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2 binSeg

binSeg Binary Segmentation (binSeg)

Description

An R6 class implementing binary segmentation for offline change-point detection.

Details
Binary segmentation is a classic algorithm for change-point detection that recursively splits the data
at locations that minimise the cost function.
binSeg requires a R6 object of class costFunc, which can be created via costFunc$new(). Cur-
rently, the following cost functions are supported:
e "L1" and "L2" for (independent) piecewise Gaussian process with constant variance
e "SIGMA": for (independent) piecewise Gaussian process with varying variance
* "VAR": for piecewise Gaussian vector-regressive process with constant noise variance

* "LinearL2": for piecewise linear regression process with constant noise variance

See $eval () method for more details on computation of cost.

Some examples are provided below. See the GitHub README for detailed basic usage!

Methods

$new() Initialises a binSeg object.

$describe() Describes the binSeg object.

$fit() Constructs a binSeg module in C++.

$eval() Evaluates the cost of a segment.

$predict() Performs binSeg given a linear penalty value.
$plot() Plots change-point segmentation in ggplot style.
$clone() Clones the R6 object.

Active bindings

minSize Integer. Minimum allowed segment length. Can be accessed or modified via $minSize.
Modifying minSize will automatically trigger $fit().

jump Integer. Search grid step size. Can be accessed or modified via $jump. Modifying jump will
automatically trigger $fit().

costFunc R6 object of class costFunc. Search grid step size. Can be accessed or modified via
$costFunc. Modifying costFunc will automatically trigger $fit().

tsMat Numeric matrix. Input time series matrix of size n x p. Can be accessed or modified via
$tsMat. Modifying tsMat will automatically trigger $fit ().

covariates Numeric matrix. Input time series matrix having a similar number of observations as
tsMat. Can be accessed or modified via $covariates. Modifying covariates will automat-
ically trigger $fit().


https://github.com/edelweiss611428/rupturesRcpp/blob/main/README.md
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Methods

Public methods:

* binSeg$new()

e binSeg$describe()
e binSeg$fit()

* binSeg$eval()

* binSeg$predict()
* binSeg$plot()

* binSeg$clone()

Method new(): Initialises a binSeg object.
Usage:
binSeg$new(minSize, jump, costFunc)
Arguments:
minSize Integer. Minimum allowed segment length. Default: 1L.
jump Integer. Search grid step size: only positions in {k, 2Kk, ...} are considered. Default: 1L.
costFunc A R6 object of class costFunc. Should be created via costFunc$new() to avoid
error. Default: costFunc$new("L2").

Returns: Invisibly returns NULL.

Method describe(): Describes a binSeg object.
Usage:
binSeg$describe(printConfig = FALSE)
Arguments:
printConfig Logical. Whether to print object configurations. Default: FALSE.

Returns: Invisibly returns a list storing at least the following fields:
minSize Minimum allowed segment length.

jump Search grid step size.

costFunc The costFun object.

fitted Whether or not $fit() has been run.

tsMat Time series matrix.

covariates Covariate matrix (if exists).

n Number of observations.

p Number of features.

Method fit(): Constructs a C++ module for binary segmentation.

Usage:
binSeg$fit(tsMat = NULL, covariates = NULL)

Arguments:

tsMat Numeric matrix. A time series matrix of size n X p whose rows are observations ordered
in time. If tsMat = NULL, the method will use the previously assigned tsMat (e.g., set via
the active binding $tsMat or from a prior $fit(tsMat)). Default: NULL.
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covariates Numeric matrix. A time series matrix having a similar number of observations
as tsMat. Required for models involving both dependent and independent variables. If
covariates = NULL and no prior covariates were set (i.e., $covariates is still NULL), the
model is force-fitted with only an intercept. Default: NULL.

Details: This method constructs a C++ binSeg module and sets private$.fitted to TRUE,
enabling the use of $predict() and $eval(). Some precomputations are performed to allow
$predict() to run in linear time with respect to the number of data points (see $predict () for
more details).

Returns: Invisibly returns NULL.

Method eval(): Evaluate the cost of the segment (a,b]
Usage:
binSeg$eval(a, b)
Arguments:
a Integer. Start index of the segment (exclusive). Must satisfy start < end.
b Integer. End index of the segment (inclusive).

