden' and 'BP-output'
interpret it is as the layer’s learning rate). Note: for more optional parameters use
parameters below.

• parameters: list, containing named parameters to be used in creating the layer. Must
include an element named name and an element called size (similar to the corresponding
standalone parameters described above).

add_connection_set(name, optional_parameter):

add_connection_set(parameters): Create a new empty connection_set component (a set of
connections between two layers). It does not connect any layers nor contain any connections
between specific layer nodes. The set is appended to the NN topology. Returns TRUE if
successful. Parameters are:

• name: string, containing name (that also specifies type) of new empty connection set.
Names of predefined connection sets currently include 'generic', 'pass-through'(which
does not multiply weights), 'wpass-through'(which does multiply weights), 'MAM',
'LVQ', 'BP', 'perceptron' (Some of the available names are listed in NN_component_names,
additional names for user-defined components may be added, see note.).

• optional_parameter: (optional) double, parameter to be used by specific connection
set implementations (for example, 'BP' connection sets interpret it is as the learning rate
to be used when adjusting weights, 'LVQ' connection sets use it to count iterations for
decreasing weight adjustments, etc). Note: for more optional parameters use parameters
below.

• parameters: list, containing named parameters to be used in creating the connection
set. Must include an element named name which contains the name (that also specifies
type) of new empty connection set (similar to the corresponding standalone parameter
described above).

create_connections_in_sets(min_random_weight, max_random_weight): Find empty, un-
connected connection_set components that are between two layers in the topology, and set
them up to connect the adjacent layers, adding connections to fully connect their nodes (n x
m connections created, n and m the number of nodes at each layer respectively). Assumes top
layer is source and bottom layer is destination. Returns TRUE if successful. Parameters are:

• min_random_weight: double, minimum value for random initial connection weights.
• max_random_weight: double, maximum value for random initial connection weights.

connect_layers_at(source_pos, destin_pos, name, optional_parameter):

connect_layers_at(source_pos, destin_pos, parameters): Insert a new empty connection_set
component (a set of connections between two layers) between the layers at specified topology
positions, and prepare it to be filled with connections between them. No actual connections
between any layer nodes are created. Returns TRUE if successful. Parameters are:

24 NN-class

• source_pos: integer, position in topology of source layer.
• destin_pos: integer, position in topology of destination layer.
• name: string, containing name (that also specifies type) of new connection set (see above).
• optional_parameter: (optional) double, parameter to be used by specific connection

set implementations (for example, 'BP' connection sets interpret it is as the learning rate
to be used when adjusting weights, 'LVQ' connection sets use it to count iterations for
decreasing weight adjustments, etc). Note: for more optional parameters use parameters
below.

• parameters: list, containing named parameters to be used in creating the connection
set. Must include an element named name which contains the name (that also specifies
type) of new empty connection set (similar to the corresponding standalone parameter
described above).

fully_connect_layers_at(source_pos, destin_pos, name, min_random_weight, max_random_weight, optional_parameter):

fully_connect_layers_at(source_pos, destin_pos, parameters, min_random_weight, max_random_weight):
Same as connect_layers_at but also fills the new connection_set with connections be-
tween the nodes of the two layers, fully connecting the layers (n x m connections are created,
with n and m the number of nodes at each layer respectively). Returns TRUE if successful.
Parameters are:

• source_pos: integer, position in topology of source layer.
• destin_pos: integer, position in topology of destination layer.
• name: string, containing name (that also specifies type) of new connection set (see above).
• min_random_weight: double, minimum value for random initial connection weights.
• max_random_weight: double, maximum value for random initial connection weights.
• optional_parameter: (optional) double, parameter to be used by specific connection

set implementations (for example, 'BP' connection sets interpret it is as the learning rate
to be used when adjusting weights, 'LVQ' connection sets use it to count iterations for
decreasing weight adjustments, etc). Note: for more optional parameters use parameters
below.

• parameters: list, containing named parameters to be used in creating the connection
set. Must include an element named name which contains the name (that also specifies
type) of new empty connection set (similar to the corresponding standalone parameter
described above).

add_single_connection(pos, source_pe, destin_pe, weight): Add a connection to a connection_set
that already connects two layers. Parameters are:

• pos: integer, position in topology of connection_set to which the new connection will
be added.

• source_pe: integer, pe in source layer to connect.
• destin_pe: integer, pe in destination layer to connect.
• weight: double, value for initial connection weight.

remove_single_connection(pos, con): Remove a connection from a connection_set. Pa-
rameters are:

• pos: integer, position in topology of connection_set.
• con: integer, connection to remove (note: numbering starts from 0).

NN-class 25

size(): Returns neural network size, i.e. the number of components its topology.
sizes(): Returns sizes of components in topology.
component_ids(): Returns an integer vector containing the ids of the components in topology

(these ids are created at run-time and identify each NN component).
encode_at(pos): Trigger the encoding operation of the component at specified topology index

(note: depending on implementation, an ’encode’ operation usually collects inputs, processes
the data, adjusts internal state variables and/or weights, and possibly produces output). Re-
turns TRUE if successful. Parameters are:

• pos: integer, position (in NN’s topology) of component to perform encoding.
encode_all(fwd): Trigger the encoding operation of all the components in the NN topology.

