
secuTrialR - a walkthrough

Patrick R. Wright, Milica Markovic, Alan G. Haynes

2024-05-30

Contents
Introduction 2

Install 2

The CTU05 dataset 2

secuTrial export options 3

Reading a secuTrial data export into R 3

The secuTrialdata object 3
The data tables in the secuTrialdata object . 4
Accessing the tables and values . 5
Data transformations . 5
Export options . 7

Generic functions for secuTrialdata objects 8
Show the study participants . 8
Recruitment over time . 9
Visit plan visualization . 10
Completeness of forms . 10
Form linkage . 11
Sampling random participants . 12
Retrieve score variables . 12
Retrieve hidden variables . 12
Finding changes/differences in project setup implementations . 13
Conversion to SPSS, STATA, SAS . 13
Subsetting secuTrialdata . 14

Building URLs to your secuTrial server 16

The as.data.frame function 17

Frequent warning messages 17
Dates . 17
Factors . 18
Labels . 18

Merging forms in the secuTrialdata object 18

A note on mnp* variables 20

1

Introduction
“If I had just five minutes to chop down a tree I would spend the first two and a half minutes
sharpening my axe.”

— An anonymous woodsman

This R package provides functions for handling data from the clinical data management system (CDMS)
secuTrial. The most important components are related to reading data exports from secuTrial into R. In brief,
the package aims to enable swift execution of repetitive tasks in order to allow spending more time on the
unique aspects of a dataset. It is developed and maintained by the Swiss Clinical Trial Organisation (SCTO).

If you are still challenged by more basic operations in R we suggest reading Hands-On Programming with R,
which serves as an excellent introduction to the basic concepts of R.

This vignette will teach you how to use the secuTrialR package and you will likely learn quite a bit about
secuTrial exports in general along the way. Throughout the secuTrialR package and within this vignette we
refer to patients, cases, subjects etc. enrolled in a secuTrial database as participants.

Install
Please note that R versions >= 3.5 should be used to run secuTrialR.

Stable release from CRAN

install.packages("secuTrialR", dependencies = TRUE)

Development release from GitHub with devtools

For this you will need to have devtools installed. If you are working on Windows and would like to install
with devtools you will likely need to install Rtools. Installing everything, including the dependencies, from
scratch may take a while (20-30 minutes).

install
devtools::install_github("SwissClinicalTrialOrganisation/secuTrialR")

load silently
suppressMessages(library(secuTrialR))
show secuTrialR version
packageVersion("secuTrialR")
#> [1] '1.3.3'

The CTU05 dataset
Before we continue with the functionalities let’s briefly talk about the test data which is delivered as a part
of the package. We refer to it as the CTU05 (clinical trial unit project 05) data. This dataset has been
fabricated for demonstration purposes only and is not real clinical data. Principally it is made up of eight
forms. These are called “surgeries”, “baseline”, “outcome”, “treatment”, “allmedi”, “studyterminat”, “ae” and
“sae”. You will see these names again later when the data has been read into R. The project setup includes
most data types implementable in secuTrial. It is, however, not exhaustive. Since the data is delivered with
the installation of the secuTrialR package we can point to it via the system.file() function.

ctu05_data_location <- system.file("extdata", "sT_exports", "exp_opt",
"s_export_CSV-xls_CTU05_all_info.zip",
package = "secuTrialR")

2

https://www.secutrial.com/en/
https://www.scto.ch/en/news.html
https://rstudio-education.github.io/hopr/
https://cran.r-project.org/bin/windows/Rtools/

If you work on your own datasets you can specify a path as a regular character string without using
system.file().

secuTrial export options
Prior to reading your data into R you need to export it with the secuTrial ExportSearchTool. We suggest
exporting non-rectangular, zipped, English data with reference values stored in a separate table
including Add-IDs, centre information, structure information, form status, project setup, without
duplicated meta data and without form data of hidden fields. Furthermore, it is important to
use “CSV format”/“CSV format for MS Excel” and suggested to select UTF-8 encoding. Most of
these options are truly optional and reading your data should work even with differences from the above
specifications.

A description of how data can be exported from secuTrial can be found here. This description includes
screenshots of the export options configuration interface.

Reading a secuTrial data export into R
There is one principle function to read your data (i.e. read_secuTrial()). Below you can see it in action
with the CTU05 dataset.

ctu05_data <- read_secuTrial(data_dir = ctu05_data_location)
#> Read export successfully.
#> The following export options deviate from the suggested specifications:
#> Data from hidden fields is part of the export.

If the “Read export successfully.” message appears your data was correctly read. In this example you are
also warned that hidden data fields are in the export which is a deviation from the suggested export option
configuraion.