Details: The segment cost is evaluated as follows:

¢ L1 cost function: ,

cry Yat1)..b) = Z lye = Jat1)..bll1
t=a+1
where g(,41)...5 is the coordinate-wise median of the segment. If a > b — 1, return 0.

¢ L2 cost function: ,

L (Yarn).n) = > v = a3
t=a+1
where #(,41)... is the empirical mean of the segment. If a > b — 1, return 0.

¢ SIGMA cost function:
s> (Yias1)..) = (b—a)logdet D(ay1). s

where XAJ(aH)mb is the empirical covariance matrix of the segment without Bessel’s cor-
rection. Here, if addSmallDiag = TRUE, a small bias epsilon is added to the diagonal of
estimated covariance matrices to improve numerical stability.

By default, addSmallDiag = TRUE and epsilon = 1e-6. In case addSmallDiag = TRUE,
if the computed determinant of covariance matrix is either O (singular) or smaller than
p*log(epsilon) - the lower bound, return (b - a)*p*log(epsilon), otherwise, output
an error message.

¢ VAR(r) cost function:

2
b

cVAR(Y(a+1)..b) == Z Yt — ZAjyt—j
j=1

t=a+r+1 9

where /Alj are the estimated VAR coefficients, commonly estimated via the OLS criterion.
If system is singular, a — b < p*r + 1 (i.e., not enough observations), or a > n — p (where
n is the time series length), return 0.
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* "LinearL2" for piecewise linear regression process with constant noise variance

b

CLinearLZ(y(a+1):b) = Z ”yt - XtB”%
t=a+1

where /3 are OLS estimates on segment (a + 1) : b. If segment is shorter than the minimum
number of points needed for OLS, return 0.

Returns: The segment cost.

Method predict(): Performs binSeg given a linear penalty value.

Usage:
binSeg$predict(pen = 0)

Arguments:

pen Numeric. Penalty per change-point. Default: @.

Details: The algorithm recursively partitions a time series to detect multiple change-points. At
each step, the algorithm identifies the segment that, if split, would result in the greatest reduction
in total cost. This process continues until no further splits are possible (e.g., each segment is of
minimal length or each breakpoint corresponds to a single data point).

Then, the algorithm selects the "optimal" set of break-points given the linear penalty threshold.
Let [¢1,. .., Ck, cpt1] denote the set of segment end-points with ¢; < cg < -+ < ¢ < Cpp1 =
n, where k is the number of detected change-points and n is the total number of data points.
and k is the number of change-points. Let c(., ., ,] be the cost of segment (c;, ¢;41]. The total
penalised cost is then

Ci+1

k+1
TotalCost = Z ¢

i=1

CiyCit1] + A ka

where A is a linear penalty applied per change-point. We then optimise over k to minimise the
penalised cost function.

This approach allows detecting multiple change-points in a time series while controlling model
complexity through the linear penalty threshold.

In our implementation, the recursive step is carried out during $fit(). Therefore, $predict()
runs in linear time with respect to the number of data points.

Temporary segment end-points are saved to private$.tmpEndPoints after $predict(), en-
abling users to call $plot () without specifying endpoints manually.

Returns: An integer vector of regime end-points. By design, the last element is the number of
observations.

Method plot(): Plots change-point segmentation

Usage:
binSeg$plot(

d =1L,

endPts,

dimNames,

main,

xlab,

tsWidth = 9.25,
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tsCol "#5B9BD5",

bgCol c("#A3C4F3", "#FBB1BD"),
bgAlpha = 0.5,

ncol = 1L

)

Arguments:

d Integer vector. Dimensions to plot. Default: 1L.

endPts Integer vector. End points. Default: latest temporary changepoints obtained via $predict().
dimNames Character vector. Feature names matching length of d. Defaults to "X1", "X2", ....
main Character. Main title. Defaults to "binSeg: d=...".

xlab Character. X-axis label. Default: "Time".

tsWidth Numeric. Line width for time series and segments. Default: 0. 25.
tsCol Character. Time series color. Default: "#5B9BD5".

bgCol Character vector. Segment colors, recycled to length of endPts. Default: c("#A3C4F3",
"#FBB1BD").

bgAlpha Numeric. Background transparency. Default: 0. 5.
ncol Integer. Number of columns in facet layout. Default: 1L.

Details: Plots change-point segmentation results. Based on ggplot2. Multiple plots can easily
be horizontally and vertically stacked using patchwork’s operators / and |, respectively.

Returns: An object of classes gg and ggplot.