Returns TRUE if successful. Parameters are:
• fwd: logical, set to TRUE to trigger encoding forwards (first-to-last component), FALSE

to trigger encoding backwards (last-to-first component).
encode_all_fwd(): Trigger the encoding operation of all the components in the NN topology

following a forward (top-to-bottom) direction. Returns TRUE if successful.
encode_all_bwd(): Trigger the encoding operation of all the components in the NN topology

following a backward (bottom-to-top) direction. Returns TRUE if successful.
encode_dataset_unsupervised(data, pos, epochs, fwd): Encode a dataset using unsuper-

vised training. A faster method to encode a data set. All the components in the NN topology
will perform ’encode’ in specified direction. Returns TRUE if successful. Parameters are:

• data: numeric matrix, containing input vectors as rows.
• pos: integer, position (in NN’s topology) of component to receive input vectors.
• epochs: integer, number of training epochs (encoding repetitions of the entire dataset).
• fwd: logical, indicates direction, TRUE to trigger encoding forwards (first-to-last compo-

nent), FALSE to encode backwards (last-to-first component).
encode_datasets_supervised(i_data, i_pos, j_data, j_pos, j_destination_register, epochs, fwd):

Encode multiple (i,j) vector pairs stored in two corresponding data sets, using supervised train-
ing. A faster method to encode the data. All the components in the NN topology will perform
’encode’ in specified direction. Returns TRUE if successful. Parameters are:

• i_data: numeric matrix, data set, each row is a vector i of vector-pair (i,j).
• i_pos: integer, position (in NN’s topology) of component to receive i vectors.
• j_data: numeric matrix, data set, each row is a corresponding vector j of vector-pair (i,j).
• j_pos: integer, position (in NN’s topology) of component to receive j vectors.
• j_destination_selector: integer, selects which internal node (pe) registers will re-

ceive vector j, i.e. if 0 internal node register ’input’ will be used (j will become the
layer’s input), if 1 register ’output’ will be used (j will become the layer’s output), if
2 register ’misc’ will be used (implementations may use this as an alternative way to
transfer data to nodes without altering current input or output).

• epochs: integer, number of training epochs (encoding repetitions of the entire data).
• fwd: logical, indicates direction, TRUE to trigger encoding forwards (first-to-last compo-

nent), FALSE to encode backwards (last-to-first component).
recall_at(pos): Trigger the recall (mapping, data retrieval) operation of the component at spec-

ified topology index (note: depending on implementation, a ’recall’ operation usually collects
input(s), processes the data, produces output and resets input to 0). Returns TRUE if success-
ful. Parameters are:

26 NN-class

• pos: integer, position (in NN’s topology) of component to perform recall.
recall_all(fwd): Trigger the recall (mapping, data retrieval) operation of all the components in

the NN topology. Returns TRUE if successful. Parameters are:
• fwd: logical, set to TRUE to trigger recall forwards (first-to-last component), FALSE to

trigger recall backwards (last-to-first component).
recall_all_fwd(): Trigger the recall (mapping, data retrieval) operation of all the components in

the NN topology following a forward (top-to-bottom) direction. Returns TRUE if successful.
recall_all_bwd(): Trigger the recall (mapping, data retrieval) operation of all the components in

the NN topology following a backward (bottom-to-top) direction. Returns TRUE if successful.
recall_dataset(data_in, input_pos, output_pos, fwd): Recall (map, retrieve output for) a

dataset. A faster method to recall an entire data set. All the components in the NN topology
will perform ’recall’ in specified direction. Returns numeric matrix containing corresponding
output. Parameters are:

• data_in: numeric matrix, containing input vectors as rows.
• input_pos: integer, position (in NN’s topology) of component to receive input vectors.
• output_pos: integer, position (in NN’s topology) of component to produce output.
• fwd: logical, indicates direction, TRUE to trigger ’recall’ (mapping) forwards (first-to-last

component), FALSE to recall backwards (last-to-first component).
input_at(pos, data_in): Input a data vector to the component (layer) at specified topology

index. Returns TRUE if successful. Parameters are:
• pos: integer, position (in NN’s topology) of component to receive input.
• data_in: NumericVector, data to be sent as input to component (sizes must match).

set_input_at(pos, data_in): Same as input_at (see above)
get_input_at(pos): Get the current input for the component at specified topology index. Cur-

rently applicable to connection_set (returning for each connection the output of correspond-
ing source PE), or layer (returning a preview of current PE inputs; note: many PE imple-
mentations clear their inputs once they have processed them and produced the corresponding
output). If successful, returns NumericVector, otherwise vector of zero length. Parameters
are:

• pos: integer, position (in NN’s topology) of component to use.
get_output_from(pos): Get the current output of the component at specified topology index. If

successful, returns NumericVector of output values (otherwise vector of zero length). Param-
eters are:

• pos: integer, position (in NN’s topology) of component to use.
get_output_at(pos): Same as get_output_from, see above.
set_output_at(pos, data_in): Set the values in the output data register that pe objects main-

tain, for layer at specified topology index (currently only layer components are supported).
If successful, returns TRUE. Parameters are:

• pos: integer, position (in NN’s topology) of component to use.
• data_in: NumericVector, data to be used for new values in misc registers (sizes must

match).
get_weights_at(pos): Get the current weights of the component (connection_set) at speci-

fied topology index. If successful, returns NumericVector of connection weights (otherwise
vector of zero length). Parameters are:

NN-class 27

• pos: integer, position (in NN’s topology) of component to use.

set_weights_at(pos): Set the weights of the component (connection_set) at specified topol-
ogy index. If successful, returns TRUE. Parameters are:

• pos: integer, position (in NN’s topology) of component to use.
• data_in: NumericVector, data to be used for new values in weight registers of connec-

tions (sizes must match).

get_weight_at(pos, connection): Get the current weight of a connection in component (connection_set)
at specified topology index. If successful, returns weight, otherwise 0 (note: this might change
in future versions). Parameters are:

• pos: integer, position (in NN’s topology) of component to use.
• connection: integer, connection to use (note: numbering starts from 0).

set_weight_at(pos, connection, value): Set the weight of a connection in component (connection_set)
at specified topology index. If successful, returns TRUE. Parameters are:

• pos: integer, position (in NN’s topology) of component to use.
• connection: integer, connection to use (note: numbering starts from 0).
• value: new weight for connection.

get_misc_values_at(pos): Get the values in the misc data register that pe and connection
objects maintain, for objects at specified topology index. If successful, returns NumericVector
of the values (otherwise vector of zero length). Parameters are:

• pos: integer, position (in NN’s topology) of component to use.

set_misc_values_at(pos, data_in): Set the values in the misc data register that pe and connection
objects maintain, for objects at specified topology index. If successful, returns TRUE. Param-
eters are:

• pos: integer, position (in NN’s topology) of component to use.
• data_in: NumericVector, data to be used for new values in misc registers (sizes must

match).

get_biases_at(pos): Get the values in the bias register that pe (Processing Elements or nodes)
maintain, for layer at specified topology index (only layer components are supported). If
successful, returns NumericVector of bias values (otherwise vector of zero length). Parameters
are:

• pos: integer, position (in NN’s topology) of component to use.

set_biases_at(pos, data_in): Set the values in the bias register that pe (Processing Elements
or nodes) maintain, for layer at specified topology index (only layer components are sup-
ported). If successful, returns TRUE. Parameters are:

• pos: integer, position (in NN’s topology) of component to use.
• data_in: NumericVector, data to be used for new values in bias registers (sizes must

match).

get_bias_at(pos, pe): Get the bias of a pe (Processing Element or node) in component (layer)
at specified topology index. If successful, returns bias otherwise 0 (note: this might change in
future versions). Parameters are:

• pos: integer, position (in NN’s topology) of component to use.
• pe: integer, Processing Element (node) in layer to use (note: numbering starts from 0).

28 NN-class

set_bias_at(pos, pe, value): Set the bias of a pe (Processing Element or node) in component
(layer) at specified topology index. If successful, returns TRUE. Parameters are:

• pos: integer, position (in NN’s topology) of component to use.
• pe: integer, Processing Element (node) in layer to use (note: numbering starts from 0).
• value: new value for bias at the specified pe.

add_R_forwarding(trigger, FUN): Adds a control component which will invoke an R function.
The R function will receive (as its first argument) a vector of values containing the output of the
previous component in the topology. The object returned by the function will be fed as input
to the next (in forward direction) component in the topology. Notes: (a) once the R function
is invoked, its result will be maintained as this component’s output; (b) the component will
fail to perform processing if the R function’s result cannot be converted to a numeric vector.
If successful, returns TRUE. Parameters are:

• trigger: string, specifies when to invoke the R function. Valid options are "on encode",
"on recall", "always" or "never".

• FUN: string, the R function to be invoked. If "", no R function is invoked and data is
transferred unmodified.

add_R_pipelining(trigger, FUN, fwd): Adds a control component which will invoke an R
function. The R function will process (as its first argument) a vector of values which are the
output of a neighboring component in the topology; The result of invoking the function will
be fed as input to the other neighboring component in the topology. The components are
selected according to the value of parameter fwd (see below). Notes: (a) once the R function
is invoked, its result will be maintained as this component’s output; (b) the component will
fail to perform processing if the R function’s result cannot be converted to a numeric vector.
If successful, returns TRUE. Parameters are:

• trigger: string, specifies when to invoke the R function. Valid options are "on encode",
"on recall", "always" or "never".

• FUN: string, the R function to be invoked. If "", no R function is invoked and data is
transferred unmodified.

• fwd: logical, set to TRUE if encoding or recalling in forward, top-to-bottom, direction
and need to read from previous component in the topology feeding the result as input
to the next (same as add_R_forwarding). If FALSE, reads from next component in the
topology and feeds the result as input to the previous (useful when encoding/recalling in
backward, bottom-to-top, direction).

add_R_ignoring(trigger, FUN, i_mode, input_from): Adds a control component which will
invoke an R function ignoring its result. The R function will process (as its first argument) a
vector of values taken from a specified component in the topology, but the function’s result
will be ignored. This is suitable for invoking functions such as print, plot etc. Note: the
component maintains the original values as its output values but does not send to any other
component neither these original values nor the result of the R function. If successful, returns
TRUE. Parameters are:

• trigger: string, specifies when to invoke the R function. Valid options are "on encode",
"on recall", "always" or "never".

• FUN: string, the R function to be invoked. If "", no R function is invoked and data is
transferred unmodified.

NN-class 29

• i_mode: string, specifies the source of data to be retrieved and processed by the R func-
tion. Valid options are "none", "input of", "output of", "weights at", "biases at"
and "misc at".

• input_from: integer, position (in NN’s topology) of component to retrieve data from.

add_R_function(trigger, FUN, i_mode, input_from, o_mode, output_to, ignore_result):
Adds a control component which will invoke an R function. The R function will process pro-
cess (as its first argument) a vector of values taken from a specified component and feed the
results to another component. Notes: (a) once the R function is invoked, its result will be
maintained as this component’s output (unless ignore_result is set to TRUE, in which case
the original values will be maintained); (b) the component will fail to perform processing if
the R function’s result cannot be converted to a numeric vector and ignore_result is FALSE.
If successful, returns TRUE. Parameters are:

• trigger: string, specifies when to invoke the R function. Valid options are "on encode",
"on recall", "always" or "never".

• FUN: string, the R function to be invoked. If "", no R function is invoked and data is
transferred unmodified.

• i_mode: string, specifies the source of data to be retrieved and processed by the R func-
tion. Valid options are "none", "input of", "output of", "weights at", "biases at"
and "misc at".

• input_from: integer, position (in NN’s topology) of component to retrieve data from.
• o_mode: string, specifies the destination for the result returned by the R function. Valid

options are "none", "to input", "to output", "to weights", "to biases" and "to
misc".

• output_to: integer, position (in NN’s topology) of component to receive the resulting
data.

• ignore_result: logical, if TRUE, the R function’s results are ignored and original
(incoming) values are maintained and (possibly) sent to the output_to component. If
FALSE, the values used are those returned by the R function.

outline(): Print a summary description of all components in topology.

print(): Print internal NN state, including all components in topology.

show(): Print summary description and internal NN state.

get_topology_info(): Returns data.frame with topology information.

The following methods are inherited (from the corresponding class): objectPointer ("RcppClass"),
initialize ("RcppClass"), show ("RcppClass").