The secuTrialdata object
If you inspect the class() of ctu05_data you will find that it is a secuTrialdata object.

class(ctu05_data)
#> [1] "secuTrialdata"

Really this is only a list containing all the information from your secuTrial export.

typeof(ctu05_data)
#> [1] "list"

3

https://swissclinicaltrialorganisation.github.io/secuTrial_recipes/export_data/

The data tables in the secuTrialdata object
We have implemented a custom variation of the print() function for secuTrialdata objects.
print(ctu05_data)
#> secuTrial data imported from:
#> C:/Users/haynes/AppData/Local/Temp/RtmpEbZjcQ/Rinst83c016fa36b3/secuTrialR/extdata/sT_exports/exp_opt/s_export_CSV-xls_CTU05_all_info.zip
#> table nrow ncol meta original_name
#> vp 4 13 TRUE vp.csv
#> vpfs 8 2 TRUE vpfs.csv
#> fs 8 8 TRUE fs.csv
#> qs 29 8 TRUE qs.csv
#> is 85 9 TRUE is.csv
#> ctr 3 3 TRUE ctr.csv
#> cn 11 16 TRUE cn.csv
#> atcn 0 9 TRUE atcn.csv
#> atcvp 0 16 TRUE atcvp.csv
#> qac 0 15 TRUE qac.csv
#> cts 0 12 TRUE cts.csv
#> miv 0 10 TRUE miv.csv
#> atmiv 0 14 FALSE atmiv.csv
#> baseline 17 107 FALSE baseline.csv
#> atbaseline 1 79 FALSE atbaseline.csv
#> outcome 13 48 FALSE outcome.csv
#> atoutcome 5 47 FALSE atoutcome.csv
#> treatment 11 44 FALSE treatment.csv
#> attreatment 0 45 FALSE attreatment.csv
#> allmedi 17 47 FALSE allmedi.csv
#> atallmedi 2 47 FALSE atallmedi.csv
#> studyterminat 10 41 FALSE studyterminat.csv
#> atstudyterminat 1 39 FALSE atstudyterminat.csv
#> ae 1 66 FALSE ae.csv
#> atae 0 58 FALSE atae.csv
#> sae 2 64 FALSE sae.csv
#> atsae 0 57 FALSE atsae.csv
#> esurgeries 18 11 FALSE esurgeries.csv
#> atesurgeries 1 9 FALSE atesurgeries.csv
#> cl 211 3 TRUE cl.csv
#> atae1 0 20 FALSE atae1.csv

It shows you where the export archive of your secuTrialdata object is located, tells you which data tables
(i.e. table) it contains, what the source files (i.e. original_name) are and specifies each table’s dimensions
(i.e. ncol, nrow).

By now you have possibly realized that all the forms specified earlier (i.e. “surgeries”, “baseline”, “outcome”,
“treatment”, “allmedi”, “studyterminat”, “ae” and “sae”) are present, but also that there are many tables
that do not correspond to the previously introduced forms.

The majority of the unfamiliar tables are tagged as TRUE in the meta column. This means that they are
metadata tables. Their names and data structures are fixed in secuTrial exports. In the following we will
briefly explain which information the most relevant meta tables contain.

• vp - visitplan definition
• vpfs - visitplan form linkage
• fs - forms information
• qs - questions
• is - items i.e. variable definitions

4

• ctr - centre information
• cn - casenodes i.e. table of entered study participants
• cl - information how the data in the variables is coded

Furthermore, there is a set of tables whose names start with “at”. These are audit trail tables. They are
only relevant if you need to investigate changes in the data over time. For example certain values may be
corrected (i.e. changed) due to findings during monitoring visits at study centres. Last but not least you may
have also realized that the “surgeries” table is called esurgeries. This is because it is a so-called repetition
form. Repetition forms are labelled with a leading “e” and are implemented as subforms in other forms. In
this case, esurgeries is a subform in baseline and the linkage is defined by the mnpdocid column in both
tables. If this sounds cryptic to you we suggest you talk so someone who has implemented a database in
secuTrial and let them explain it with a specific example. It is pretty straight forward when you look at a
concrete implementation.

Accessing the tables and values
Since the secuTrialdata object is a list and the data tables within this list are data.frames you can
simply access the tables using $. Let’s say you would like to have a look at the placebo to verum ratio in
your treatment data or what types of other medication were entered in allmedi.

table(ctu05_data$treatment$rando_treatment)
#>
#> Placebo Verum
#> 8 3

table(ctu05_data$allmedi$med_product)
#>
#> Amoxicillin Doxycycline Importal
#> 2 1 3

Data transformations
During the loading process, coded categorical data is transformed. For example the gender variable in the
baseline form is categorical. The raw data is accessible via gender and the transformed version of the
data is added during the reading process and becomes accessible via gender.factor. Thus, data is not
overwritten but added with the .factor extension. If there are issues during factorization a warning() will
inform you of this.

raw gender data
ctu05_data$baseline$gender
#> [1] 1 NA NA 2 1 2 1 NA NA 1 2 NA NA 1 2 2 NA
#> attr(,"label")
#> [1] "Gender"

transformed gender data
ctu05_data$baseline$gender.factor
#> [1] male <NA> <NA> female male female male <NA> <NA> male
#> [11] female <NA> <NA> male female female <NA>
#> attr(,"label")
#> [1] Gender
#> Levels: male female

raw more meds
ctu05_data$allmedi$no_more_meds
#> [1] 1 1 0 1 1 1 0 0 0 1 0 0 1 1 1 1 0

5

#> attr(,"label")
#> [1] "No further medication"

transformed more meds
ctu05_data$allmedi$no_more_meds.factor
#> [1] yes yes no yes yes yes no no no yes no no yes yes yes yes no
#> attr(,"label")
#> [1] No further medication
#> Levels: no yes

Note that descriptive labels have also been automatically added to the data.

