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spatstat.random-package

The spatstat.random Package

Description

The spatstat.random package belongs to the spatstat family of packages. It contains the function-
ality for generating random spatial patterns and simulation of random point processes.

Details

spatstat is a family of R packages for the statistical analysis of spatial data. Its main focus is the
analysis of spatial patterns of points in two-dimensional space.

This sub-package spatstat.random contains the functions that perform random generation of spa-
tial patterns and simulation of random point processes:

• generation of random spatial patterns of points according to many simple rules (completely
random patterns, random grids, systematic random points);

• randomised alteration of spatial patterns (thinning, random shifting, jittering, random la-
belling);

• generation of quasirandom patterns;

• direct simulation of random point processes (Poisson process, binomial process, cell process,
simple sequential inhibition, Matérn inhibition models, log-Gaussian Cox processes;

• simulation of Neyman-Scott cluster processes (truncated direct algorithm, Brix-Kendall and
hybrid algorithms) and product shot noise cluster processes;

• simulation of Gibbs point processes (Metropolis-Hastings birth-death-shift algorithm, perfect
simulation/ dominated coupling from the past, alternating Gibbs sampler).

Some other types of spatial object are also supported:

• generation of random patterns of points in 3 dimensions;

• generation of random spatial patterns of line segments;

• generation of random tessellations;

• generation of random images (random noise, random mosaics).

(Functions for linear networks are in the separate sub-package spatstat.linnet.)

Structure of the spatstat family

The spatstat family of packages is designed to support a complete statistical analysis of spatial
data. It supports

• creation, manipulation and plotting of point patterns;

• exploratory data analysis;
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• spatial random sampling;

• simulation of point process models;

• parametric model-fitting;

• non-parametric smoothing and regression;

• formal inference (hypothesis tests, confidence intervals);

• model diagnostics.

The orginal spatstat package grew to be very large. It has now been divided into several sub-
packages:

• spatstat.utils containing basic utilities

• spatstat.sparse containing linear algebra utilities

• spatstat.data containing datasets

• spatstat.univar containing functions for estimating probability distributions of random vari-
ables

• spatstat.geom containing geometrical objects and geometrical operations

• spatstat.random containing functionality for simulation and random generation

• spatstat.explore containing the main functionality for exploratory data analysis and nonpara-
metric analysis

• spatstat.model containing the main functionality for parametric modelling and formal infer-
ence for spatial data

• spatstat.linnet containing functions for spatial data on a linear network

• spatstat, which simply loads the other sub-packages listed above, and provides documenta-
tion.

When you install spatstat, these sub-packages are also installed. Then if you load the spatstat
package by typing library(spatstat), the other sub-packages listed above will automatically be
loaded or imported.

For an overview of all the functions available in the sub-packages of spatstat, see the help file for
"spatstat-package" in the spatstat package.

Additionally there are several extension packages:

• spatstat.gui for interactive graphics

• spatstat.local for local likelihood (including geographically weighted regression)

• spatstat.Knet for additional, computationally efficient code for linear networks

• spatstat.sphere (under development) for spatial data on a sphere, including spatial data on the
earth’s surface

The extension packages must be installed separately and loaded explicitly if needed. They also have
separate documentation.
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Functionality in spatstat.random

Following is a list of the functionality provided in the spatstat.random package only.

To simulate a random point pattern:

runifpoint generate n independent uniform random points
rpoint generate n independent random points
rmpoint generate n independent multitype random points
rpoispp simulate the (in)homogeneous Poisson point process
rmpoispp simulate the (in)homogeneous multitype Poisson point process
runifdisc generate n independent uniform random points in disc
rstrat stratified random sample of points
rMaternI simulate the Matérn Model I inhibition process
rMaternII simulate the Matérn Model II inhibition process
rSSI simulate Simple Sequential Inhibition process
rStrauss simulate Strauss process (perfect simulation)
rHardcore simulate Hard Core process (perfect simulation)
rStraussHard simulate Strauss-hard core process (perfect simulation)
rDiggleGratton simulate Diggle-Gratton process (perfect simulation)
rDGS simulate Diggle-Gates-Stibbard process (perfect simulation)
rPenttinen simulate Penttinen process (perfect simulation)
rNeymanScott simulate a general Neyman-Scott process
rPoissonCluster simulate a general Poisson cluster process
rMatClust simulate the Matérn Cluster process
rThomas simulate the Thomas process
rGaussPoisson simulate the Gauss-Poisson cluster process
rCauchy simulate Neyman-Scott Cauchy cluster process
rVarGamma simulate Neyman-Scott Variance Gamma cluster process
rthin random thinning
rcell simulate the Baddeley-Silverman cell process
rmh simulate Gibbs point process using Metropolis-Hastings
runifpointOnLines generate n random points along specified line segments
rpoisppOnLines generate Poisson random points along specified line segments

To randomly change an existing point pattern:

rshift random shifting of points
rthin random thinning
rlabel random (re)labelling of a multitype point pattern
quadratresample block resampling

See also rjitter and rexplode in the spatstat.geom package.

Random pixel images:
An object of class "im" represents a pixel image.

rnoise random pixel noise

Line segment patterns
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An object of class "psp" represents a pattern of straight line segments.

rpoisline generate a realisation of the Poisson line process inside a window

Tessellations
An object of class "tess" represents a tessellation.

rpoislinetess generate tessellation using Poisson line process

Three-dimensional point patterns
An object of class "pp3" represents a three-dimensional point pattern in a rectangular box. The box
is represented by an object of class "box3".

runifpoint3 generate uniform random points in 3-D
rpoispp3 generate Poisson random points in 3-D

Multi-dimensional space-time point patterns
An object of class "ppx" represents a point pattern in multi-dimensional space and/or time.

runifpointx generate uniform random points
rpoisppx generate Poisson random points

Probability Distributions

rknn theoretical distribution of nearest neighbour distance
dmixpois mixed Poisson distribution

Simulation
There are many ways to generate a random point pattern, line segment pattern, pixel image or
tessellation in spatstat.
Random point patterns:

runifpoint generate n independent uniform random points
rpoint generate n independent random points
rmpoint generate n independent multitype random points
rpoispp simulate the (in)homogeneous Poisson point process
rmpoispp simulate the (in)homogeneous multitype Poisson point process
runifdisc generate n independent uniform random points in disc
rstrat stratified random sample of points
rMaternI simulate the Matérn Model I inhibition process
rMaternII simulate the Matérn Model II inhibition process
rSSI simulate Simple Sequential Inhibition process
rHardcore simulate hard core process (perfect simulation)
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rStrauss simulate Strauss process (perfect simulation)
rStraussHard simulate Strauss-hard core process (perfect simulation)
rDiggleGratton simulate Diggle-Gratton process (perfect simulation)
rDGS simulate Diggle-Gates-Stibbard process (perfect simulation)
rPenttinen simulate Penttinen process (perfect simulation)
rNeymanScott simulate a general Neyman-Scott process
rMatClust simulate the Matérn Cluster process
rThomas simulate the Thomas process
rLGCP simulate the log-Gaussian Cox process
rGaussPoisson simulate the Gauss-Poisson cluster process
rCauchy simulate Neyman-Scott process with Cauchy clusters
rVarGamma simulate Neyman-Scott process with Variance Gamma clusters
rcell simulate the Baddeley-Silverman cell process
runifpointOnLines generate n random points along specified line segments
rpoisppOnLines generate Poisson random points along specified line segments

Resampling a point pattern:

quadratresample block resampling
rshift random shifting of (subsets of) points
rthin random thinning

Other random patterns:

rpoisline simulate the Poisson line process within a window
rpoislinetess generate random tessellation using Poisson line process
rMosaicSet generate random set by selecting some tiles of a tessellation
rMosaicField generate random pixel image by assigning random values in each tile of a tessellation

Resampling and randomisation procedures
You can build your own tests based on randomisation and resampling using the following capabili-
ties:

quadratresample block resampling
rshift random shifting of (subsets of) points
rthin random thinning

Licence

This library and its documentation are usable under the terms of the "GNU General Public License",
a copy of which is distributed with the package.
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as.owin.rmhmodel Convert Data To Class owin

Description

Converts data specifying an observation window in any of several formats, into an object of class
"owin".
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Usage

## S3 method for class 'rmhmodel'
as.owin(W, ..., fatal=FALSE)

Arguments

W Data specifying an observation window, in any of several formats described un-
der Details below.

fatal Logical value determining what to do if the data cannot be converted to an ob-
servation window. See Details.