Note

This R module maintains a generic neural network that can be manipulated using the provided
methods. In addition to predefined components already existing in the package, new neural network
components can be defined and then employed by the "NN" module. In doing so, it is recommended
to use the provided C++ base classes and class-templates. This requires the package source code
(which includes the nnlib2 C++ library of neural network base classes) and the ability to compile
the package. The steps for defining new types of components using C++ are outlined below:

• Any new component type or class definition should be added to the header file called "additional_parts.h"
which is included in the package source (src) directory, or in files accessible by the functions

30 NN-class

in "additional_parts.h". Therefore, all new components to be employed by the NN module
must be defined in "additional_parts.h" or in files that this file includes via #include.

• New layer, connection_set, pe or connection definitions must comply (at least loosely)
to the nnlib2 base class hierarchy and structure and follow the related guidelines. Note: some
minimal examples of class and type definitions can be found in the "additional_parts.h"
file itself.

• A textual name must be assigned to any new layer or connection_set, to be used as pa-
rameter in NN module methods that require a name to create a component. This can be
as simple as a single line of code where given the textual name the corresponding com-
ponent object is created and returned. This code must be added (as appropriate) to either
generate_custom_layer() or generate_custom_connection_set() functions found in
the same "additional_parts.h" header file. Note: example entries can be found in these
functions at the "additional_parts.h" file. Some of the available names are listed in
NN_component_names.

Alternatively, NN components can also be defined using only R code (see NN_R_components).
More information on expanding the library with new types of NN components (nodes, layers, con-
nections etc) and models, can be found in the package’s vignette as well as the related repository on
Github). Please consider submitting any useful components you create, to enrich future versions of
the package.

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

See Also

BP, LVQs, MAM, NN_component_names, NN_R_components.

Examples

Example 1:

(1.A) create new 'NN' object:

n <- new("NN")

(1.B) Add topology components:

1. add a layer of 4 generic nodes:
n$add_layer("generic",4)
2. add a set for connections that pass data unmodified:
n$add_connection_set("pass-through")
3. add another layer of 2 generic nodes:
n$add_layer("generic",2)
4. add a set for connections that pass data x weight:
n$add_connection_set("wpass-through")
5. add a layer of 1 generic node:
n$add_layer("generic",1)
Create actual full connections in sets, random initial weights in [0,1]:
n$create_connections_in_sets(0,1)

https://github.com/VNNikolaidis/nnlib2Rcpp
https://github.com/VNNikolaidis/nnlib2Rcpp

NN-class 31

Optionaly, show an outline of the topology:
n$outline()

(1.C) use the network.

input some data, and create output for it:
n$input_at(1,c(10,20,30,40))
n$recall_all(TRUE)
the final output:
n$get_output_from(5)

(1.D) optionally, examine the network:

the input for set of connections at position 2:
n$get_input_at(2)
Data is passed unmodified through connections at position 2,
and (by default) summed together at each node of layer at position 3.
Final output from layer in position 3:
n$get_output_from(3)
Data is then passed multiplied by the random weights through
connections at position 4. The weights of these connections:
n$get_weights_at(4)
Data is finally summed together at the node of layer at position 5,
producing the final output, which (again) is:
n$get_output_from(5)

-
Example 2: A simple MAM NN

(2.A) Preparation:

Create data pairs

iris_data <- as.matrix(scale(iris[1:4]))
iris_species <- matrix(data=-1, nrow=nrow(iris_data), ncol=3)
for(r in 1:nrow(iris_data))
iris_species[r ,as.integer(iris$Species)[r]]=1

Create the NN and its components:

m <- new("NN")
m$add_layer("generic" , 4)
m$add_layer("generic" , 3)
m$fully_connect_layers_at(1, 2, "MAM", 0, 0)

(2.B) Use the NN to store iris (data,species) pair:

encode pairs in NN:

m$encode_datasets_supervised(
iris_data,1,
iris_species,3,0,
1,TRUE)

32 NN-class

(2.C) Recall iris species from NN:

recalled_data <- m$recall_dataset(iris_data,1,3,TRUE)

(2.D) Convert recalled data to ids and plot results:

recalled_ids <- apply(recalled_data, 1, which.max)
plot(iris_data, pch=recalled_ids)

-
Example 3: Using add_R_... methods in a NN:

(3.A) add_R_ignoring, for functions whose result will be ignored by the NN:

a<-new("NN")
a$add_layer("pass-through",4)
a$add_R_ignoring("on recall","print","output of",1)
a$add_connection_set("pass-through")
a$add_R_ignoring("on recall","print","input of",3)
a$add_layer("pass-through",2)
a$add_R_ignoring("on recall","print","output of",5)
a$create_connections_in_sets(0,0)

below a fwd recall. During it, the NN will print the output
of layer @1, then print the input of connections @3, and
finally print the output of layer @5:

a$set_input_at(1,1:4)
a$recall_all(TRUE)

(3.B) add_R_forwarding is used to read output of component above,
apply an R function and send result as input to component below.
(Due to current limitations of various component types, place the
add_R_forwarding between two layers and connect other components
two those layers)

a<-new("NN")
a$add_layer("pass-through",4)
a$add_R_forwarding("on recall","sin")
a$add_layer("pass-through",4)

during a fwd recall, the R component @2 will get the output
of layer @1, apply an R function (here function sin) and send
the result as input to layer @3.

a$set_input_at(1,1:4)
a$recall_all(TRUE)
a$get_output_from(3)

(3.C) add_R_pipelining is similar to add_R_forwarding but allows reading
the output of component below, and feed result to component above
(for encode/recalls in backwards direction)

NN-class 33

a<-new("NN")
a$add_layer("pass-through",4)
a$add_R_pipelining("on recall","sin",FALSE)
a$add_layer("pass-through",4)

below is a recall backwards, the R component @2 will get the output
of layer @3, apply R function and send the its as input to layer @1.

a$set_input_at(3,1:4)
a$recall_all(FALSE)
a$get_output_from(1)

(3.D) add_R_function allows us to define the destination for the function's
results. This may include destinations such as PE biases, connection
weights etc.