label(ctu05_data$allmedi$no_more_meds.factor)
#> [1] "No further medication"

label(ctu05_data$baseline$gender.factor)
#> [1] "Gender"

label(ctu05_data$esurgeries$surgery_organ.factor)
#> [1] "Organ"

Datetime data is also transformed and similarly to the factorization process the names are concatenated with
.date or .datetime.

raw
ctu05_data$baseline$visit_date
#> [1] 20190401 20190402 20190403 20190402 20190403 20190404 20190405 20190406
#> [9] 20190407 20190411 20190412 20190413 20190414 20190413 20190414 20190415
#> [17] 20180501
#> attr(,"label")
#> [1] "Date of visit"

processed
ctu05_data$baseline$visit_date.date
#> [1] "2019-04-01" "2019-04-02" "2019-04-03" "2019-04-02" "2019-04-03"
#> [6] "2019-04-04" "2019-04-05" "2019-04-06" "2019-04-07" "2019-04-11"
#> [11] "2019-04-12" "2019-04-13" "2019-04-14" "2019-04-13" "2019-04-14"
#> [16] "2019-04-15" "2018-05-01"

raw only head
head(ctu05_data$baseline$hiv_date)
#> [1] 201903052356 NA NA NA NA
#> [6] NA

processed only head
head(ctu05_data$baseline$hiv_date.datetime)
#> [1] "2019-03-05 23:56:00 CET" NA
#> [3] NA NA
#> [5] NA NA

classes
class(ctu05_data$baseline$visit_date)
#> [1] "integer"

6

class(ctu05_data$baseline$visit_date.date)
#> [1] "Date"

class(ctu05_data$baseline$hiv_date)
#> [1] "numeric"

class(ctu05_data$baseline$hiv_date.datetime)
#> [1] "POSIXct" "POSIXt"

Depending on the setup, incomplete dates can be valid entries in a secuTrial database. Thus they will also
occasionally appear in your exports. The datetime conversion does not work in these cases and NAs are
created. If this happens, secuTrialR will warn you accordingly and you should have a closer look into the
affected datetime variables and whether you would like to perform so-called date imputation.

Export options
The secuTrialdata object also contains information on the export options.

ctu05_data$export_options
#> secuTrial version: 6.5.1.5
#> Time of export on server: 13.05.2024 - 12:40:06 (CEST)
#> Project version: (20.06.2019 - 11:22:04 (CEST))
#> Exported with short names
#> File extension: csv
#> Enclosure: '\"'
#> Seperator: ','
#> 32 files exported
#> including 13 metadata tables
#> Reference values exported - factorize possible
#> Metadata tables:
#> type exportname available
#> forms fs TRUE
#> casenodes cn TRUE
#> centres ctr TRUE
#> items is TRUE
#> questions qs TRUE
#> queries qac TRUE
#> visitplan vp TRUE
#> visitplanforms vpfs TRUE
#> atcasenodes atcn TRUE
#> atcasevisitplans atcvp TRUE
#> comments cts TRUE
#> miv miv TRUE
#> cl cl TRUE

export_options itself is a list. If you are interested in more information than is printed you can also access
it. Let’s assume you would like to know the project_name and encoding.

ctu05_data$export_options$project_name
#> [1] "secuTrialR example CDMA"

ctu05_data$export_options$encoding
#> [1] "UTF-8"

Much more information is stored in the elements of export_options. The names of the elements should be
descriptive enough to infer the contents.

7

names(ctu05_data$export_options)
#> [1] "sep" "quote" "date_format"
#> [4] "datetime_format" "date_format_meta" "na.strings"
#> [7] "short_names" "is_zip" "is_rectangular"
#> [10] "audit_trail" "column_names" "lang_not_supported"
#> [13] "dict_items" "refvals_separate" "add_id"
#> [16] "lab_id" "meta_names" "meta_available"
#> [19] "duplicate_meta" "all_files" "data_files"
#> [22] "data_names" "file_end" "extension"
#> [25] "data_dir" "secuTrial_version" "project_version"
#> [28] "project_name" "format_info" "time_of_export"
#> [31] "encoding" "form_status" "centre_info"
#> [34] "hidden_fields" "structure" "proj_setup"
#> [37] "factorized" "dated" "labelled"

Generic functions for secuTrialdata objects
Now that you understand the secuTrialdata object we will show you some generic functions you can use on
objects of this class.

Show the study participants
First off you may be interested in a table of participants.

get_participants(ctu05_data)
#> mnppid mnpaid mnpctrid mnpctrname
#> 1 1204 RPACK-CBE-001 462 Charité Berlin (RPACK)
#> 2 1205 RPACK-CBE-002 462 Charité Berlin (RPACK)
#> 3 1206 RPACK-CBE-003 462 Charité Berlin (RPACK)
#> 4 1207 RPACK-CBE-004 462 Charité Berlin (RPACK)
#> 5 1208 RPACK-CBE-005 462 Charité Berlin (RPACK)
#> 6 1209 RPACK-INS-011 461 Inselspital Bern (RPACK)
#> 7 1210 RPACK-INS-012 461 Inselspital Bern (RPACK)
#> 8 1211 RPACK-INS-013 461 Inselspital Bern (RPACK)
#> 9 1212 RPACK-INS-014 461 Inselspital Bern (RPACK)
#> 10 1213 RPACK-INS-015 461 Inselspital Bern (RPACK)
#> 11 1214 RPACK-USB-123 441 Universitätsspital Basel (RPACK)

Please note that the mnpaid column in this table corresponds to the pat_id column in other tables.