... Ignored.

Details

The class "owin" is a way of specifying the observation window for a point pattern. See owin.object
for an overview.

The generic function as.owin converts data in any of several formats into an object of class "owin"
for use by the spatstat package. The function as.owin is generic, with methods for different classes
of objects, and a default method.

The argument W may be

• an object of class "owin"

• a structure with entries xrange, yrange specifying the x and y dimensions of a rectangle

• a structure with entries named xmin, xmax, ymin, ymax (in any order) specifying the x and y
dimensions of a rectangle. This will accept objects of class bbox in the sf package.

• a numeric vector of length 4 (interpreted as (xmin, xmax, ymin, ymax) in that order) speci-
fying the x and y dimensions of a rectangle

• a structure with entries named xl, xu, yl, yu (in any order) specifying the x and y dimensions
of a rectangle as (xmin, xmax) = (xl, xu) and (ymin, ymax) = (yl, yu). This will accept
objects of class spp used in the Venables and Ripley spatial package.

• an object of class "ppp" representing a point pattern. In this case, the object’s window structure
will be extracted.

• an object of class "psp" representing a line segment pattern. In this case, the object’s window
structure will be extracted.

• an object of class "tess" representing a tessellation. In this case, the object’s window structure
will be extracted.

• an object of class "quad" representing a quadrature scheme. In this case, the window of the
data component will be extracted.

• an object of class "im" representing a pixel image. In this case, a window of type "mask" will
be returned, with the same pixel raster coordinates as the image. An image pixel value of NA,
signifying that the pixel lies outside the window, is transformed into the logical value FALSE,
which is the corresponding convention for window masks.
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• an object of class "ppm", "kppm", "slrm" or "dppm" representing a fitted point process model.
In this case, if from="data" (the default), as.owin extracts the original point pattern data to
which the model was fitted, and returns the observation window of this point pattern. If
from="covariates" then as.owin extracts the covariate images to which the model was
fitted, and returns a binary mask window that specifies the pixel locations.

• an object of class "lpp" representing a point pattern on a linear network. In this case, as.owin
extracts the linear network and returns a window containing this network.

• an object of class "lppm" representing a fitted point process model on a linear network. In this
case, as.owin extracts the linear network and returns a window containing this network.

• A data.frame with exactly three columns. Each row of the data frame corresponds to one
pixel. Each row contains the x and y coordinates of a pixel, and a logical value indicating
whether the pixel lies inside the window.

• A data.frame with exactly two columns. Each row of the data frame contains the x and y
coordinates of a pixel that lies inside the window.

• an object of class "distfun", "nnfun" or "funxy" representing a function of spatial location,
defined on a spatial domain. The spatial domain of the function will be extracted.

• an object of class "rmhmodel" representing a point process model that can be simulated using
rmh. The window (spatial domain) of the model will be extracted. The window may be NULL
in some circumstances (indicating that the simulation window has not yet been determined).
This is not treated as an error, because the argument fatal defaults to FALSE for this method.

• an object of class "layered" representing a list of spatial objects. See layered. In this case,
as.owin will be applied to each of the objects in the list, and the union of these windows will
be returned.

• an object of another suitable class from another package. For full details, see vignette('shapefiles').

If the argument W is not in one of these formats and cannot be converted to a window, then an error
will be generated (if fatal=TRUE) or a value of NULL will be returned (if fatal=FALSE).

When W is a data frame, the argument step can be used to specify the pixel grid spacing; otherwise,
the spacing will be guessed from the data.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.owin, as.owin.ppm, as.owin.lpp.

owin.object, owin.

Additional methods for as.owin may be provided by other packages outside the spatstat family.
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Examples

m <- rmhmodel(cif='poisson', par=list(beta=1), w=square(2))
as.owin(m)

clusterfield Field of clusters

Description

Calculate the superposition of cluster kernels at the location of a point pattern.

Usage

clusterfield(model, locations = NULL, ...)

## S3 method for class 'character'
clusterfield(model, locations = NULL, ...)

## S3 method for class 'function'
clusterfield(model, locations = NULL, ..., mu = NULL)

Arguments

model Cluster model. Either a fitted cluster model (object of class "kppm"), a character
string specifying the type of cluster model, or a function defining the cluster
kernel. See Details.

locations A point pattern giving the locations of the kernels. Defaults to the centroid of
the observation window for the "kppm" method and to the center of a unit square
otherwise.

... Additional arguments passed to density.ppp or the cluster kernel. See Details.

mu Mean number of offspring per cluster. A single number or a pixel image.

Details

The function clusterfield is generic, with methods for "character" and "function" (described
here) and a method for "kppm" (described in clusterfield.kppm).

The calculations are performed by density.ppp and ... arguments are passed thereto for control
over the pixel resolution etc. (These arguments are then passed on to pixellate.ppp and as.mask.)

For the method clusterfield.function, the given kernel function should accept vectors of x and
y coordinates as its first two arguments. Any additional arguments may be passed through the ....

The method clusterfield.function also accepts the optional parameter mu (defaulting to 1) spec-
ifying the mean number of points per cluster (as a numeric) or the inhomogeneous reference cluster
intensity (as an "im" object or a function(x,y)). The interpretation of mu is as explained in the
simulation functions referenced in the See Also section below.
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For the method clusterfield.character, the argument model must be one of the following
character strings: model="Thomas" for the Thomas process, model="MatClust" for the Matérn
cluster process, model="Cauchy" for the Neyman-Scott cluster process with Cauchy kernel, or
model="VarGamma" for the Neyman-Scott cluster process with Variance Gamma kernel. For all
these models the parameter scale is required and passed through ... as well as the parameter nu
when model="VarGamma". This method calls clusterfield.function so the parameter mu may
also be passed through ... and will be interpreted as explained above.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

clusterfield.kppm.

density.ppp and kppm.

Simulation algorithms for cluster models: rCauchy rMatClust rThomas rVarGamma

Examples

# method for functions
kernel <- function(x,y,scal) {

r <- sqrt(x^2 + y^2)
ifelse(r > 0,

dgamma(r, shape=5, scale=scal)/(2 * pi * r),
0)

}
X <- runifpoint(10)
clusterfield(kernel, X, scal=0.05)

clusterkernel Extract Cluster Offspring Kernel

Description

Given a cluster point process model, this command returns the probability density of the cluster
offspring.

Usage

clusterkernel(model, ...)
## S3 method for class 'character'
clusterkernel(model, ...)
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Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or
a character string specifying the type of cluster model.

... Parameter values for the model, when model is a character string.

Details

Given a specification of a cluster point process model, this command returns a function(x,y)
giving the two-dimensional probability density of the cluster offspring points assuming a cluster
parent located at the origin.

The function clusterkernel is generic, with methods for class "character" (described here) and
"kppm" (described in clusterkernel.kppm).

Value

A function in the R language with arguments x,y,....

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

clusterkernel.kppm), clusterfield, kppm.

Examples

f <- clusterkernel("Thomas", kappa=10, scale=0.5)
f(0.1, 0.2)

clusterradius Compute or Extract Effective Range of Cluster Kernel

Description

Given a cluster point process model, this command returns a value beyond which the the probability
density of the cluster offspring is neglible.

Usage

clusterradius(model, ...)

## S3 method for class 'character'
clusterradius(model, ..., thresh = NULL, precision = FALSE)
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Arguments

model Cluster model. Either a fitted cluster or Cox model (object of class "kppm"), or
a character string specifying the type of cluster model.

... Parameter values for the model, when model is a character string.

thresh Numerical threshold relative to the cluster kernel value at the origin (parent loca-
tion) determining when the cluster kernel will be considered neglible. A sensible
default is provided.

precision Logical. If precision=TRUE the precision of the calculated range is returned as
an attribute to the range. See details.