Method clone(): The objects of this class are cloneable with this method.

Usage:
binSeg$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>
Toby Dylan Hocking <toby.hocking@r-project.org>
Charles Truong <ctruong@ens-paris-saclay.fr>

References

Truong, C., Oudre, L., & Vayatis, N. (2020). Selective review of offline change point detection
methods. Signal Processing, 167, 107299.

Hocking, T. D. (2024). Finite Sample Complexity Analysis of Binary Segmentation. arXiv preprint
arXiv:2410.08654.

Examples

## L2 example
set.seed(1121)
signals = as.matrix(c(rnorm(100,0,1),
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rnorm(100,5,1)))
# Default L2 cost function
binSegObj = binSeg$new(minSize = 1L, jump = 1L)
binSegObj$fit(signals)
binSegObj$predict(pen = 100)
binSegObj$plot()

## SIGMA example

set.seed(111)

signals = as.matrix(c(rnorm(100,-5,1),
rnorm(100,-5,10),
rnorm(100,-5,1)))

# L2 cost function

binSegObj = binSeg$new(minSize = 1L, jump = 1L)

binSegObj$fit(signals)

# We choose pen = 50.

binSegObj$predict(pen = 50)

binSegObj$plot()

# The standard L2 cost function is not suitable.

# Use the SIGMA cost function.

binSegObj$costFunc = costFunc$new(costFunc = "SIGMA")
binSegObj$predict(pen = 50)

binSegObj$plot()

costFunc costFunc class

Description

An R6 class specifying a cost function

Details

Creates an instance of costFunc R6 class, used in initialisation of change-point detection modules.
Currently supports the following cost functions:

¢ L1 cost function:
b
ey, (Yas1)..p) = Z lye = Tea+1)..0ll0
t=a+1
where §(4+1)...5 1s the coordinate-wise median of the segment. If @ > b — 1, return 0.

¢ L2 cost function:
b

cLy(Y(a+1)..6) = Z llye — g(a—!—l).“b”g
t=a+1

where %(,+1)...5 1s the empirical mean of the segment. If @ > b — 1, return 0.
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¢ SIGMA cost function:
Cz(y(a—&-l)...b) = (b - a) log det i(a—&-l),..b

where ﬁ)(aﬂ)mb is the empirical covariance matrix of the segment without Bessel’s correction.
Here, if addSmallDiag = TRUE, a small bias epsilon is added to the diagonal of estimated co-
variance matrices to improve numerical stability.

By default, addSmallDiag = TRUE and epsilon = 1e-6. In case addSmallDiag = TRUE, if the
computed determinant of covariance matrix is either O (singular) or smaller than p*log(epsilon)
- the lower bound, return (b - a)*p*log(epsilon), otherwise, output an error message.

¢ VAR(r) cost function:

2
b

VAR (Y(at1)..b) 1= Z Yt — ZAjytfj
j=1

t=a+r+1 2

where /1j are the estimated VAR coefficients, commonly estimated via the OLS criterion. If
system is singular, « — b < p*r + 1 (i.e., not enough observations), or a > n — p (where n is
the time series length), return 0.

* "LinearL2" for piecewise linear regression process with constant noise variance

b

CLinearLZ(y(a+1):b) = Z Hyt - Xtﬂ“%
t=a+1

where 3 are OLS estimates on segment (a + 1) : b. If segment is shorter than the minimum
number of points needed for OLS, return 0.

If active binding $costFunc is modified (via assignment operator), the default parameters will be
used.

Methods

$new() Initialises a costFunc object.
$pass() Describes the costFunc object.

$clone() Clones the costFunc object.

Active bindings
costFunc Character. Cost function. Can be accessed or modified via $costFunc. If costFunc is
modified and required parameters are missing, the default parameters are used.
PVAR Integer. Vector autoregressive order. Can be accessed or modified via $pVAR.

addSmallDiag Logical. Whether to add a bias value to the diagonal of estimated covariance ma-
trices to stabilise matrix operations. Can be accessed or modified via $addSmallDiag.

epsilon Double. A bias value added to the diagonal of estimated covariance matrices to stabilise
matrix operations. Can be accessed or modified via $epsilon.

intercept Logical. Whether to include the intercept in regression problems. Can be accessed or
modified via $intercept.
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Methods

Public methods:

e costFunc$new()

* costFunc$pass()

e costFunc$clone()

Method new(): Initialises a costFunc object.