8

Recruitment over time
You can extract information about participant recruitment per centre and year by applying
annual_recruitment() on a secuTrialdata object.

annual_recruitment(ctu05_data)
#> Center Total 2018 2019
#> 1 All 11 1 10
#> 2 Charité Berlin (RPACK) 5 0 5
#> 3 Inselspital Bern (RPACK) 5 0 5
#> 4 Universitätsspital Basel (RPACK) 1 1 0

Since the centre names often have a systematic addition (e.g. (RPACK)) we have enabled the option to
remove certain parts of the centre descriptions via regular expressions (i.e. rm_regex argument). In this case
the regular expression removes trailing parentheses and everything they enclose.

annual_recruitment(ctu05_data, rm_regex = "\\(.*\\)$")
#> Center Total 2018 2019
#> 1 All 11 1 10
#> 2 Charité Berlin 5 0 5
#> 3 Inselspital Bern 5 0 5
#> 4 Universitätsspital Basel 1 1 0

It is also possible to plot the recruitment over time.

plot_recruitment(ctu05_data, cex = 1.2, rm_regex = "\\(.*\\)$")

Jul 2018 Okt 2018 Jan 2019 Apr 2019

2
4

6
8

10

Recruitment over time

Date of enrollment

P
ar

tic
ip

an
t c

ou
nt All (n=11)

Charité Berlin (n=5)
Inselspital Bern (n=5)
Universitätsspital Basel (n=1)

9

Visit plan visualization
secuTrialR can provide a depiction of the visit structure, although only where the visit plan is fixed. Black
rectangles in the grid represent a form to be filled (x) during one of the visits (y).

vs <- visit_structure(ctu05_data)
plot(vs)

Treatment

General screen

Further medication

Follow−up

fo
rm

ta
bl

en
am

e

|
 B

as
el

in
e

an
d

Tr
ea

tm
en

t
 |

|
 S

cr
ee

ni
ng

vi
si

t
 |

|
 F

ol
lo

w
−

up

 |

Completeness of forms
If you are not sure about how complete the data in your export is, it may be useful to get a quick overview of
how well the forms have been filled. The below table shows both absolute and relative numbers for a few
forms.

fss <- form_status_summary(ctu05_data)
tail(fss, n = 5)
#> form_name partly_filled completely_filled empty with_warnings
#> 7 baseline 3 14 0 1
#> 8 outcome 1 12 0 0
#> 9 sae 0 2 0 0
#> 10 studyterminat 0 10 0 0
#> 11 treatment 0 11 0 0
#> with_errors partly_filled.percent completely_filled.percent empty.percent
#> 7 0 0.17647059 0.8235294 0
#> 8 0 0.07692308 0.9230769 0
#> 9 0 0.00000000 1.0000000 0
#> 10 0 0.00000000 1.0000000 0
#> 11 0 0.00000000 1.0000000 0
#> with_warnings.percent with_errors.percent form_count
#> 7 0.05882353 0 17

10

#> 8 0.00000000 0 13
#> 9 0.00000000 0 2
#> 10 0.00000000 0 10
#> 11 0.00000000 0 11

Please note that a form is only complete if all required fields have been filled. Thus, a whole study may
have 99% completeness on variable basis while showing 0% completeness on form basis. It is currently not
technically possible to assess completeness on variable basis in a generic way. Hence, high completeness on
form basis implies high completeness on variable basis but NOT vice versa.

If you would rather retrieve information on form completeness for each participant individually you can
perform the following.

fsc <- form_status_counts(ctu05_data)
show the top
head(fsc)
#> pat_id form_name completely_filled partly_filled empty with_warnings
#> 1 RPACK-CBE-001 baseline 3 0 0 0
#> 2 RPACK-CBE-002 baseline 1 0 0 0
#> 3 RPACK-CBE-003 baseline 1 0 0 0
#> 4 RPACK-CBE-004 baseline 1 0 0 0
#> 5 RPACK-CBE-005 baseline 1 2 0 0
#> 6 RPACK-INS-011 baseline 1 0 0 0
#> with_errors
#> 1 0
#> 2 0
#> 3 0
#> 4 0
#> 5 0
#> 6 0

Form linkage
Linkages amongst forms can be explored with the links_secuTrial() function. This relies on the igraph
package to create a network. It is possible to interact with the network, e.g. move nodes around in order to
read the labels better. The R graphics device ID is returned to the console, but can be ignored. Forms are
plotted in deep yellow, variables in light blue.

links_secuTrial(ctu05_data)

The output can not be shown within this vignette but you should give it a try. Please note that the linkage
plot is likely most useful without the audit trail data in the export.