Details

Given a cluster model this function by default returns the effective range of the model with the given
parameters as used in spatstat. For the Matérn cluster model (see e.g. rMatClust) this is simply the
finite radius of the offsring density given by the paramter scale irrespective of other options given
to this function. The remaining models in spatstat have infinite theoretical range, and an effective
finite value is given as follows: For the Thomas model (see e.g. rThomas the default is 4*scale
where scale is the scale or standard deviation parameter of the model. If thresh is given the value
is instead found as described for the other models below.

For the Cauchy model (see e.g. rCauchy) and the Variance Gamma (Bessel) model (see e.g.
rVarGamma) the value of thresh defaults to 0.001, and then this is used to compute the range
numerically as follows. If k(x, y) = k0(r) with r =

√
(x2 + y2) denotes the isotropic cluster

kernel then f(r) = 2πrk0(r) is the density function of the offspring distance from the parent. The
range is determined as the value of r where f(r) falls below thresh times k0(r).

If precision=TRUE the precision related to the chosen range is returned as an attribute. Here the
precision is defined as the polar integral of the kernel from distance 0 to the calculated range. Ideally
this should be close to the value 1 which would be obtained for the true theretical infinite range.

Value

A positive numeric.

Additionally, the precision related to this range value is returned as an attribute "prec", if precision=TRUE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

clusterkernel, kppm, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott.

Examples

clusterradius("Thomas", scale = .1)
clusterradius("Thomas", scale = .1, thresh = 0.001)
clusterradius("VarGamma", scale = .1, nu = 2, precision = TRUE)
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default.expand Default Expansion Rule for Simulation of Model

Description

Defines the default expansion window or expansion rule for simulation of a point process model.

Usage

default.expand(object, m=2, epsilon=1e-6, w=Window(object))

Arguments

object A point process model (object of class "ppm" or "rmhmodel").

m A single numeric value. The window will be expanded by a distance m * reach(object)
along each side.

epsilon Threshold argument passed to reach to determine reach(object).

w Optional. The un-expanded window in which the model is defined. The result-
ing simulated point patterns will lie in this window.

Details

This function computes a default value for the expansion rule (the argument expand in rmhcontrol)
given a fitted point process model object. This default is used by rmh, simulate.ppm, envelope,
qqplot.ppm, and other functions.

Suppose we wish to generate simulated realisations of a fitted point process model inside a window
w. It is advisable to first simulate the pattern on a larger window, and then clip it to the original
window w. This avoids edge effects in the simulation. It is called expansion of the simulation
window.

Accordingly, for the Metropolis-Hastings simulation algorithm rmh, the algorithm control param-
eters specified by rmhcontrol include an argument expand that determines the expansion of the
simulation window.

The function default.expand determines the default expansion rule for a fitted point process
model object.

If the model is Poisson, then no expansion is necessary. No expansion is performed by default, and
default.expand returns a rule representing no expansion. The simulation window is the original
window w = Window(object).

If the model depends on external covariates (i.e.\ covariates other than the Cartesian covariates x
and y and the marks) then no expansion is feasible, in general, because the spatial domain of the
covariates is not guaranteed to be large enough. default.expand returns a rule representing no
expansion. The simulation window is the original window w = Window(object).

If the model depends on the Cartesian covariates x and y, it would be feasible to expand the sim-
ulation window, and this was the default for spatstat version 1.24-1 and earlier. However this



default.rmhcontrol 17

sometimes produces artefacts (such as an empty point pattern) or memory overflow, because the fit-
ted trend, extrapolated outside the original window of the data, may become very large. In spatstat
version 1.24-2 and later, the default rule is not to expand if the model depends on x or y. Again
default.expand returns a rule representing no expansion.

Otherwise, expansion will occur. The original window w = Window(object) is expanded by a dis-
tance m * rr, where rr is the interaction range of the model, computed by reach. If w is a rectangle
then each edge of w is displaced outward by distance m * rr. If w is not a rectangle then w is dilated
by distance m * rr using dilation.

Value

A window expansion rule (object of class "rmhexpand").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

rmhexpand, rmhcontrol, rmh, envelope, qqplot.ppm

Examples

if(require(spatstat.model)) {
fit <- ppm(cells ~1, Strauss(0.07))
default.expand(fit)

}
mod <- rmhmodel(cif="strauss", par=list(beta=100, gamma=0.5, r=0.07))
default.expand(mod)

default.rmhcontrol Set Default Control Parameters for Metropolis-Hastings Algorithm.

Description

For a Gibbs point process model (either a fitted model, or a model specified by its parameters), this
command sets appropriate default values of the parameters controlling the iterative behaviour of the
Metropolis-Hastings algorithm.

Usage

default.rmhcontrol(model, w=NULL)

Arguments

model A fitted point process model (object of class "ppm") or a description of a Gibbs
point process model (object of class "rmhmodel").

w Optional. Window for the resulting simulated patterns.
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Details

This function sets the values of the parameters controlling the iterative behaviour of the Metropolis-
Hastings simulation algorithm. It uses default values that would be appropriate for the fitted point
process model model.

The expansion parameter expand is set to default.expand(model, w).

All other parameters revert to their defaults given in rmhcontrol.default.

See rmhcontrol for the full list of control parameters. To override default parameters, use update.rmhcontrol.

Value

An object of class "rmhcontrol". See rmhcontrol.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

rmhcontrol, update.rmhcontrol, ppm, default.expand

Examples

if(require(spatstat.model)) {
fit <- ppm(cells, ~1, Strauss(0.1))
default.rmhcontrol(fit)
default.rmhcontrol(fit, w=square(2))

}
m <- rmhmodel(cif='strauss',

par=list(beta=100, gamma=0.5, r=0.1),
w=unit.square())

default.rmhcontrol(m)
default.rmhcontrol(m, w=square(2))

dmixpois Mixed Poisson Distribution

Description

Density, distribution function, quantile function and random generation for a mixture of Poisson
distributions.

Usage

dmixpois(x, mu, sd, invlink = exp, GHorder = 5)
pmixpois(q, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
qmixpois(p, mu, sd, invlink = exp, lower.tail = TRUE, GHorder = 5)
rmixpois(n, mu, sd, invlink = exp)
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Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of random values to return.

mu Mean of the linear predictor. A single numeric value.

sd Standard deviation of the linear predictor. A single numeric value.

invlink Inverse link function. A function in the R language, used to transform the linear
predictor into the parameter lambda of the Poisson distribution.

lower.tail Logical. If TRUE (the default), probabilities are P [X ≤ x], otherwise, P [X >
x].

GHorder Number of quadrature points in the Gauss-Hermite quadrature approximation.
A small positive integer.

Details

These functions are analogous to dpois ppois, qpois and rpois except that they apply to a mixture
of Poisson distributions.

In effect, the Poisson mean parameter lambda is randomised by setting lambda = invlink(Z)
where Z has a Gaussian N(µ, σ2) distribution. The default is invlink=exp which means that
lambda is lognormal. Set invlink=I to assume that lambda is approximately Normal.

For dmixpois, pmixpois and qmixpois, the probability distribution is approximated using Gauss-
Hermite quadrature. For rmixpois, the deviates are simulated exactly.

Value

Numeric vector: dmixpois gives probability masses, ppois gives cumulative probabilities, qpois
gives (non-negative integer) quantiles, and rpois generates (non-negative integer) random deviates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

dpois, gauss.hermite.

Examples

dmixpois(7, 10, 1, invlink = I)
dpois(7, 10)

pmixpois(7, log(10), 0.2)
ppois(7, 10)
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qmixpois(0.95, log(10), 0.2)
qpois(0.95, 10)

x <- rmixpois(100, log(10), log(1.2))
mean(x)
var(x)

domain.rmhmodel Extract the Domain of any Spatial Object

Description

Given a spatial object such as a point pattern, in any number of dimensions, this function extracts
the spatial domain in which the object is defined.

Usage

## S3 method for class 'rmhmodel'
domain(X, ...)

Arguments

X A spatial object such as a point pattern (in any number of dimensions), line
segment pattern or pixel image.

... Extra arguments. They are ignored by all the methods listed here.

Details

The function domain is generic.