Usage:

costFunc$new(costFunc, ...)

Arguments:

costFunc Character. Cost function. Supported values include "L2", "VAR", and "SIGMA".

Default: L2.

. Optional named parameters required by specific cost functions.

If any required parameters are missing or null, default values will be used.
For "L1" and "L2", there is no extra parameter.
For "SIGMA", supported parameters are:

addSmallDiag Logical. If TRUE, add a small value to the diagonal of estimated covariance
matrices to stabilise matrix operations. Default: TRUE.

epsilon Double. If addSmallDiag = TRUE, a small positive value added to the diagonal of
estimated covariance matrices to stabilise matrix operations. Default: Te-6.

For "VAR", pVAR is required:
pVAR Integer. Vector autoregressive order. Must be a positive integer. Default: 1L.
For "LinearL2", intercept is required:

intercept Logical. Whether to include the intercept in regression problems. Default:
TRUE.

Method pass(): Returns a list of configuration parameters to initialise detection modules.

Usage:

costFunc$pass()

Method clone(): The objects of this class are cloneable with this method.

Usage:
costFunc$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>
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Examples

## L2 costFunc (default)

costFuncObj = costFunc$new()
costFuncObj$pass()

## SIGMA costFunc

costFuncObj = costFunc$new(costFunc = "SIGMA")
costFuncObj$pass()

# Modify active bindings

costFuncObj$epsilon = 10%-5

costFuncObj$pass()
costFuncObj$costFunc = "VAR"
costFuncObj$pass()
PELT Pruned Exact Linear Time (PELT)
Description

An R6 class implementing the PELT algorithm for offline change-point detection.

Details

PELT (Pruned Exact Linear Time) is an efficient algorithm for change point detection that prunes
the search space to achieve optimal segmentation in linear time under certain conditions.

PELT requires a R6 object of class costFunc, which can be created via costFunc$new(). Currently,
the following cost functions are supported:

* "L1" and "L2" for (independent) piecewise Gaussian process with constant variance

* "SIGMA": for (independent) piecewise Gaussian process with varying variance

* "VAR": for piecewise Gaussian vector-regressive process with constant noise variance

» "LinearlL2": for piecewise linear regression process with constant noise variance

See $eval () method for more details on computation of cost.

Some examples are provided below. See the GitHub README for detailed basic usage!

Methods

$new() Initialises a PELT object.

$describe() Describes the PELT object.

$fit() Constructs a PELT module in C++.

$eval() Evaluates the cost of a segment.

$predict() Performs PELT given a linear penalty value.
$plot () Plots change-point segmentation in ggplot style.
$clone() Clones the R6 object.


https://github.com/edelweiss611428/rupturesRcpp/blob/main/README.md
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Active bindings

minSize Integer. Minimum allowed segment length. Can be accessed or modified via $minSize.

Modifying minSize will automatically trigger $fit().

jump Integer. Search grid step size. Can be accessed or modified via $jump. Modifying jump will

automatically trigger $fit().

costFunc R6 object of class costFunc. Search grid step size. Can be accessed or modified via

$costFunc. Modifying costFunc will automatically trigger $fit().

tsMat Numeric matrix. Input time series matrix of size n X p. Can be accessed or modified via

$tsMat. Modifying tsMat will automatically trigger $fit().

covariates Numeric matrix. Input time series matrix having a similar number of observations as

Methods

tsMat. Can be accessed or modified via $covariates. Modifying covariates will automat-
ically trigger $fit().

Public methods:

PELT$new()
PELT$describe()
PELT$fit()
PELT$eval()
PELTS$predict()
PELT$plot()
PELT$clone()

Method new(): Initialises a PELT object.

Usage:
PELT$new(minSize, jump, costFunc)

Arguments:

minSize Integer. Minimum allowed segment length. Default: 1L.

jump Integer. Search grid step size: only positions in {k, 2k, ...} are considered. Default: 1L.

costFunc A R6 object of class costFunc. Should be created via costFunc$new() to avoid

error. Default: costFunc$new("L2").

Returns: Invisibly returns NULL.

Method describe(): Describes a PELT object.

Usage:
PELT$describe(printConfig = FALSE)

Arguments:

printConfig Logical. Whether to print object configurations. Default: FALSE.

Returns: Invisibly returns a list storing at least the following fields:

minSize Minimum allowed segment length.

jump Search grid step size.