11

Sampling random participants
During study monitoring it is common practice to check random participants from a study database. These
participants should be retrieved in a reproducible fashion, which can be achieved by setting a so-called seed.
The below function allows reproducible retrieval for a loaded secuTrial data export.

randomly retrieve at least 25 percent of participants recorded after March 18th 2019
from the centres "Inselspital Bern" and "Charité Berlin"
return_random_participants(ctu05_data,

percent = 0.25,
seed = 1337,
date = "2019-03-18",
centres = c("Inselspital Bern (RPACK)",

"Charité Berlin (RPACK)"))
#> $participants
#> mnpaid centre mnpvisstartdate
#> 2 RPACK-INS-012 Inselspital Bern (RPACK) 2019-04-12
#> 4 RPACK-INS-014 Inselspital Bern (RPACK) 2019-04-14
#> 5 RPACK-CBE-005 Charité Berlin (RPACK) 2019-04-05
#> 3 RPACK-CBE-003 Charité Berlin (RPACK) 2019-04-03
#>
#> $rng_config
#> [1] "Mersenne-Twister" "Inversion" "Rejection"

Please note that earlier R versions may return different results because there is a different rng_config
(i.e. RNGkind()). For this reason we have added the rng_config to the output.

Retrieve score variables
secuTrial allows implementing calculated variables (i.e. scores). Data is not directly entered into these
variables but rather calculated automatically. Scores are defined by a set of rules and use the data in other
variables as basis. For example the age of a study participant at data entry can be calculated as the difference
between the participant’s birthday and the day of data entry.

It is advisable to recalculate or validate score variable data before data analysis. A rule of thumb: The more
complex a score is and the more data from different forms is necessary for its calculation the more likely its
value should be recalculated. The below function will allow you to detect which variables this concerns.

return_scores(ctu05_data)
#> name itemtype label
#> 1 age Years y (calculated only) Age

Retrieve hidden variables
Sometimes, during a study, certain fields may be hidden because data should no longer be entered into them.
If this is the case and the data of these fields is part of your export is likely good to know about it. In this
case nothing is hidden.

return_hidden_items(ctu05_data)
#> [1] name itemtype label
#> <0 rows> (or 0-length row.names)

12

Finding changes/differences in project setup implementations
In ongoing studies it is possible that changes to the secuTrial data entry interface (i.e. the electronic case
report forms) are made. Sometimes these changes may call for adjustments in analysis code. It is considered
good practice to run diff_secuTrial() on the last export and the current export of a project to at least
make yourself aware of potential changes in the setup. If there are differences, the results of this function
should be interpreted as a first indicator since they may not cover all alterations. Information is returned on
forms and variables. A detailed list of changes can be produced in the secuTrial FormBuilder with “Compare
project setup”.

For the below diff_secuTrial() showcase we emulated a changed setup of CTU05 by copying the setup
and importing it in the FormBuilder as a new secuTrial project (CTU06). From this, we created a data
export (v1) and then made a few minor changes and exported again (v2). If this sounds confusing, never
mind. CTU06 v1 is simply a copy of CTU05. CTU06 v2 is a slighly altered version of CTU06 v1.

ctu06_v1 <- read_secuTrial(system.file("extdata", "sT_exports", "change_tracking",
"s_export_CSV-xls_CTU06_version1.zip",
package = "secuTrialR"))

#> Read export successfully.
#> The following export options deviate from the suggested specifications:
#> Data from hidden fields is part of the export.
#> Short names was not selected.

ctu06_v2 <- read_secuTrial(system.file("extdata", "sT_exports", "change_tracking",
"s_export_CSV-xls_CTU06_version2.zip",
package = "secuTrialR"))

#> Read export successfully.
#> The following export options deviate from the suggested specifications:
#> Data from hidden fields is part of the export.

diff_secuTrial(ctu06_v1, ctu06_v2)
#> $new_forms
#> [1] "mnpctu06anewform" "mnpctu06anothernewform"
#>
#> $new_variables
#> [1] "new_item_in_fu" "new_item_in_new_form"
#>
#> $removed_forms
#> character(0)
#>
#> $removed_variables
#> character(0)

As you can see ctu06_v2 contains the two additional forms mnpctu06anewform and mnpctu06anothernewform
and the two additional variables new_item_in_fu and new_item_in_new_form.

Conversion to SPSS, STATA, SAS
Given that you are working with R it is unlikely that you need such conversions for yourself. However,
collaborators may ask for data which is readily importable into SPSS, STATA or SAS. For this you can use
write_secuTrial().

Since this has not been heavily tested or used there may be issues and you might prefer doing this manually
with the haven package. One particular sticking point is the length of variable names - R is not restrictive in
this respect, but other software can be. secuTrialR does not truncate names, prefering to leave this to the
user, which can cause write_secuTrial() to fail with an error.