For a spatial object X in any number of dimensions, domain(X) extracts the spatial domain in which
X is defined.

For a two-dimensional object X, typically domain(X) is the same as Window(X).

Exceptions occur for methods related to linear networks.

Value

A spatial object representing the domain of X. Typically a window (object of class "owin"), a three-
dimensional box ("box3"), a multidimensional box ("boxx") or a linear network ("linnet").
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Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

domain, domain.quadratcount, domain.ppm, domain.quadrattest, domain.lpp. Window, Frame.

Examples

domain(rmhmodel(cif='poisson', par=list(beta=1), w=square(2)))

dpakes Pakes distribution

Description

Probability density, cumulative distribution function, quantile function, and random generation for
the Pakes distribution.

Usage

dpakes(x, zeta)
ppakes(q, zeta)
qpakes(p, zeta)
rpakes(n, zeta)

Arguments

x, q Numeric vector of quantiles.

p Numeric vector of probabilities

n Number of observations.

zeta Mean of distribution. A single, non-negative, numeric value.

Details

These functions concern the probability distribution of the random variable

X =

∞∑
n=1

n∏
j=1

U
1/ζ
j

where U1, U2, . . . are independent random variables uniformly distributed on [0, 1] and ζ is a pa-
rameter.

This distribution arises in many contexts. For example, for a homogeneous Poisson point process
in two-dimensional space with intensity λ, the standard Gaussian kernel estimator of intensity with
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bandwidth σ, evaluated at any fixed location u, has the same distribution as (λ/ζ)X where ζ =
2πλσ2.

Following the usual convention, dpakes computes the probability density, ppakes the cumulative
distribution function, and qpakes the quantile function, and rpakes generates random variates with
this distribution.

The computation is based on a recursive integral equation for the cumulative distribution function,
due to Professor Tony Pakes, presented in Baddeley, Moller and Pakes (2008). The solution uses
the fact that the random variable satisfies the distributional equivalence

X ≡ U1/ζ(1 +X)

where U is uniformly distributed on [0, 1] and independent of X .

Value

A numeric vector.

Author(s)

Adrian Baddeley.

References

Baddeley, A., Moller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes,
Annals of the Institute of Statistical Mathematics 60, 627–649.

Examples

curve(dpakes(x, 1.5), to=4)
rpakes(3, 1.5)

expand.owin Apply Expansion Rule

Description

Applies an expansion rule to a window.

Usage

expand.owin(W, ...)

Arguments

W A window.

... Arguments passed to rmhexpand to determine an expansion rule.
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Details

The argument W should be a window (an object of class "owin").

This command applies the expansion rule specified by the arguments ... to the window W, yielding
another window.

The arguments ... are passed to rmhexpand to determine the expansion rule.

For other transformations of the scale, location and orientation of a window, see shift, affine and
rotate.

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

rmhexpand about expansion rules.

shift, rotate, affine for other types of manipulation.

Examples

expand.owin(square(1), 9)
expand.owin(square(1), distance=0.5)
expand.owin(letterR, length=2)
expand.owin(letterR, distance=0.1)

gauss.hermite Gauss-Hermite Quadrature Approximation to Expectation for Normal
Distribution

Description

Calculates an approximation to the expected value of any function of a normally-distributed random
variable, using Gauss-Hermite quadrature.

Usage

gauss.hermite(f, mu = 0, sd = 1, ..., order = 5)
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Arguments

f The function whose moment should be approximated.

mu Mean of the normal distribution.

sd Standard deviation of the normal distribution.

... Additional arguments passed to f.

order Number of quadrature points in the Gauss-Hermite quadrature approximation.
A small positive integer.

Details

This algorithm calculates the approximate expected value of f(Z) when Z is a normally-distributed
random variable with mean mu and standard deviation sd. The expected value is an integral with
respect to the Gaussian density; this integral is approximated using Gauss-Hermite quadrature.

The argument f should be a function in the R language whose first argument is the variable Z.
Additional arguments may be passed through .... The value returned by f may be a single numeric
value, a vector, or a matrix. The values returned by f for different values of Z must have compatible
dimensions.

The result is a weighted average of several values of f.

Value

Numeric value, vector or matrix.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>.

Examples

gauss.hermite(function(x) x^2, 3, 1)

is.stationary Recognise Stationary and Poisson Point Process Models

Description

Given a point process model (either a model that has been fitted to data, or a model specified by its
parameters), determine whether the model is a stationary point process, and whether it is a Poisson
point process.
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Usage

is.stationary(x)
## S3 method for class 'rmhmodel'
is.stationary(x)

is.poisson(x)
## S3 method for class 'rmhmodel'
is.poisson(x)

Arguments

x A fitted spatial point process model (object of class "ppm", "kppm", "lppm",
"dppm" or "slrm") or a specification of a Gibbs point process model (object of
class "rmhmodel") or a similar object.

Details

The argument x represents a fitted spatial point process model or a similar object.

is.stationary(x) returns TRUE if x represents a stationary point process, and FALSE if not.

is.poisson(x) returns TRUE if x represents a Poisson point process, and FALSE if not.

The functions is.stationary and is.poisson are generic, with methods for the classes "ppm"
(Gibbs point process models), "kppm" (cluster or Cox point process models), "slrm" (spatial lo-
gistic regression models) and "rmhmodel" (model specifications for the Metropolis-Hastings algo-
rithm). Additionally is.stationary has a method for classes "detpointprocfamily" and "dppm"
(both determinantal point processes) and is.poisson has a method for class "interact" (interac-
tion structures for Gibbs models).

is.poisson.kppm will return FALSE, unless the model x is degenerate: either x has zero intensity
so that its realisations are empty with probability 1, or it is a log-Gaussian Cox process where the
log intensity has zero variance.

is.poisson.slrm will always return TRUE, by convention.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

is.marked to determine whether a model is a marked point process.
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Examples

m <- rmhmodel(cif='strauss', par=list(beta=10, gamma=0.1, r=1))
is.stationary(m)
is.poisson(m)
is.poisson(rmhmodel(cif='strauss', par=list(beta=10, gamma=1, r=1)))

quadratresample Resample a Point Pattern by Resampling Quadrats

Description

Given a point pattern dataset, create a resampled point pattern by dividing the window into rectan-
gular quadrats and randomly resampling the list of quadrats.

Usage

quadratresample(X, nx, ny=nx, ...,
replace = FALSE, nsamples = 1,
verbose = (nsamples > 1))

Arguments

X A point pattern dataset (object of class "ppp").

nx, ny Numbers of quadrats in the x and y directions.

... Ignored.

replace Logical value. Specifies whether quadrats should be sampled with or without
replacement.

nsamples Number of randomised point patterns to be generated.

verbose Logical value indicating whether to print progress reports.

Details

This command implements a very simple bootstrap resampling procedure for spatial point patterns
X.

The dataset X must be a point pattern (object of class "ppp") and its observation window must be a
rectangle.

The window is first divided into N = nx * ny rectangular tiles (quadrats) of equal size and shape.
To generate one resampled point pattern, a random sample of N quadrats is selected from the list
of N quadrats, with replacement (if replace=TRUE) or without replacement (if replace=FALSE).
The ith quadrat in the original dataset is then replaced by the ith sampled quadrat, after the latter
is shifted so that it occupies the correct spatial position. The quadrats are then reconstituted into a
point pattern inside the same window as X.

If replace=FALSE, this procedure effectively involves a random permutation of the quadrats. The
resulting resampled point pattern has the same number of points as X. If replace=TRUE, the number
of points in the resampled point pattern is random.
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Value

A point pattern (if nsamples = 1) or a list of point patterns (if nsamples > 1).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

quadrats, quadratcount.

See varblock to estimate the variance of a summary statistic by block resampling.

Examples

quadratresample(bei, 6, 3)

rags Alternating Gibbs Sampler for Multitype Point Processes

Description

Simulate a realisation of a point process model using the alternating Gibbs sampler.

Usage

rags(model, ..., ncycles = 100)

Arguments

model Data specifying some kind of point process model.

... Additional arguments passed to other code.

ncycles Number of cycles of the alternating Gibbs sampler that should be performed.