12

PELT

costFunc The costFun object.

fitted Whether or not $fit() has been run.
tsMat Time series matrix.

covariates Covariate matrix (if exists).

n Number of observations.

p Number of features.

Method fit(): Constructs a C++ module for PELT.

Usage:
PELT$fit(tsMat = NULL, covariates = NULL)

Arguments:

tsMat Numeric matrix. A time series matrix of size n X p whose rows are observations ordered
in time. If tsMat = NULL, the method will use the previously assigned tsMat (e.g., set via
the active binding $tsMat or from a prior $fit(tsMat)). Default: NULL.

covariates Numeric matrix. A time series matrix having a similar number of observations
as tsMat. Required for models involving both dependent and independent variables. If
covariates = NULL and no prior covariates were set (i.e., $covariates is still NULL), the
model is force-fitted with only an intercept. Default: NULL.

Details:  This method constructs a C++ PELT module and sets private$.fitted to TRUE,
enabling the use of $predict() and $eval().

Returns: Invisibly returns NULL.

Method eval(): Evaluate the cost of the segment (a,b]
Usage:
PELT$eval(a, b)
Arguments:
a Integer. Start index of the segment (exclusive). Must satisfy start < end.
b Integer. End index of the segment (inclusive).

Details: The segment cost is evaluated as follows:

¢ L1 cost function: ,

CLl(y(aJrl)...b) = Z ||yt - ?J(a+1)“.b||1
t=a+1
where §(,41)...4 is the coordinate-wise median of the segment. If a > b — 1, return 0.

¢ L2 cost function:
b

cLy (Y(at1)..p) = Z llye — g(a+1)...b”§
t=a+1

where #(441)... is the empirical mean of the segment. If a > b — 1, return 0.
¢ SIGMA cost function:

e (Y(at1)...5) = (b — a)logdet i(aﬂ)mb

where XA)(@H)_“;, is the empirical covariance matrix of the segment without Bessel’s cor-
rection. Here, if addSmallDiag = TRUE, a small bias epsilon is added to the diagonal of
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estimated covariance matrices to improve numerical stability.

By default, addSmallDiag = TRUE and epsilon =1e-6. In case addSmallDiag = TRUE,
if the computed determinant of covariance matrix is either O (singular) or smaller than
p*log(epsilon) - the lower bound, return (b - a)*pxlog(epsilon), otherwise, output
an error message.

¢ VAR(r) cost function:

2
b

CVAR(y(a+1)...b) = Z Yt — ZAjytfj
j=1

t=a+r+1 9

where Aj are the estimated VAR coefficients, commonly estimated via the OLS criterion.
If system is singular, a — b < p* 1+ 1 (i.e., not enough observations), or a > n — p (where
n is the time series length), return 0.

"LinearL2'" for piecewise linear regression process with constant noise variance

b

CLinearl2(Y(a+1):) 1= Z llye — XtBH%
t=a+1

where 3 are OLS estimates on segment (a + 1) : b. If segment is shorter than the minimum
number of points needed for OLS, return 0.

Returns: The segment cost.

Method predict(): Performs PELT given a linear penalty value.

Usage:
PELT$predict(pen = 0)

Arguments:

pen Numeric. Penalty per change-point. Default: @.

Details: The PELT algorithm detects multiple change-points by finding the set of break-points
that globally minimises a penalised cost function. PELT uses dynamic programming combined
with a pruning rule to reduce the number of candidate change-points, achieving efficient com-
putation.

Let [c1,. .., ck, cp4+1] denote the set of segment end-points with ¢1 < ¢ < -+ < ¢ < Cpp1 =
n, where k is the number of detected change-points and n is the total number of data points. Let
Cey,ci41) DE the cost of segment (c;, ¢;11]. The total penalised cost is

k+1
TotalCost = Z o

i=1

TNk,

Ci1Ci+1]

where A is a linear penalty applied per change-point. PELT finds the set of endpoints that min-
imises this cost exactly.

The pruning step eliminates candidate change-points that cannot lead to an optimal solution,
allowing PELT to run in linear time with respect to the number of data points.

Temporary segment end-points are saved to private$.tmpEndPoints after $predict(), en-
abling users to call $plot() without specifying endpoints manually.
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Returns: An integer vector of regime end-points. By design, the last element is the number of
observations.