a<-new("NN")
a$add_layer("pass-through",4)
a$add_R_function("on recall","sum","output of",1,"to input",3, FALSE)
a$add_layer("pass-through",1)

below, in a typical forward recall, the R component @2 will get the output
of layer @1, apply an R function (here function sum) and send it as
input of layer @3.

a$set_input_at(1,1:4)
a$recall_all(TRUE)
a$get_output_from(3)

-
Example 4: A more complete example where a NN similar to that of help(LVQs)
is implemented via 'NN'. It is a (supervised) LVQ. This version
also allows using multiple output nodes per class.
Note: while this is similar to LVQs, learning rate is NOT affected by epoch.
Obviously (as goes for most NN, especially simple ones like this), one could
easily create the model using just a matrix and some R code processing it;
more elaborately, it could be implemented via R components (see help(NN_R_components));
but how could one then be able to use all that fancy NN terminology? :)

some options:

define how many output nodes will be implicitly assigned for each class,
i.e. groups of connections / prototype vectors / codebook vectors per class:

number_of_output_pes_per_class <- 3

plot results?

plot_result = FALSE

also use a mechanism to store weights (so we can plot them later)?

34 NN-class

record_weights_at_each_iteration <- FALSE

Next, prepare some data (based on iris).
LVQ expects data in 0 to 1 range, so scale some numeric data...

DATA <- as.matrix(iris[1:4])
c_min <- apply(DATA, 2, FUN = "min")
c_max <- apply(DATA, 2, FUN = "max")
c_rng <- c_max - c_min
DATA <- sweep(DATA, 2, FUN = "-", c_min)
DATA <- sweep(DATA, 2, FUN = "/", c_rng)

create a vector of desired class ids:

desired_class_ids <- as.integer(iris$Species)

defined just to make names more general (independent from iris):

input_length <- ncol(DATA)
number_of_classes <- length(unique(desired_class_ids))

Next, setup the LVQ NN.
output layer may be expanded to accommodate multiple PEs per class:

output_layer_size <-
number_of_classes * number_of_output_pes_per_class

next, implement a supervised LVQ using NN module:

LVQ_PUNISH_PE <- 10 # as defined in the C++ LVQ code.
LVQ_DEACTI_PE <- 20 # as defined in the C++ LVQ code.
LVQ_REWARD_PE <- 30 # as defined in the C++ LVQ code.
LVQ_RND_MIN <- 0 # as defined in the C++ LVQ code.
LVQ_RND_MAX <- +1 # as defined in the C++ LVQ code.

create a typical LVQ topology for this problem:

n <- new('NN')
n$add_layer('pass-through', input_length)
n$add_connection_set('LVQ', 0)
n$add_layer('LVQ-output', output_layer_size)
n$create_connections_in_sets(LVQ_RND_MIN, LVQ_RND_MAX)

optional, store current weights (so we can plot them later):

if (record_weights_at_each_iteration)
cvs <- n$get_weights_at(2)

an ugly (nested loop) encoding code:

for (epoch in 1:5)
for (i in 1:nrow(DATA))
{

NN-class 35

recall a data vector:

n$input_at(1, DATA[i,])
n$recall_all_fwd()

find which output node is best for input vector (has smallest distance)
current_winner_pe <- which.min(n$get_output_at(3))

translate winning node to class id:
returned_class <-
ceiling(current_winner_pe / number_of_output_pes_per_class)

now check if the correct class was recalled (and reward)
or an incorrect (and punish):

in LVQ layers, the 'bias' node (PE) register is used to indicate if
positive (reward) or negative (punishment) should be applied.

new_output_flags <- rep(LVQ_DEACTI_PE, output_layer_size)
new_output_flags[current_winner_pe] <- LVQ_PUNISH_PE
if (returned_class == desired_class_ids[i])
new_output_flags[current_winner_pe] <- LVQ_REWARD_PE
n$set_biases_at(3, new_output_flags)

note: for this example (and unlike LVQs) learning rate is constant,
NOT dicreasing as epochs increase.

n$encode_at(2)

optional, store current weights (so we can plot them later):

if (record_weights_at_each_iteration)
cvs <- rbind(cvs, n$get_weights_at(2))
}

done encoding.

recall all data:

lvq_recalled_winning_nodes <-
apply(n$recall_dataset(DATA, 1, 3, TRUE), 1, which.min)

translate winning node to class id:
lvq_recalled_class_ids <-
ceiling(lvq_recalled_winning_nodes / number_of_output_pes_per_class)

correct <- lvq_recalled_class_ids == desired_class_ids
cat("Correct:", sum(correct), "\n")
cat("Number of produced classes:", length(unique(lvq_recalled_class_ids)), "\n")

plot results if requested (here only columns 1 and 2 are displayed):

if (plot_result)

36 NN_component_names

{
plot(data, pch = lvq_recalled_class_ids,
main = "LVQ recalled clusters (module)")

optional, if weights were stored, plot them later:

if (record_weights_at_each_iteration)
{
for (cv in 0:(output_layer_size - 1))
lines(cvs[, (cv * input_length + 1):(cv * input_length + 2)],

lwd = 2, col = cv + 1)
}
}

NN_component_names Names of available NN components

Description

A quick summary of names that can be used for adding NN components in a NN module. These
names are available in the current package version. More components can be defined by the user or
may be added in future versions.

Current names for layers:

Layer names currently available include:

• generic: a layer of generic Processing Elements (PEs).

• generic_d: same as above.

• pe: same as above.

• pass-through: a layer with PEs that simply pass input to output.

• which-max: a layer with PEs that return the index of one of their inputs whose value is maxi-
mum.

• MAM: a layer with PEs for Matrix-Associative-Memory NNs (see vignette).

• LVQ-input: LVQ input layer (see vignette).

• LVQ-output: LVQ output layer (see vignette).

• BP-hidden: Back-Propagation hidden layer (see vignette).

• BP-output: Back-Propagation output layer (see vignette).

• R-layer: A layer whose encode and recall (map) functionality is defined in R (see NN_R_components).