13

retrieve path to a temporary directory
tdir <- tempdir()
write spss
write_secuTrial(ctu05_data, format = "sav", path = tdir)

Subsetting secuTrialdata

In some cases it may be useful to subset your secuTrialdata object. For example if you have cohort data
and would like to supply a subset of the data for a retrospective study. We have implemented this option with
subset_secuTrial(). It will truncate your secuTrialdata object and return a new secuTrialdata object
which is a subset of the original data. It is possible to subset by including or excluding specific participant
ids or centres.

initialize some subset identifiers
participants <- c("RPACK-INS-011", "RPACK-INS-014", "RPACK-INS-015")
centres <- c("Inselspital Bern (RPACK)", "Universitätsspital Basel (RPACK)")

exclude Bern and Basel
ctu05_data_berlin <- subset_secuTrial(ctu05_data, centre = centres, exclude = TRUE)
#> If you changed any labels in the secuTrialdata object manually these will be reset to their original state.

exclude Berlin
ctu05_data_bern_basel <- subset_secuTrial(ctu05_data, centre = centres)
#> If you changed any labels in the secuTrialdata object manually these will be reset to their original state.

keep only subset of participants
ctu05_data_pids <- subset_secuTrial(ctu05_data, participant = participants)
#> If you changed any labels in the secuTrialdata object manually these will be reset to their original state.

class(ctu05_data_berlin)
#> [1] "secuTrialdata"

class(ctu05_data_bern_basel)
#> [1] "secuTrialdata"

class(ctu05_data_pids)
#> [1] "secuTrialdata"

If you subset based on centres all traces of deleted centres will be removed. If you remove based on participant
ids all traces of deleted participants will be removed.

only Berlin remains
ctu05_data_berlin$ctr
#> mnpctrid mnpctrname mnpcname
#> 1 462 Charité Berlin (RPACK) NA

all centres remain even though all three participant ids are from Bern
ctu05_data_pids$ctr
#> mnpctrid mnpctrname mnpcname
#> 1 462 Charité Berlin (RPACK) NA
#> 2 461 Inselspital Bern (RPACK) NA
#> 3 441 Universitätsspital Basel (RPACK) NA

14

Since the truncated object’s class remains unchanged (i.e. secuTrialdata) you can still use the generic
functions on it. Let’s say you would only like to look at the recruitment plot for Bern alone.

keep only Bern
ctu05_data_bern <- subset_secuTrial(ctu05_data, centre = "Inselspital Bern (RPACK)")
#> If you changed any labels in the secuTrialdata object manually these will be reset to their original state.

plot
plot_recruitment(ctu05_data_bern)

Apr 11 Apr 12 Apr 13 Apr 14 Apr 15

1
2

3
4

5

Recruitment over time

Date of enrollment

P
ar

tic
ip

an
t c

ou
nt

All (n=5)
Inselspital Bern (RPACK) (n=5)

. . . or Bern and Berlin.

keep only Bern and Berlin
ctu05_data_bern_berlin <- subset_secuTrial(ctu05_data,

centre = c("Inselspital Bern (RPACK)",
"Charité Berlin (RPACK)"))

#> If you changed any labels in the secuTrialdata object manually these will be reset to their original state.

plot
plot_recruitment(ctu05_data_bern_berlin)

15

Apr 01 Apr 03 Apr 05 Apr 07 Apr 09 Apr 11 Apr 13 Apr 15

2
4

6
8

10
Recruitment over time

Date of enrollment

P
ar

tic
ip

an
t c

ou
nt

All (n=10)
Charité Berlin (RPACK) (n=5)
Inselspital Bern (RPACK) (n=5)

Building URLs to your secuTrial server
If you are creating reports in which you would like to directly link to specific pages of your secuTrial Data-
Capture you can use build_secuTrial_url. If you are no expert regarding the secuTrial server architecture
you would like to build links for, you should talk to the server admin or consult the build_secuTrial_url
help page. They will be able to guide you regarding the information for the server, instance, customer
and project parameters. The docid, however, is included in your export data in the non-meta data tables
of the secuTrialdata object and can be found in the mnpdocid columns.
head(ctu05_data$treatment$mnpdocid)
#> [1] 181 193 200 205 213 224

head(ctu05_data$baseline$mnpdocid)
#> [1] 180 184 187 191 199 203

To demsonstrate build_secuTrial_url we will use imaginary data for the server, instance, customer
and project parameters. The real counterparts on your server will likely look structurally similar.
server <- "server.secutrial.com"
instance <- "ST21-setup-DataCapture"
customer <- "TES"
project <- "7036"

make three links with the first three baseline docids
bl_docids <- head(ctu05_data$baseline$mnpdocid, n = 3)
links <- build_secuTrial_url(server, instance, customer,

project, bl_docids)

These are the links:
https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TE
S&projectid=7036&docid=180

https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TE
S&projectid=7036&docid=184

https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TE

16

https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TES&projectid=7036&docid=180
https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TES&projectid=7036&docid=180
https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TES&projectid=7036&docid=184
https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TES&projectid=7036&docid=184
https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TES&projectid=7036&docid=187
https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TES&projectid=7036&docid=187

S&projectid=7036&docid=187

Of course they are dead ends but maybe you can use them to make out the arguments for your server.

The as.data.frame function
This vignette has been working with the secuTrialdata object, which is of type list. For some users,
working with a list can be tiresome so secuTrialR provides an as.data.frame() method to save the
data.frames in the secuTrialdata object to an environment of your choice.

As an example, we will create an environment called env and check that it’s empty before running
as.data.frame(). . .

env <- new.env()
ls(env)
#> character(0)

add files to env
as.data.frame(ctu05_data, envir = env)

. . . and afterwards.

ls(env)
#> [1] "ae" "allmedi" "atae" "atae1"
#> [5] "atallmedi" "atbaseline" "atesurgeries" "atmiv"
#> [9] "atoutcome" "atsae" "atstudyterminat" "attreatment"
#> [13] "baseline" "esurgeries" "outcome" "sae"
#> [17] "studyterminat" "treatment"

Substituting env with .GlobalEnv instead would also be an option and would make the data.frames
immediately accessible without having to refer to an environment.