Method plot(): Plots change-point segmentation

Usage:
PELT$plot(
d =1L,
endPts,
dimNames,
main,
xlab,
tsWidth = 0.25,
tsCol = "#5B9BD5",

bgCol = c("#A3C4F3", "#FBB1BD"),
bgAlpha = 0.5,
ncol = 1L

)

Arguments:

d Integer vector. Dimensions to plot. Default: 1L.

endPts Integer vector. End points. Default: latest temporary changepoints obtained via $predict().
dimNames Character vector. Feature names matching length of d. Defaults to "X1", "X2", ....
main Character. Main title. Defaults to "PELT: d=...".

xlab Character. X-axis label. Default: "Time".

tsWidth Numeric. Line width for time series and segments. Default: @. 25.

tsCol Character. Time series color. Default: "#5B9BD5".

bgCol Character vector. Segment colors, recycled to length of endPts. Default: ¢ ("#A3C4F3",
"#FBB1BD").

bgAlpha Numeric. Background transparency. Default: 0. 5.
ncol Integer. Number of columns in facet layout. Default: 1L.

Details: Plots change-point segmentation results. Based on ggplot2. Multiple plots can easily
be horizontally and vertically stacked using patchwork’s operators / and |, respectively.

Returns: An object of classes gg and ggplot.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PELT$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>
Toby Dylan Hocking <toby.hocking@r-project.org>
Charles Truong <ctruong@ens-paris-saclay.fr>
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References

Truong, C., Oudre, L., & Vayatis, N. (2020). Selective review of offline change point detection
methods. Signal Processing, 167, 107299.
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computational cost. Journal of the American Statistical Association, 107(500), 1590-1598.

Examples

## L2 example

set.seed(1121)

signals = as.matrix(c(rnorm(100,0,1),
rnorm(100,5,1)))

# Default L2 cost function

PELTObj = PELT$new(minSize = 1L, jump = 1L)

PELTObj$fit(signals)

PELTObj$predict(pen = 100)

PELTObj$plot ()

## SIGMA example

set.seed(111)

signals = as.matrix(c(rnorm(100,-5,1),
rnorm(100,-5,10),
rnorm(100,-5,1)))

# L2 cost function

PELTObj = PELT$new(minSize = 1L, jump = 1L)

PELTObj$fit (signals)

# We choose pen = 50.

PELTObj$predict(pen = 50)

PELTObj$plot()

# The standard L2 cost function is not suitable.

# Use the SIGMA cost function.

PELTObj$costFunc = costFunc$new(costFunc = "SIGMA")
PELTObj$predict(pen = 50)

PELTObj$plot()

Window Slicing Window (Window)

Description

An R6 class implementing slicing window for offline change-point detection.

Details

Slicing window is a scalable, linear-time change-point detection algorithm that selects breakpoints
based on local gains computed over sliding windows.

Currently supports the following cost functions:
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e "L1" and "L2" for (independent) piecewise Gaussian process with constant variance

» "SIGMA": for (independent) piecewise Gaussian process with varying variance

* "VAR": for piecewise Gaussian vector-regressive process with constant noise variance

e "LinearL2": for piecewise linear regression process with constant noise variance
Window requires a R6 object of class costFunc, which can be created via costFunc$new(). Cur-
rently, the following cost functions are supported:

* "L1" and "L2" for (independent) piecewise Gaussian process with constant variance

* "SIGMA": for (independent) piecewise Gaussian process with varying variance

* "VAR": for piecewise Gaussian vector-regressive process with constant noise variance

e "LinearL2": for piecewise linear regression process with constant noise variance

See $eval () method for more details on computation of cost.

Some examples are provided below. See the GitHub README for detailed basic usage!

Methods

$new() Initialises a Window object.

$describe() Describes the Window object.

$fit() Constructs a Window module in C++.

$eval() Evaluates the cost of a segment.

$predict() Performs Window given a linear penalty value.
$plot() Plots change-point segmentation in ggplot style.
$clone() Clones the R6 object.