Details

The Alternating Gibbs Sampler for a multitype point process is an iterative simulation procedure.
Each step of the sampler updates the pattern of points of a particular type i, by drawing a realisation
from the conditional distribution of points of type i given the points of all other types. Successive
steps of the sampler update the points of type 1, then type 2, type 3, and so on.

This is an experimental implementation which currently works only for multitype hard core pro-
cesses (see MultiHard) in which there is no interaction between points of the same type.

The argument model should be an object describing a point process model. At the moment, the only
permitted format for model is of the form list(beta, hradii) where beta gives the first order
trend and hradii is the matrix of interaction radii. See ragsMultiHard for full details.
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Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

ragsMultiHard, ragsAreaInter

Examples

mo <- list(beta=c(30, 20),
hradii = 0.05 * matrix(c(0,1,1,0), 2, 2))

rags(mo, ncycles=10)

ragsAreaInter Alternating Gibbs Sampler for Area-Interaction Process

Description

Generate a realisation of the area-interaction process using the alternating Gibbs sampler. Applies
only when the interaction parameter eta is greater than 1.

Usage

ragsAreaInter(beta, eta, r, ...,
win = NULL, bmax = NULL, periodic = FALSE, ncycles = 100)

Arguments

beta First order trend. A number, a pixel image (object of class "im"), or a function(x,y).

eta Interaction parameter (canonical form) as described in the help for AreaInter.
A number greater than 1.

r Disc radius in the model. A number greater than 1.

... Additional arguments for beta if it is a function.

win Simulation window. An object of class "owin". (Ignored if beta is a pixel
image.)

bmax Optional. The maximum possible value of beta, or a number larger than this.

periodic Logical value indicating whether to treat opposite sides of the simulation win-
dow as being the same, so that points close to one side may interact with points
close to the opposite side. Feasible only when the window is a rectangle.

ncycles Number of cycles of the alternating Gibbs sampler to be performed.
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Details

This function generates a simulated realisation of the area-interaction process (see AreaInter)
using the alternating Gibbs sampler (see rags).

It exploits a mathematical relationship between the (unmarked) area-interaction process and the
two-type hard core process (Baddeley and Van Lieshout, 1995; Widom and Rowlinson, 1970).
This relationship only holds when the interaction parameter eta is greater than 1 so that the area-
interaction process is clustered.

The parameters beta,eta are the canonical parameters described in the help for AreaInter. The
first order trend beta may be a constant, a function, or a pixel image.

The simulation window is determined by beta if it is a pixel image, and otherwise by the argument
win (the default is the unit square).

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A.J. and Van Lieshout, M.N.M. (1995). Area-interaction point processes. Annals of the
Institute of Statistical Mathematics 47 (1995) 601–619.

Widom, B. and Rowlinson, J.S. (1970). New model for the study of liquid-vapor phase transitions.
The Journal of Chemical Physics 52 (1970) 1670–1684.

See Also

rags, ragsMultiHard

AreaInter

Examples

plot(ragsAreaInter(100, 2, 0.07, ncycles=15))

ragsMultiHard Alternating Gibbs Sampler for Multitype Hard Core Process

Description

Generate a realisation of the multitype hard core point process using the alternating Gibbs sampler.

Usage

ragsMultiHard(beta, hradii, ..., types=NULL, bmax = NULL,
periodic=FALSE, ncycles = 100)
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Arguments

beta First order trend. A numeric vector, a pixel image, a function, a list of functions,
or a list of pixel images.

hradii Matrix of hard core radii between each pair of types. Diagonal entries should be
0 or NA.

types Vector of all possible types for the multitype point pattern.
... Arguments passed to rmpoispp when generating random points.
bmax Optional upper bound on beta.
periodic Logical value indicating whether to measure distances in the periodic sense, so

that opposite sides of the (rectangular) window are treated as identical.
ncycles Number of cycles of the sampler to be performed.

Details

The Alternating Gibbs Sampler for a multitype point process is an iterative simulation procedure.
Each step of the sampler updates the pattern of points of a particular type i, by drawing a realisation
from the conditional distribution of points of type i given the points of all other types. Successive
steps of the sampler update the points of type 1, then type 2, type 3, and so on.

This is an experimental implementation which currently works only for multitype hard core pro-
cesses (see MultiHard) in which there is no interaction between points of the same type, and for
the area-interaction process (see ragsAreaInter).

The argument beta gives the first order trend for each possible type of point. It may be a single
number, a numeric vector, a function(x,y), a pixel image, a list of functions, a function(x,y,m),
or a list of pixel images.

The argument hradii is the matrix of hard core radii between each pair of possible types of points.
Two points of types i and j respectively are forbidden to lie closer than a distance hradii[i,j]
apart. The diagonal of this matrix must contain NA or 0 values, indicating that there is no hard core
constraint applying between points of the same type.

Value

A point pattern (object of class "ppp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rags, ragsAreaInter

Examples

b <- c(30,20)
h <- 0.05 * matrix(c(0,1,1,0), 2, 2)
ragsMultiHard(b, h, ncycles=10)
ragsMultiHard(b, h, ncycles=5, periodic=TRUE)
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rCauchy Simulate Neyman-Scott Point Process with Cauchy cluster kernel

Description

Generate a random point pattern, a simulated realisation of the Neyman-Scott process with Cauchy
cluster kernel.

Usage

rCauchy(kappa, scale, mu, win = square(1),
nsim=1, drop=TRUE,
...,
algorithm=c("BKBC", "naive"),
nonempty=TRUE,
thresh = 0.001, poisthresh=1e-6,
expand = NULL,
saveparents=FALSE, saveLambda=FALSE,
kappamax=NULL, mumax=NULL)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

scale Scale parameter for cluster kernel. Determines the size of clusters. A single
positive number, in the same units as the spatial coordinates.

mu Mean number of points per cluster (a single positive number) or reference inten-
sity for the cluster points (a function or a pixel image).

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

... Passed to clusterfield to control the image resolution when saveLambda=TRUE,
and to clusterradius when expand is missing or NULL.

algorithm String (partially matched) specifying the simulation algorithm. See Details.

nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which par-
ents are generated conditionally on having at least one offspring point. If FALSE,
parents are generated even if they have no offspring. Both choices are valid;
the default is recommended unless you need to simulate all the parent points for
some other purpose.

thresh Threshold relative to the cluster kernel value at the origin (parent location) deter-
mining when the cluster kernel will be treated as zero for simulation purposes.
Will be overridden by argument expand if that is given.
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poisthresh Numerical threshold below which the model will be treated as a Poisson process.
See Details.

expand Window expansion distance. A single number. The distance by which the orig-
inal window will be expanded in order to generate parent points. Has a sensible
default, determined by calling clusterradius with the numeric threshold value
given in thresh.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent
points will also be calculated and saved, and returns as an attribute of the point
pattern.

kappamax Optional. Numerical value which is an upper bound for the values of kappa,
when kappa is a pixel image or a function.

mumax Optional. Numerical value which is an upper bound for the values of mu, when
mu is a pixel image or a function.

Details

This algorithm generates a realisation of the Neyman-Scott process with Cauchy cluster kernel,
inside the window win.

The process is constructed by first generating a Poisson point process of “parent” points with in-
tensity kappa. Then each parent point is replaced by a random cluster of points, the number of
points in each cluster being random with a Poisson (mu) distribution, and the points being placed
independently and uniformly according to a Cauchy kernel.

Note that, for correct simulation of the model, the parent points are not restricted to lie inside the
window win; the parent process is effectively the uniform Poisson process on the infinite plane.

The algorithm can also generate spatially inhomogeneous versions of the cluster process:

• The parent points can be spatially inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process that generates the parent points.

• The offspring points can be inhomogeneous. If the argument mu is a function(x,y) or a
pixel image (object of class "im"), then it is interpreted as the reference density for offspring
points, in the sense of Waagepetersen (2006).

When the parents are homogeneous (kappa is a single number) and the offspring are inhomogeneous
(mu is a function or pixel image), the model can be fitted to data using kppm.

If the pair correlation function of the model is very close to that of a Poisson process, deviating by
less than poisthresh, then the model is approximately a Poisson process, and will be simulated as
a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would
otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pat-
tern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute
"Lambda", if saveLambda=TRUE.
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Simulation Algorithm

Two simulation algorithms are implemented.