Frequent warning messages
Certain warning messages can occur quite frequently when running read_secuTrial(). Some of them may
call for deliberate action and thus it is important to understand them. We briefly mentioned some of them
earlier in this document but will now more closely explain how they can be interpreted.

Please note that warning messages may “pile up” depending on the export you are reading. For example
this may happen if there are many date variables with incomplete data. This is no reason for concern. We
suggest that you read them and interpret them based on the explanations below. We use a_form_name and
a_variable_name as place holders in the examples. If in doubt you can always work with the raw data
because it is never overwritten.

Dates
The below warning tells you that some data in a date variable could not be converted during the process of
date conversion (i.e. dates_secuTrial()). This ususally occurs if incomplete date entries are present. Since
the raw data is not overwritten but rather a variable_name.date or variable_name.datetime column are
added to the dataset you can specifically see which values could not be converted because the raw data will
contain data while the corresponding .date/.datetime entires will be NA. The warning also indicates where
to look. The dummy example below indicates to look at the variable a_variable_name in form a_form_name.

#> Warning: In dates_secuTrial.data.frame(tmp, datevars, timevars, dateformat, :
#> Not all dates were converted for
#> variable: 'a_variable_name'

17

https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TES&projectid=7036&docid=187
https://server.secutrial.com/apps/WebObjects/ST21-setup-DataCapture.woa/wa/choose?customer=TES&projectid=7036&docid=187

#> in form: 'a_form_name'
#> This is likely due to incomplete date entries.

Factors
In some cases secuTrial allows differently coded data to be decoded to the same target value for the same
variable. For instance this can happen if hierarchical lookuptables have been implemented in the database.
Because this interferes with the factorization (i.e. factorize_secuTrial()) we add the code to the duplicate
decoded value and return the below message to make you aware.

If you run into this warning message we suggest running the table() function on the variable in question.
This will likely clarify the above explanation.

#> Warning: In factorize_secuTrial.data.frame(curr_form_data, cl = object$cl, :
#> Duplicate values found during factorization of a_variable_name

Labels
Sometimes the labels of variables in a secuTrial database implementation may be changed after release of the
database. In these cases all labels (current and previous versions) are added to the label attribute during
labelling (i.e. label_secuTrial()) and the below warning is triggered. It indicates which variables in which
forms are affected.

#> Warning: In label_secuTrial.secuTrialdata(d) :
#> The labels attribute may be longer than 1 for the following variables and forms.
#> Likely the label was changed from its original state in the secuTrial project setup.
#> variables: a_variable_name
#> forms: a_form_name

Merging forms in the secuTrialdata object
Naturally, you will sometimes need to merge/join some of the data from the individual form data stored
in your secuTrialdata object. To achieve this you can use the base R merge() function. For our dataset
we might be interested in merging the baseline form data with that of the treatment form. For this we
can use the mnpcvpid which uniquely identifies each participant visit. Since we are only interested in the
rando_treatment variable we will shrink the data in the treatment form prior to merging.

treatment_shrink <- ctu05_data$treatment[, c("mnpcvpid", "rando_treatment")]

Because we do not want to drop non-matching rows from baseline we set all.x = TRUE. As you can see
from the dim() calls, one column has been added after the merge. This corresponds to the rando_treatment
variable.
bl_treat <- merge(x = ctu05_data$baseline, y = treatment_shrink,

by = "mnpcvpid", all.x = TRUE)
check dimensions
dim(ctu05_data$baseline)
#> [1] 17 107

dim(bl_treat)
#> [1] 17 108

Another common task may be to merge repetition form data to its parent form. In our case esurgeries
can be naively merged with baseline via the mnpdocid (from the secuTrial manual: “Each eCRF document
record has a unique document identifier.”):

18

bl_surg <- merge(x = ctu05_data$baseline, y = ctu05_data$esurgeries, by = "mnpdocid")

Please note, that such naive merging can cause duplication of data if the ids that the merge is directed by are
not unique. This also happened during the production of bl_surg in the code above. Participant “RPACK-
INS-012” exhibits the mnpdocid 234 twice in the esurgeries repetition form which causes a duplication of
the baseline data matching mnpdocid 234.

table(ctu05_data$esurgeries$mnpdocid)
#>
#> 180 184 187 191 199 203 211 216 220 222 230 234 238 243 249 255 265
#> 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

Lets briefly illustrate the consequences by looking at a table() of the height variable from the baseline
form before and after merging.

before merge
table(ctu05_data$baseline$height)
#>
#> 110.1 150 150.1 160 167.9 170.3 170.4 180 180.1 190.2
#> 1 1 1 1 1 1 1 3 3 1

after merge
table(bl_surg$height)
#>
#> 110.1 150 150.1 160 167.9 170.3 170.4 180 180.1 190.2
#> 1 1 1 1 1 1 1 4 3 1

A closer look reveals that 180 now appears four times instead of three, which can be attributed to the
duplication. This is not a favourable outcome because it can cause confusion and misinterpretation. A better
approach is to change the structure of your repetition form before merging to make the ids you merge by
unique. For this you need to investigate which data you would like to merge and design an appropriate
stategy. In our example case we are interested in the surgery_organ. Of course we also need to drag the
mnpdocid along to perform the actual merge.