Additional (user-defined) layers currently available include:

• JustAdd10: a layer where PEs output the sum of their inputs plus 10 (created for use as
example in vingnette).

• perceptron: a classic perceptron layer (created for use as example in in this post).

https://www.r-bloggers.com/2020/07/creating-custom-neural-networks-with-nnlib2rcpp/

NN_component_names 37

• MEX: a layer created for use as example in vingnette.

• example_layer_0: a layer created to be used as a simple code example for users creating
custom layers.

• example_layer_1: as above.

• example_layer_2: as above.

• BP-hidden-softmax: Back-Propagation hidden layer that performs softmax on its output
(when recalling).

• BP-output-softmax: Back-Propagation output layer that performs softmax on its output
(when recalling).

• softmax: a layer that (during recall) sums its inputs and outputs the softmax values.

• R-connections: A set of connections whose encode and recall (map) functionality is defined
in R (see NN_R_components).

Current names for sets of connections:

Names for connection sets that are currently available include:

• generic: a set of generic connections.

• pass-through: connections that pass data through with no modification.

• wpass-through: connections that pass data multiplied by weight.

• MAM: connections for Matrix-Associative-Memory NNs (see vignette).

• LVQ: connections for LVQ NNs (see vignette).

• BP: connections for Back-Propagation (see vignette).

Additional (user-defined) connection sets currently available include:

• perceptron: connections for perceptron (created for use as example in in this post).

• MEX: a connection set created for use as example in vingnette.

• example_connection_set_0: a connection set created to be used as a simple code example
for users creating custom types of connection sets.

• example_connection_set_1: as above.

• example_connection_set_2: as above.

Note

These are component names that can be currently used to add components to a NN using the meth-
ods provided by NN module. Such methods include add_layer, add_connection_set, connect_layers_at,
fully_connect_layers_at etc. Some of these components may be experimental or created for
use in examples and may change or be removed in future versions, while other components may be
added.

More information on expanding the library with new, user-defined types of NN components (nodes,
layers, connections etc) and models, can be found in the package’s vignette as well as the related
repository on Github). A quick example can also be found in this post. Please consider submitting
any useful components you create, to enrich future versions of the package.

https://www.r-bloggers.com/2020/07/creating-custom-neural-networks-with-nnlib2rcpp/
https://github.com/VNNikolaidis/nnlib2Rcpp
https://www.r-bloggers.com/2020/07/creating-custom-neural-networks-with-nnlib2rcpp/

38 NN_R_components

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

See Also

NN, NN_R_components.

NN_R_components Custom NN components defined using R

Description

Custom NN components (to be employed in NN module neural networks) usually have their func-
tionality defined using corresponding nnlib2 C++ classes. Alternatively, custom NN components
can be defined using only R code.

Introduction

In addition to NN components defined using the provided nnlib2 C++ classes and class-templates
(see Notes in NN), custom, user-defined NN components also can be created in R code (without
any need for C++). Regardless of how they are defined, such components can be added to neural
networks created in R via NN module and cooperate with each other.

1. Layers

Layers of nodes (aka Processing Elements or PEs) whose encode/recall behavior is to be defined
using R can be added to the NN via the add_layer NN method. The call to add_layer should have
a single parameter, a list containing four named elements:

• name: always equal to "R-layer".

• size: the number of nodes in the new layer.

• encode_FUN: the name of the R function to be called when the layer is encoding data (or "" if
none).

• recall_FUN: the name of the R function to be called when the layer is recalling data (or "" if
none).

For example:

p$add_layer(list(name="R-layer", size=100, encode_FUN="", recall_FUN="rfun"))

adds a layer to a NN topology (here the NN is named p). The new layer will contain 100 nodes,
no R function will be used when the layer is encoding, some R function (here named rfun) will be
used when the layer is recalling (mapping) data.

The R functions specified as encode_FUN and recall_FUN for layers will have to be defined so
that they accept (zero or more) of the following parameters:

NN_R_components 39

• INPUT: vector of the current incoming numeric values (one per node, length equals size of the
layer).

• INPUT_Q: matrix where each column contains the numeric values that have been sent to the
corresponding node.

• BIAS: vector with the numeric value stored as ’bias’ of each node (length equals size of the
layer).

• MISC: vector with the numeric value stored in each node’s ’misc’ register (length equals size
of the layer).

• OUTPUT: vector with the current output of the layer (length equals size of the layer).

In particular, for layers the R functions should have the following characteristics:

• Encode function: the R function to be called when the layer is encoding data may use any
of the parameters listed above and must return a list containing named items with the new
(adjusted) values for BIAS, MISC and / or OUTPUT. If no changes are made by the R function, it
may return an empty list.

• Recall function: the R function to be called when the layer is recalling (mapping) data may
use any of the parameters listed above and must return a vector containing the layer’s new
OUTPUT.

Note: The two variations of input (INPUT and INPUT_Q) are provided for flexibility in various imple-
mentations. Some connection set implementations may only send a single (final) input value to each
node. These values are found in INPUT. Other connection set types may send the individual values
from each individual connection, so that they can be processed by the node’s input_function;
these values will be found in INPUT_Q. Furthermore, there may be designs where a combination of
the two is used (not recommended), or several different connection sets are connected and sending
data to the same destination layer, etc. Also note that direct access to INPUT may be removed is
future versions.

2. Set of connections

Connection sets whose encode/recall behavior is to be defined using R can be added to the NN via
the add_connection_set or fully_connect_layers_at NN methods. The call to add_connection_set
should have a single parameter, a list containing named elements:

• name: always equal to "R-connections".

• encode_FUN: the name of the R function to be called when the connection set is encoding data
(or "" if none).

• recall_FUN: the name of the R function to be called when the connection set is recalling data
(or "" if none).

• requires_misc: (optional) logical, if TRUE each connection will be provided with an extra
’misc’ data register.