• The naive algorithm generates the cluster process by directly following the description given
above. First the window win is expanded by a distance equal to expand. Then the parent
points are generated in the expanded window according to a Poisson process with intensity
kappa. Then each parent point is replaced by a finite cluster of offspring points as described
above. The naive algorithm is used if algorithm="naive" or if nonempty=FALSE.

• The BKBC algorithm, proposed by Baddeley and Chang (2023), is a modification of the al-
gorithm of Brix and Kendall (2002). Parents are generated in the infinite plane, subject to
the condition that they have at least one offspring point inside the window win. The BKBC
algorithm is used when algorithm="BKBC" (the default) and nonempty=TRUE (the default).

The naive algorithm becomes very slow when scale is large, while the BKBC algorithm is uni-
formly fast (Baddeley and Chang, 2023).

If saveparents=TRUE, then the simulated point pattern will have an attribute "parents" containing
the coordinates of the parent points, and an attribute "parentid" mapping each offspring point to
its parent.

If nonempty=TRUE (the default), then parents are generated subject to the condition that they have at
least one offspring point in the window win. nonempty=FALSE, then parents without offspring will
be included; this option is not available in the BKBC algorithm.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because
an offspring point inside win could have its parent point lying outside win. In order to allow this,
the naive simulation algorithm first expands the original window win by a distance equal to expand
and generates the Poisson process of parent points on this larger window. If kappa is a pixel image,
its domain must contain this larger window.

If the pair correlation function of the model is very close to that of a Poisson process, with maximum
deviation less than poisthresh, then the model is approximately a Poisson process. This is detected
by the naive algorithm which then simulates a Poisson process with intensity kappa * mu, using
rpoispp. This avoids computations that would otherwise require huge amounts of memory.

Fitting cluster models to data

The Cauchy cluster model with homogeneous parents (i.e. where kappa is a single number) where
the offspring are either homogeneous or inhomogeneous (mu is a single number, a function or pixel
image) can be fitted to point pattern data using kppm, or fitted to the inhomogeneous K function
using cauchy.estK or cauchy.estpcf.

Currently spatstat does not support fitting the Cauchy cluster process model with inhomogeneous
parents.

A Cauchy cluster process model fitted by kppm can be simulated automatically using simulate.kppm
(which invokes rCauchy to perform the simulation).

Author(s)

Original algorithm by Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>. Brix-Kendall-Baddeley-Chang algorithm
implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ya-Mei Chang <yamei628@gmail.com>.
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References

Baddeley, A. and Chang, Y.-M. (2023) Robust algorithms for simulating cluster point processes.
Journal of Statistical Computation and Simulation. In Press. DOI 10.1080/00949655.2023.2166045.

Brix, A. and Kendall, W.S. (2002) Simulation of cluster point processes without edge effects. Ad-
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Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

rpoispp, rMatClust, rThomas, rVarGamma, rNeymanScott, rGaussPoisson.

For fitting the model, see kppm, clusterfit.

Examples

# homogeneous
X <- rCauchy(30, 0.01, 5)
# inhomogeneous
ff <- function(x,y){ exp(2 - 3 * abs(x)) }
Z <- as.im(ff, W= owin())
Y <- rCauchy(50, 0.01, Z)
YY <- rCauchy(ff, 0.01, 5)

rcell Simulate Baddeley-Silverman Cell Process

Description

Generates a random point pattern, a simulated realisation of the Baddeley-Silverman cell process
model.

Usage

rcell(win=square(1), nx=NULL, ny=nx, ..., dx=NULL, dy=dx,
N=10, nsim=1, drop=TRUE)

Arguments

win A window. An object of class owin, or data in any format acceptable to as.owin().

nx Number of columns of cells in the window. Incompatible with dx.

ny Number of rows of cells in the window. Incompatible with dy.

... Ignored.
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dx Width of the cells. Incompatible with nx.

dy Height of the cells. Incompatible with ny.

N Integer. Distributional parameter: the maximum number of random points in
each cell. Passed to rcellnumber.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a simulated realisation of the “cell process” (Baddeley and Silverman,
1984), a random point process with the same second-order properties as the uniform Poisson pro-
cess. In particular, the K function of this process is identical to the K function of the uniform
Poisson process (aka Complete Spatial Randomness). The same holds for the pair correlation func-
tion and all other second-order properties. The cell process is a counterexample to the claim that
the K function completely characterises a point pattern.

A cell process is generated by dividing space into equal rectangular tiles. In each tile, a random
number of random points is placed. By default, there are either 0, 1 or 10 points, with probabilities
1/10, 8/9 and 1/90 respectively. The points within a tile are independent and uniformly distributed
in that tile, and the numbers of points in different tiles are independent random integers.

The tile width is determined either by the number of columns nx or by the horizontal spacing
dx. The tile height is determined either by the number of rows ny or by the vertical spacing dy.
The cell process is then generated in these tiles. The random numbers of points are generated by
rcellnumber.

Some of the resulting random points may lie outside the window win: if they do, they are deleted.
The result is a point pattern inside the window win.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A.J. and Silverman, B.W. (1984) A cautionary example on the use of second-order meth-
ods for analyzing point patterns. Biometrics 40, 1089-1094.

See Also

rcellnumber, rstrat, rsyst, runifpoint, Kest
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Examples

X <- rcell(nx=15)
plot(X)
if(require(spatstat.explore)) {

plot(Kest(X))
}

rcellnumber Generate Random Numbers of Points for Cell Process

Description

Generates random integers for the Baddeley-Silverman counterexample.

Usage

rcellnumber(n, N = 10, mu=1)

Arguments

n Number of random integers to be generated.

N Distributional parameter: the largest possible value (when mu <= 1). An integer
greater than 1.

mu Mean of the distribution (equals the variance). Any positive real number.

Details

If mu = 1 (the default), this function generates random integers which have mean and variance equal
to 1, but which do not have a Poisson distribution. The random integers take the values 0, 1 and
N with probabilities 1/N , (N − 2)/(N − 1) and 1/(N(N − 1)) respectively. See Baddeley and
Silverman (1984).

If mu is another positive number, the random integers will have mean and variance equal to mu.
They are obtained by generating the one-dimensional counterpart of the cell process and counting
the number of points in the interval from 0 to mu. The maximum possible value of each random
integer is N * ceiling(mu).

Value

An integer vector of length n.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.
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References

Baddeley, A.J. and Silverman, B.W. (1984) A cautionary example on the use of second-order meth-
ods for analyzing point patterns. Biometrics 40, 1089-1094.

See Also

rcell

Examples

rcellnumber(30, 3)

rclusterBKBC Simulate Cluster Process using Brix-Kendall Algorithm or Modifica-
tions

Description

Generates simulated realisations of a stationary Neyman-Scott cluster point process, using the Brix-
Kendall (2002) algorithm or various modifications proposed by Baddeley and Chang (2023). For
advanced research use.

Usage

rclusterBKBC(clusters="Thomas",
kappa, mu, scale,
...,
W = unit.square(),
nsim = 1, drop = TRUE,
best = FALSE,
external = c("BK", "superBK", "border"),
internal = c("dominating", "naive"),
inflate = 1,
psmall = 1e-04,
use.inverse=TRUE,
use.special=TRUE,
integralmethod=c("quadrature", "trapezoid"),
verbose = TRUE, warn=TRUE)

Arguments

clusters Character string (partially matched) specifying the cluster process. Current op-
tions include "Thomas", "MatClust", "Cauchy" and "VarGamma".

kappa Intensity of the parent process. A nonnegative number.

mu Mean number of offspring per parent. A nonnegative number.

scale Cluster scale. Interpretation depends on the model.
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... Additional arguments controlling the shape of the cluster kernel, if any.