Active bindings

minSize Integer. Minimum allowed segment length. Can be accessed or modified via $minSize.
Modifying minSize will automatically trigger $fit ().

radius Integer. Window radius. Can be accessed or modified via $radius. Modifying radius
will automatically trigger $fit().

jump Integer. Search grid step size. Can be accessed or modified via $jump. Modifying jump will
automatically trigger $fit().

costFunc R6 object of class costFunc. Search grid step size. Can be accessed or modified via
$costFunc. Modifying costFunc will automatically trigger $fit().

tsMat Numeric matrix. Input time series matrix of size n x p. Can be accessed or modified via
$tsMat. Modifying tsMat will automatically trigger $fit().

covariates Numeric matrix. Input time series matrix having a similar number of observations as
tsMat. Can be accessed or modified via $covariates. Modifying covariates will automat-
ically trigger $fit().


https://github.com/edelweiss611428/rupturesRcpp/blob/main/README.md
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Methods

Public methods:

* Window$new()

* Window$describe()
e Window$fit()

* Window$eval()

* Window$predict()
* Window$plot()

* Window$clone()

Method new(): Initialises a Window object.

Usage:

Window$new(minSize, jump, radius, costFunc)

Arguments:

minSize Integer. Minimum allowed segment length. Default: 1L.

jump Integer. Search grid step size: only positions in {k, 2k, ...} are considered. Default: 1L.

radius Integer. Radius of each sliding window. Default: 1L.

costFunc A R6 object of class costFunc. Should be created via costFunc$new() to avoid
error. Default: costFunc$new("L2").

Returns: Invisibly returns NULL.

Method describe(): Describes a Window object.
Usage:
Window$describe(printConfig = FALSE)
Arguments:

printConfig Logical. Whether to print object configurations. Default: FALSE.

Returns: Invisibly returns a list storing at least the following fields:
minSize Minimum allowed segment length.

jump Search grid step size.

radius Radius of each sliding window.

costFunc The costFun object.

fitted Whether or not $fit() has been run.

tsMat Time series matrix.

covariates Covariate matrix (if exists).

n Number of observations.

p Number of features.

Method fit(): Constructs a C++ module for Window.

Usage:
Window$fit(tsMat = NULL, covariates = NULL)

Arguments:
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tsMat Numeric matrix. A time series matrix of size n X p whose rows are observations ordered
in time. If tsMat = NULL, the method will use the previously assigned tsMat (e.g., set via
the active binding $tsMat or from a prior $fit(tsMat)). Default: NULL.

covariates Numeric matrix. A time series matrix having a similar number of observations
as tsMat. Required for models involving both dependent and independent variables. If
covariates = NULL and no prior covariates were set (i.e., $covariates is still NULL), the
model is force-fitted with only an intercept. Default: NULL..

Details: This method constructs a C++ Window module and sets private$.fitted to TRUE,
enabling the use of $predict() and $eval(). Some precomputations are performed to al-
low $predict() to run in linear time with respect to the number of local change-points (see
$predict() for more details).

Returns: Invisibly returns NULL.

Method eval(): Evaluate the cost of the segment (a,b]

Usage:
Window$eval(a, b)

Arguments:
a Integer. Start index of the segment (exclusive). Must satisfy start < end.
b Integer. End index of the segment (inclusive).

Details: The segment cost is evaluated as follows:

¢ L1 cost function: ,

cr, (Y(at1)..5) == Z lye — Jat)...sll1
t=a+1
where g, 41)...4 is the coordinate-wise median of the segment. If a > b — 1, return 0.

¢ L2 cost function: )

L (Yatrn).n) = > o = a3
t=a+1
where ¥, 41)...5 is the empirical mean of the segment. If @ > b — 1, return 0.
* SIGMA cost function:

s> (Y(at1)...5) = (b — a)logdet ﬁ)(aﬂ)mb

where XAJ(aH)mb is the empirical covariance matrix of the segment without Bessel’s cor-
rection. Here, if addSmallDiag = TRUE, a small bias epsilon is added to the diagonal of
estimated covariance matrices to improve numerical stability.

By default, addSmallDiag = TRUE and epsilon = 1e-6. In case addSmallDiag = TRUE,
if the computed determinant of covariance matrix is either O (singular) or smaller than
p*log(epsilon) - the lower bound, return (b - a)*pxlog(epsilon), otherwise, output
an error message.

¢ VAR(r) cost function:

2
b

evAR(Y(a+1)..b) == Z Yt — ZAjyt—j
j=1

t=a+r+1 9
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where flj are the estimated VAR coefficients, commonly estimated via the OLS criterion.
If system is singular, a — b < p*r + 1 (i.e., not enough observations), or a > n — p (where
n is the time series length), return 0.

* "LinearL2" for piecewise linear regression process with constant noise variance

b
CLinear2(Y(as 1)) = Y llye — X3
t=a+1

where B are OLS estimates on segment (a + 1) : b. If segment is shorter than the minimum
number of points needed for OLS, return 0.