For example:

p$add_connection_set(list(name="R-connections",encode_FUN="ef",recall_FUN="rf"))

adds a set of connections to the NN topology (here the NN is named p). The new connection

40 NN_R_components

set will use some R function (here named ef) when encoding data and another R function (here
named rf) when recalling (mapping) data.

Note that for sets of connections defined using R (as described here), each set maintains the connec-
tion weights and (if required) misc values in matrices. During encode or recall (map) operations,
the connection weights matrix, misc values matrix (if any) and other data from the connected lay-
ers are sent for processing to the two R functions. No nnlib2 C++ classes (connection_set and
connection) are employed in this process, and all processing is done in R. The R functions speci-
fied as encode_FUN and recall_FUN for connection sets will have to be defined so that they accept
(zero or more) of the following parameters:

• WEIGHTS: numeric matrix (s rows, d columns). This matrix contains the current connection
weights..

• SOURCE_INPUT: numeric vector (length s) containing the current input values of the nodes in
the source layer (note: nodes often reset this values after they have processed them).

• SOURCE_OUTPUT: numeric vector (length s) containing the current output values of the nodes
in the source layer.

• SOURCE_MISC: numeric vector (length s) with the numeric value stored in ’misc’ registers of
each node in the source layer.

• DESTINATION_INPUT: numeric vector (length d) containing the current input values of the
nodes in the destination layer (note: nodes often reset this values after they have processed
them).

• DESTINATION_OUTPUT: numeric vector (length d) containing the current output values of the
nodes in the destination layer.

• DESTINATION_MISC: numeric vector (length d) with the numeric value stored in ’misc’ regis-
ters of each node in the destination layer.

• MISC: numeric matrix (s rows, d columns). If not used, this is a matrix of 0 rows and 0
columns, otherwise it contains the values of the ’misc’ register in each connection.

where s is the number of nodes (length) of the source layer and d the number nodes in the destina-
tion layer.

The R functions for connection sets should have the following characteristics:

• Encode function: the R function to be called when the connection set is encoding data may
use any of the parameters listed above, but must return a list containing the new (adjusted)
connection weights (named WEIGHTS, numeric matrix of s rows, d columns) and possibly the
new connection ’misc’ values (named MISC, numeric matrix of s rows, d columns). If no
changes were made by the R function, it may return an empty list.

• Recall function: the R function to be called when the connection set is recalling or map-
ping data may use any of the parameters listed above and must return a numeric matrix of d
columns. Each column of this matrix should contain the data values to be sent to the corre-
sponding node (PE) in the destination layer. (Note: this matrix is similar to the INPUT_Q used
in layers, see above).

NN_R_components 41

3. Control components

Other special control or processing components can be added using NN module’s add_R_forwarding,
add_R_pipelining, add_R_ignoring, and add_R_function methods. See NN module.

Note

Defining NN components with custom behavior in R does have a cost in terms of run-time perfor-
mance. It also, to a certain degree, defies some of the reasons for using C++ classes. However, it
may be useful for experimentation, prototyping, education purposes etc.

Author(s)

Vasilis N. Nikolaidis <vnnikolaidis@gmail.com>

See Also

NN, NN_component_names.

Examples

Not run:
#---
1. LAYER EXAMPLE:

Example R function to be used when the layer is encoding:
Version for when the final input (a single value per PE) is directly sent to
the layer (by set_input or some connection set).
Outputs difference from current bias values, stores current input as new bias:

LAYERenc1 <- function(INPUT,BIAS,...)
{
i <- INPUT # get values directly injected as input to the PE.
o <- i-BIAS # subtract old bias from input.
update layer's output and biases:
return(list(OUTPUT=o, BIAS=INPUT))
}

Example R function to be used when the layer is recalling (mapping):
Version for when the final input (a single value per PE) is directly sent to
the layer (by set_input or some connection set).
Outputs difference from current bias values:

LAYERrec1 <- function(INPUT,BIAS,...)
{
i <- INPUT # get values directly injected as input to the PE.
o <- i-BIAS # subtract old bias from input.
return(o) # return this as output.
}

Example R function to be used when the layer is encoding (same as above):
Version for cases where a connection set is designed to send multiple

42 NN_R_components

values (one for each incoming connection) to each PE in the layer so that
the PE can process them as needed. - typically via its 'input_function'.
(also works when set_input is used)
INPUT_Q is a matrix where each column contains the values that have been sent
to the corresponding node (PE).
Outputs difference from current bias values, stores current input as new bias:

LAYERenc2 <- function(INPUT_Q,BIAS,...)
{
i <- colSums(INPUT_Q) # summate incoming values to produce final input.
o <- i-BIAS # subtract old bias from that input.
update layer's output and biases:
return(list(OUTPUT=o, BIAS=i))
}

Example R function to be used when the layer is recalling/mapping (same as above):
version for cases where a connection set is designed to send multiple
values (one for each incoming connection) to each PE in the layer so that
the PE can process them as needed - typically via its 'input_function'.
(also works when set_input is used)
INPUT_Q is a matrix where each column contains the values that have been sent
to the corresponding node (PE).
Outputs difference from current bias values:

LAYERrec2 <- function(INPUT_Q,BIAS,...)
{
i <- colSums(INPUT_Q) # summate incoming values to produce final input.
o <- i-BIAS # subtract old bias from that input.
return(o) # return this as output.
}

create and setup a "NN".

n<-new("NN")
n$add_layer(list(name="R-layer", size=4,
encode_FUN="LAYERenc1", recall_FUN="LAYERrec1"))

test the layer:

n$set_input_at(1,c(1,0,5,5))
n$encode_at(1)
print(n$get_biases_at(1))

n$set_input_at(1,c(20,20,20,20))
n$recall_at(1)
print(n$get_output_at(1))
n$set_input_at(1,c(10,0,10,0))
n$recall_at(1)
print(n$get_output_at(1))

#---
2. CONNECTION SET EXAMPLE:

NN_R_components 43

This simple connection set will encode data by adding to each connection
weight the output of the source node.