W Window in which the simulation should be generated. An object of class "owin".

nsim The number of simulated point patterns to be generated. A positive integer.

drop Logical value. If nsim=1 and drop=TRUE (the default), the result will be a point
pattern, rather than a list containing a point pattern.

best Logical value. If best=TRUE, the code will choose the fastest algorithm. If
best=FALSE (the default), the algorithm will be specified by the other arguments
external and internal. See Details.

external Algorithm to be used to generate parent points which lie outside the bounding
window. See Details.

internal Algorithm to be used to generate parent points which lie inside the bounding
window. See Details.

inflate Numerical value determining the position of the bounding window. See Details.

psmall Threshold of small probability for use in the algorithm.

use.inverse Logical value specifying whether to compute the inverse function analytically, if
possible (use.inverse=TRUE, the default) or by numerical root-finding (use.inverse=FALSE).
This is mainly for checking validity of code.

use.special Logical value specifying whether to use efficient special code (if available) to
generate the simulations (use.special=TRUE, the default) or to use generic
code (use.special=FALSE). This is mainly for checking validity of code.

integralmethod Character string (partially matched) specifying how to perform numerical com-
putation of integrals when required. This argument is passed to indefinteg.
The default integralmethod="quadrature" is accurate but can be slow. Faster,
but possibly less accurate, integration can be performed by setting integralmethod="trapezoid".

verbose Logical value specifying whether to print detailed information about the simu-
lation algorithm during execution.

warn Logical value specifying whether to issue a warning if the number of random
proposal points is very large.

Details

This function is intended for advanced research use. It implements the algorithm of Brix and
Kendall (2002) for generating simulated realisations of a stationary Neyman-Scott process, and
various modifications of this algorithm proposed in Baddeley and Chang (2023). It is an alternative
to rNeymanScott.

The function supports the following models:

• clusters="Thomas": the (modified) Thomas cluster process which can also be simulated by
rThomas.

• clusters="MatClust": the Matérn cluster process which can also be simulated by rMatClust.

• clusters="Cauchy": the Cauchy cluster process which can also be simulated by rCauchy.

• clusters="VarGamma": the variance-gamma cluster process which can also be simulated by
rVarGamma.

• any other Poisson cluster process models that may be recognised by kppm.
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By default, the code executes the original Brix-Kendall algorithm described in Sections 2.3 and 3.1
of Brix and Kendall (2002).

Modifications of this algorithm, proposed in Baddeley and Chang (2023), can be selected using the
arguments external and internal, or best.

If best=TRUE, the code will choose the algorithm that would run fastest with the given parameters.
If best=FALSE (the default), the choice of algorithm is determined by the arguments external and
internal.

First the window W is enclosed in a disc D and Monte Carlo proposal densities are defined with
reference to D as described in Brix and Kendall (2002). Then D is inflated by the scale factor
inflate to produce a larger disc E (by default inflate=1 implying E=D). Then the parent points of
the clusters are generated, possibly using different mechanisms inside and outside E.

The argument external determines the algorithm for generating parent points outside E.

• If external="BK" (the default), proposed parents outside E will be generated from a domi-
nating point process as described in Section 3.1 of Brix and Kendall (2002). These points will
be thinned to obtain the correct intensity of parent points. For each accepted parent, offspring
points are generated inside D, subject to the condition that the parent has at least one offspring
inside D. Offspring points are subsequently clipped to the true window W.

• If external="superBK", proposed parents will initially be generated from a process that dom-
inates the dominating point process as described in Baddeley and Chang (2023). These pro-
posals will then be thinned to obtain the correct intensity of the dominating process, then
thinned again to obtain the correct intensity of parent points. This procedure reduces com-
putation time when scale is large. For each accepted parent, offspring points are generated
inside D, subject to the condition that the parent has at least one offspring inside D. Offspring
points are subsequently clipped to the true window W.

• If external="border" then proposed parents will be generated with uniform intensity in a
border region surrounding the disc D. For each proposed parent, offspring points are generated
in the entire plane according to the cluster offspring distribution, without any restriction. Off-
spring points are subsequently clipped to the true window W. This is the technique currently
used in rNeymanScott.

The argument internal determines the algorithm for generating proposed parent points inside E.

• If internal="dominating", parent points in E are generated according to the dominating
point process described in Sections 2.3 and 3.1 of Brix and Kendall (2002), and then thinned
to obtain the correct intensity of parent points. For each accepted parent, offspring points are
generated inside D, subject to the condition that the parent has at least one offspring inside D.
Offspring points are subsequently clipped to the true window W.

• If internal="naive", parent points in E are generated with uniform intensity inside E and are
not thinned. For each proposed parent, offspring points are generated in the entire plane ac-
cording to the cluster offspring distribution, without any restriction. Offspring points are sub-
sequently clipped to the true window W. This is the technique currently used in rNeymanScott.

If warn=TRUE, then a warning will be issued if the number of random proposal points (proposed par-
ents and proposed offspring) is very large. The threshold is spatstat.options("huge.npoints").
This warning has no consequences, but it helps to trap a number of common problems.
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Value

A point pattern, or a list of point patterns.

If nsim=1 and drop=TRUE, the result is a point pattern (an object of class "ppp").

Otherwise, the result is a list of nsim point patterns, and also belongs to the class "solist".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ya-Mei Chang <yamei628@gmail.com>.

References

Baddeley, A. and Chang, Y.-M. (2023) Robust algorithms for simulating cluster point processes.
Journal of Statistical Computation and Simulation. In Press. DOI 10.1080/00949655.2023.2166045.

Brix, A. and Kendall, W.S. (2002) Simulation of cluster point processes without edge effects. Ad-
vances in Applied Probability 34, 267–280.

See Also

rNeymanScott, rMatClust, rThomas, rCauchy, rVarGamma

Examples

Y <- rclusterBKBC("Thomas", 10,5,0.2)
Y
Z <- rclusterBKBC("VarGamma", 10,5,0.2,

nu=-1/4,
internal="naive", external="super",
verbose=FALSE)

rDGS Perfect Simulation of the Diggle-Gates-Stibbard Process

Description

Generate a random pattern of points, a simulated realisation of the Diggle-Gates-Stibbard process,
using a perfect simulation algorithm.

Usage

rDGS(beta, rho, W = owin(), expand=TRUE, nsim=1, drop=TRUE)
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Arguments

beta intensity parameter (a positive number).

rho interaction range (a non-negative number).

W window (object of class "owin") in which to generate the random pattern.

expand Logical. If FALSE, simulation is performed in the window W, which must be
rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Diggle-Gates-Stibbard point process in the window W
using a ‘perfect simulation’ algorithm.

Diggle, Gates and Stibbard (1987) proposed a pairwise interaction point process in which each pair
of points separated by a distance d contributes a factor e(d) to the probability density, where

e(d) = sin2
(
πd

2ρ

)
for d < ρ, and e(d) is equal to 1 for d ≥ ρ.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, based on original code for the Strauss pro-
cess by Kasper Klitgaard Berthelsen.

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.
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Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

See Also

rmh, DiggleGatesStibbard.

rStrauss, rHardcore, rStraussHard, rDiggleGratton, rPenttinen.

Examples

X <- rDGS(50, 0.05)
Z <- rDGS(50, 0.03, nsim=2)

rDiggleGratton Perfect Simulation of the Diggle-Gratton Process

Description

Generate a random pattern of points, a simulated realisation of the Diggle-Gratton process, using a
perfect simulation algorithm.

Usage

rDiggleGratton(beta, delta, rho, kappa=1, W = owin(),
expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).
delta hard core distance (a non-negative number).
rho interaction range (a number greater than delta).
kappa interaction exponent (a non-negative number).
W window (object of class "owin") in which to generate the random pattern. Cur-

rently this must be a rectangular window.
expand Logical. If FALSE, simulation is performed in the window W, which must be

rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.
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Details

This function generates a realisation of the Diggle-Gratton point process in the window W using a
‘perfect simulation’ algorithm.

Diggle and Gratton (1984, pages 208-210) introduced the pairwise interaction point process with
pair potential h(t) of the form

h(t) =

(
t− δ

ρ− δ

)κ

if δ ≤ t ≤ ρ

with h(t) = 0 for t < δ and h(t) = 1 for t > ρ. Here δ, ρ and κ are parameters.

Note that we use the symbol κ where Diggle and Gratton (1984) use β, since in spatstat we reserve
the symbol β for an intensity parameter.