write a temporary object
surg <- ctu05_data$esurgeries[, c("mnpdocid", "surgery_organ.factor")]
only retain non NA rows
surg <- surg[which(! is.na(surg$surgery_organ.factor)),]
show it
surg
#> mnpdocid surgery_organ.factor
#> 12 234 Stomach
#> 13 234 Other

19

In order to prevent duplication we can restructure the data before merging.

library(tidyr) # pivot_wider
add a count
surg$count <- 1
show the data
surg
#> mnpdocid surgery_organ.factor count
#> 12 234 Stomach 1
#> 13 234 Other 1

make it wide
surg_wide <- pivot_wider(surg, names_from = surgery_organ.factor, values_from = count)
show the wide data
surg_wide
#> # A tibble: 1 x 3
#> mnpdocid Stomach Other
#> <int> <dbl> <dbl>
#> 1 234 1 1

Checking the dimensions before and after merging reveals that the structure, especially the line count, remains
the same except for the data added from the esurgeries repetition form (i.e. Stomach and Other). Also, as
expected, the table() of the height variable returns the expected result (i.e. 180 is present three not four
times).

merge
bl_surg_no_dup <- merge(x = ctu05_data$baseline, y = surg_wide,

by = "mnpdocid", all.x = TRUE)

compare dimensions
dim(bl_surg_no_dup)
#> [1] 17 109

dim(ctu05_data$baseline)
#> [1] 17 107

check the height variable
table(bl_surg_no_dup$height)
#>
#> 110.1 150 150.1 160 167.9 170.3 170.4 180 180.1 190.2
#> 1 1 1 1 1 1 1 3 3 1

The above description only provides a very brief and simplified example. Merging strategies need to be
individually tailored and require a good understanding of the data at hand. The links_secuTrial() function
may be helpful to understand which variables will allow you to merge forms.

A note on mnp* variables
There is a plethora of variables in the tables of secuTrial exports whose names start with mnp. These are
metadata variables which are e.g. important to logically link the different tables. Explaining them all is
beyond the scope of this vignette. For detailed explanations, please refer to the secuTrial “Export Formats”
user manual.

20

sessionInfo()
#> R version 4.4.0 (2024-04-24 ucrt)
#> Platform: x86_64-w64-mingw32/x64
#> Running under: Windows 10 x64 (build 19045)
#>
#> Matrix products: default
#>
#>
#> locale:
#> [1] LC_COLLATE=German_Switzerland.utf8 LC_CTYPE=German_Switzerland.utf8
#> [3] LC_MONETARY=German_Switzerland.utf8 LC_NUMERIC=C
#> [5] LC_TIME=German_Switzerland.utf8
#>
#> time zone: Europe/Zurich
#> tzcode source: internal
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] tidyr_1.3.1 secuTrialR_1.3.3
#>
#> loaded via a namespace (and not attached):
#> [1] bit_4.0.5 highr_0.11 crayon_1.5.2 dplyr_1.1.4
#> [5] compiler_4.4.0 tidyselect_1.2.1 stringr_1.5.1 parallel_4.4.0
#> [9] yaml_2.3.8 fastmap_1.2.0 readxl_1.4.3 readr_2.1.5
#> [13] R6_2.5.1 generics_0.1.3 knitr_1.46 forcats_1.0.0
#> [17] tibble_3.2.1 lubridate_1.9.3 tufte_0.13 pillar_1.9.0
#> [21] tzdb_0.4.0 rlang_1.1.3 utf8_1.2.4 stringi_1.8.4
#> [25] xfun_0.44 bit64_4.0.5 timechange_0.3.0 cli_3.6.2
#> [29] withr_3.0.0 magrittr_2.0.3 digest_0.6.35 vroom_1.6.5
#> [33] rstudioapi_0.16.0 haven_2.5.4 hms_1.1.3 lifecycle_1.0.4
#> [37] vctrs_0.6.5 evaluate_0.23 glue_1.7.0 cellranger_1.1.0
#> [41] fansi_1.0.6 rmarkdown_2.27 purrr_1.0.2 tools_4.4.0
#> [45] pkgconfig_2.0.3 htmltools_0.5.8.1

Disclaimer

The descriptions of the secuTrial exports used in this vignette and other secuTrialR documentation correspond

21

to our understanding of them and come with no warranty. For in depth details please refer to the original
secuTrial manuals.

22

	Introduction
	Install
	The CTU05 dataset
	secuTrial export options
	Reading a secuTrial data export into R
	The secuTrialdata object
	The data tables in the secuTrialdata object
	Accessing the tables and values
	Data transformations
	Export options

	Generic functions for secuTrialdata objects
	Show the study participants
	Recruitment over time
	Visit plan visualization
	Completeness of forms
	Form linkage
	Sampling random participants
	Retrieve score variables
	Retrieve hidden variables
	Finding changes/differences in project setup implementations
	Conversion to SPSS, STATA, SAS
	Subsetting secuTrialdata

	Building URLs to your secuTrial server
	The as.data.frame function
	Frequent warning messages
	Dates
	Factors
	Labels

	Merging forms in the secuTrialdata object
	A note on mnp* variables