CSenc <- function(WEIGHTS, SOURCE_OUTPUT,...)
{
x <- WEIGHTS + SOURCE_OUTPUT
return(list(WEIGHTS=x))
}

When recalling, this simple connection set multiplies source data by weights.
this version sends multiple values (the products) to each destination node.
Typical (s.a. generic) nodes add these values to process them.

CSrec1 <- function(WEIGHTS, SOURCE_OUTPUT,...)
{
x <- WEIGHTS * SOURCE_OUTPUT
return(x)
}

When recalling, this simple connection set multiplies source data by weights.
this version sends a single value (the sum of the products) to each
destination node.

CSrec2 <- function(WEIGHTS, SOURCE_OUTPUT,...)
{
x <- SOURCE_OUTPUT %*% WEIGHTS
return(x)
}

create and setup a "NN".

n<-new("NN")
n$add_layer("generic",4)
n$add_connection_set(list(name="R-connections",encode_FUN="CSenc",recall_FUN="CSrec2"))
n$add_layer("generic",2)
n$create_connections_in_sets(0,0)

test the NN:

n$set_input_at(1,c(0,1,5,10))
n$encode_all_fwd()
n$set_input_at(1,c(1,1,1,1))
n$encode_all_fwd()

see if weights were modified:
print(n$get_weights_at(2))

n$set_input_at(1,c(20,20,20,20))
n$recall_all_fwd()
print(n$get_output_at(3))

#---
3. A COMPLETE EXAMPLE (simple single layer perceptron-like NN):

44 NN_R_components

Function for connections, when recalling/mapping:
Use any one of the two functions below.
Each column of the returned matrix contains the data that will be sent to the
corresponding destination node.

version 1: sends multiple values (product) for destination nodes to summate.

CSmap1 <- function(WEIGHTS, SOURCE_OUTPUT,...) WEIGHTS * SOURCE_OUTPUT

version 2: sends corresponding value (dot product) to destination node.

CSmap2 <- function(WEIGHTS, SOURCE_OUTPUT,...) SOURCE_OUTPUT %*% WEIGHTS

#- -
Function for connections, when encoding data:

learning_rate <- 0.3

CSenc <- function(WEIGHTS, SOURCE_OUTPUT, DESTINATION_MISC, DESTINATION_OUTPUT, ...)
{

a <- learning_rate *
(DESTINATION_MISC - DESTINATION_OUTPUT) # desired output is in misc registers.

a <- outer(SOURCE_OUTPUT, a , "*") # compute weight adjustments.
w <- WEIGHTS + a # compute adjusted weights.
return(list(WEIGHTS=w)) # return new (adjusted) weights.

}

#- -
Function for layer, when recalling/mapping:
(note: no encode function is used for the layer in this example)

LAmap <- function(INPUT_Q,...)
{
x <- colSums(INPUT_Q) # input function is summation.
x <- ifelse(x>0,1,0) # threshold function is step.
return(x)
}

#- -
prepare some data based on iris data set:

data_in <- as.matrix(iris[1:4])
iris_cases <- nrow((data_in))
make a "one-hot" encoding matrix for iris species
desired_data_out <- matrix(data=0, nrow=iris_cases, ncol=3)
desired_data_out[cbind(1:iris_cases,unclass(iris[,5]))]=1

create the NN and define its components:
(first generic layer simply accepts input and transfers it to the connections)

p <- new("NN")

NN_R_components 45

p$add_layer("generic",4)

p$add_connection_set(list(name="R-connections",
encode_FUN="CSenc",
recall_FUN="CSmap2"))

p$add_layer(list(name="R-layer",
size=3,
encode_FUN="",
recall_FUN="LAmap"))

p$create_connections_in_sets(0,0)

encode data and desired output (for 50 training epochs):

for(i in 1:50)
for(c in 1:iris_cases)
{
p$input_at(1,data_in[c,])
p$set_misc_values_at(3,desired_data_out[c,]) # put desired output in misc registers
p$recall_all_fwd();
p$encode_at(2)
}

Recall the data and show NN's output:

for(c in 1:iris_cases)
{
p$input_at(1,data_in[c,])
p$recall_all_fwd()
cat("iris case ",c,", desired = ", desired_data_out[c,],
" returned = ", p$get_output_from(3),"\n")
}

End(Not run)

Index

∗ classes
BP-class, 5
LVQs-class, 8
MAM-class, 20
NN-class, 22

∗ classif
LVQu, 19

∗ neural
Autoencoder, 3
LVQu, 19

Autoencoder, 2, 3, 7

BP, 2, 4, 5, 21, 30
BP (BP-class), 5
BP-class, 5

C++Object-class (NN-class), 22

envRefClass, 5, 8, 20, 22

LVQs, 2, 14–18, 20, 21, 30
LVQs (LVQs-class), 8
LVQs-class, 8
LVQs_recall, 11, 14, 16, 18
LVQs_train, 11, 14, 15, 16
LVQu, 2, 11, 19

MAM, 2, 30
MAM (MAM-class), 20
MAM-class, 20

NN, 2, 36–39, 41
NN (NN-class), 22
NN-class, 22
nn-class (NN-class), 22
NN_component_names, 23, 30, 36, 41
NN_R_components, 30, 36–38, 38
nnlib2Rcpp (nnlib2Rcpp-package), 2
nnlib2Rcpp-package, 2

Rcpp_BP (BP-class), 5
Rcpp_BP-class (BP-class), 5
Rcpp_LVQs-class (LVQs-class), 8
Rcpp_MAM (MAM-class), 20
Rcpp_MAM-class (MAM-class), 20
Rcpp_NN (NN-class), 22
Rcpp_NN-class (NN-class), 22
RcppClass, 5, 8, 20, 22
RcppClass-class (NN-class), 22

SOM (LVQu), 19

46

	nnlib2Rcpp-package
	Autoencoder
	BP-class
	LVQs-class
	LVQs_recall
	LVQs_train
	LVQu
	MAM-class
	NN-class
	NN_component_names
	NN_R_components
	Index