Returns: The segment cost.

Method predict(): Performs Window given a linear penalty value.
Usage:
Window$predict(pen = @)
Arguments:
pen Numeric. Penalty per change-point. Default: @.

Details:  The algorithm scans the data with a fixed-size window to detect candidate local
change-points (Icps) if the gains of its Kresh Neighbors to the left and right are all smaller than
its gain, where Kgyesh is defined as

kthresh = max (ma'X(QradiuS; 2 : minSiZe) 7 1)

2 - jump

After candidate local change-points and computing the local gains, the algorithm selects the
"optimal” set of break-points given the linear penalty threshold. Let G; denote the local gain
for candidate change-point 4, for ¢ = 1,...,njs. The local gains are ordered such that Gy >
G2 > -+ > Gy, Note that it is possible that no local change-points are detected, for example
if the window size is too large.

The total cost for the selected k change-points is then calculated as

k
TotalCost = — Z G; + Xk,

i=1

where ) is a linear penalty applied per change-point. We then optimise over k to minimise the
penalised cost function.

This approach allows detecting multiple change-points in a time series while controlling model
complexity through the linear penalty threshold.

In our implementation, scanning the data to detect candidate local change-points and computing
their corresponding local gains is already performed in $fit (). Therefore, $predict() runs in
linear time with respect to the number of local change-points.

Temporary segment end-points are saved to private$.tmpEndPoints after $predict(), en-
abling users to call $plot() without specifying endpoints manually.

Returns: An integer vector of regime end-points. By design, the last element is the number of
observations.

Method plot(): Plots change-point segmentation
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Usage:
Window$plot (
d =1L,
endPts,
dimNames,
main,
xlab,
tsWidth = .25,
tsCol = "#5B9BD5",
bgCol = c("#A3C4F3", "#FBB1BD"),
bgAlpha = 0.5,
ncol = 1L
)
Arguments:
d Integer vector. Dimensions to plot. Default: 1L.
endPts Integer vector. End points. Default: latest temporary changepoints obtained via $predict().
dimNames Character vector. Feature names matching length of d. Defaults to "X1", "X2", ....
main Character. Main title. Defaults to "Window: d=...".
xlab Character. X-axis label. Default: "Time".
tsWidth Numeric. Line width for time series and segments. Default: 0. 25.
tsCol Character. Time series color. Default: "#5B9BD5".

bgCol Character vector. Segment colors, recycled to length of endPts. Default: c("#A3C4F3",
"#FBB1BD").

bgAlpha Numeric. Background transparency. Default: 0. 5.
ncol Integer. Number of columns in facet layout. Default: 1L.

Details: Plots change-point segmentation results. Based on ggplot2. Multiple plots can easily
be horizontally and vertically stacked using patchwork’s operators / and |, respectively.

Returns: An object of classes gg and ggplot.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Window$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Minh Long Nguyen <edelweiss611428@gmail.com>
Toby Dylan Hocking <toby.hocking@r-project.org>
Charles Truong <ctruong@ens-paris-saclay.fr>

References

Truong, C., Oudre, L., & Vayatis, N. (2020). Selective review of offline change point detection
methods. Signal Processing, 167, 107299.
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Examples

## L2 example

set.seed(1121)

signals = as.matrix(c(rnorm(100,0,1),
rnorm(100,5,1)))

# Default L2 cost function

WindowObj = Window$new(minSize = 1L, jump = 1L)

WindowObj$fit(signals)

WindowObj$predict(pen = 100)

WindowObj$plot()

## SIGMA example

set.seed(111)

signals = as.matrix(c(rnorm(100,-5,1),
rnorm(100,-5,10),
rnorm(100,-5,1)))

# L2 cost function

WindowObj = Window$new(minSize = 1L, jump = 1L)

WindowObj$fit(signals)

# We choose pen = 50.

WindowObj$predict(pen = 50)

WindowObj$plot()

# The standard L2 cost function is not suitable.

# Use the SIGMA cost function.

WindowObj$costFunc = costFunc$new(costFunc = "SIGMA")
WindowObj$predict(pen = 50)

WindowObj$plot()

21



Index

binSeg, 2
costFunc, 7
PELT, 10

Window, 15

22



	binSeg
	costFunc
	PELT
	Window
	Index