The parameters must all be nonnegative, and must satisfy δ ≤ ρ.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

based on original code for the Strauss process by Kasper Klitgaard Berthelsen.

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

See Also

rmh, rStrauss, rHardcore, rStraussHard, rDGS, rPenttinen.

For fitting the model, see DiggleGratton.
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Examples

X <- rDiggleGratton(50, 0.02, 0.07)
Z <- rDiggleGratton(50, 0.02, 0.07, 2, nsim=2)

reach Interaction Distance of a Point Process Model

Description

Computes the interaction distance of a point process model.

Usage

reach(x, ...)

## S3 method for class 'rmhmodel'
reach(x, ...)

Arguments

x Either a fitted point process model (object of class "ppm"), an interpoint interac-
tion (object of class "interact"), a fitted interpoint interaction (object of class
"fii") or a point process model for simulation (object of class "rmhmodel").

... Other arguments are ignored.

Details

The function reach computes the ‘interaction distance’ or ‘interaction range’ of a point process
model.

The definition of the interaction distance depends on the type of point process model. This help
page explains the interaction distance for a Gibbs point process. For other kinds of models, see
reach.kppm and reach.dppm.

For a Gibbs point process model, the interaction distance is the shortest distance D such that any
two points in the process which are separated by a distance greater than D do not interact with each
other.

For example, the interaction range of a Strauss process (see Strauss or rStrauss) with parameters
β, γ, r is equal to r, unless γ = 1 in which case the model is Poisson and the interaction range is
0. The interaction range of a Poisson process is zero. The interaction range of the Ord threshold
process (see OrdThresh) is infinite, since two points may interact at any distance apart.

The function reach is generic, with methods for the case where x is

• a fitted point process model (object of class "ppm", usually obtained from the model-fitting
function ppm);

• an interpoint interaction structure (object of class "interact")
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• a fitted interpoint interaction (object of class "fii")

• a point process model for simulation (object of class "rmhmodel"), usually obtained from
rmhmodel.

Value

The interaction distance, or NA if this cannot be computed from the information given.

Other types of models

Methods for reach are also defined for point process models of class "kppm" and "dppm". Their
technical definition is different from this one. See reach.kppm and reach.dppm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

reach.ppm

rmhmodel

See reach.kppm and reach.dppm for other types of point process models.

Examples

reach(rmhmodel(cif='poisson', par=list(beta=100)))
# returns 0

reach(rmhmodel(cif='strauss', par=list(beta=100, gamma=0.1, r=7)))
# returns 7

reach(rmhmodel(cif='sftcr', par=list(beta=100, sigma=1, kappa=0.7)))
# returns Inf

reach(rmhmodel(cif='multihard',
par=list(beta=c(10,10), hradii=matrix(c(1,3,3,1),2,2))))

# returns 3

recipEnzpois First Reciprocal Moment of the Truncated Poisson Distribution

Description

Computes the first reciprocal moment (first negative moment) of the truncated Poisson distribution
(the Poisson distribution conditioned to have a nonzero value).

Usage

recipEnzpois(mu, exact=TRUE)
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Arguments

mu The mean of the original Poisson distribution. A single positive numeric value,
or a vector of positive numbers.

exact Logical value specifying whether to use the exact analytic formula if possible.

Details

This function calculates the expected value of 1/N given N > 0, where N is a Poisson random
variable with mean µ.

If the library gsl is loaded, and if exact=TRUE (the default), then the calculation uses the exact
analytic formula

ν =
e−µ

1− e−µ
(Ei(µ)− logµ− γ)

(see e.g. Grab and Savage, 1954) where ν is the desired reciprocal moment, and

Ei(x) =

∫ x

−∞
te−tdt

is the first exponential integral, and γ ≈ 0.577 is the Euler-Mascheroni constant.

If gsl is not loaded, or if exact=FALSE is specified, the value is computed approximately (and more
slowly) by summing over the possible values of N up to a finite limit.

Value

A single numerical value or a numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Grab, E.L. and Savage, I.R. (1954) Tables of the expected value of 1/X for positive Bernoulli and
Poisson variables. Journal of the American Statistical Association 49, 169–177.

See Also

rpoisnonzero

Examples

if(require(gsl)) {
v <- recipEnzpois(10)
print(v)

}
recipEnzpois(10, exact=FALSE)
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rGaussPoisson Simulate Gauss-Poisson Process

Description

Generate a random point pattern, a simulated realisation of the Gauss-Poisson Process.

Usage

rGaussPoisson(kappa, r, p2, win = owin(c(0,1),c(0,1)),
..., nsim=1, drop=TRUE)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

r Diameter of each cluster that consists of exactly 2 points.

p2 Probability that a cluster contains exactly 2 points.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

... Ignored.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This algorithm generates a realisation of the Gauss-Poisson point process inside the window win.
The process is constructed by first generating a Poisson point process of parent points with intensity
kappa. Then each parent point is either retained (with probability 1 - p2) or replaced by a pair of
points at a fixed distance r apart (with probability p2). In the case of clusters of 2 points, the line
joining the two points has uniform random orientation.

In this implementation, parent points are not restricted to lie in the window; the parent process is
effectively the uniform Poisson process on the infinite plane.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of the point
pattern. See rNeymanScott.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>
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See Also

rpoispp, rThomas, rMatClust, rNeymanScott

Examples

pp <- rGaussPoisson(30, 0.07, 0.5)

rHardcore Perfect Simulation of the Hardcore Process

Description

Generate a random pattern of points, a simulated realisation of the Hardcore process, using a perfect
simulation algorithm.

Usage

rHardcore(beta, R = 0, W = owin(), expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).

R hard core distance (a non-negative number).

W window (object of class "owin") in which to generate the random pattern. Cur-
rently this must be a rectangular window.

expand Logical. If FALSE, simulation is performed in the window W, which must be
rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Hardcore point process in the window W using a ‘perfect
simulation’ algorithm.

The Hardcore process is a model for strong spatial inhibition. Two points of the process are forbid-
den to lie closer than R units apart. The Hardcore process is the special case of the Strauss process
(see rStrauss) with interaction parameter γ equal to zero.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
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simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, based on original code for the Strauss pro-
cess by Kasper Klitgaard Berthelsen.

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

See Also

rmh, rStrauss, rStraussHard, rDiggleGratton. rDGS, rPenttinen.

For fitting the model, see Hardcore.

Examples

X <- rHardcore(0.05,1.5,square(50))

rjitter.psp Random Perturbation of Line Segment Pattern

Description

Randomly pertubs a spatial pattern of line segments by applying independent random displacements
to the segment endpoints.

Usage

## S3 method for class 'psp'
rjitter(X, radius, ..., clip=TRUE, nsim=1, drop=TRUE)
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Arguments

X A point pattern on a linear network (object of class "psp").

radius Scale of perturbations. A positive numerical value. Each point will be displaced
by a random distance, with maximum displacement equal to this value.

... Ignored.

clip Logical value specifying what to do if segments cross the boundary of the win-
dow. See Details.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a spatial
pattern of line segments (class "psp") rather than a list of length 1 containing
this pattern.

Details

The function rjitter is generic. This function is the method for the class "psp" of line segment
patterns.

Each of the endpoints of each segment in X will be subjected to an independent random displace-
ment. The displacement vectors are uniformly distributed in a circle of radius radius.

If clip=TRUE (the default), segment endpoints are permitted to move to locations slightly outside
the window of X, and the resulting segments will be clipped to the window. If clip=FALSE, segment
endpoints are conditioned to fall inside the window.

If nsim=1 and drop=TRUE, the result is another spatial pattern of line segments (object of class
"psp"). Otherwise, the result is a list of nsim line segment patterns.

Value

A spatial pattern of line segments (object of class "psp") or a list of such patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rjitter for point patterns in two dimensions.

Examples

E <- edges(letterR)
Window(E) <- owin(c(1.9, 4.1), c(0.5, 3.5))
plot(rjitter(E, 0.1))
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rknn Theoretical Distribution of Nearest Neighbour Distance

Description

Density, distribution function, quantile function and random generation for the random distance to
the kth nearest neighbour in a Poisson point process in d dimensions.

Usage

dknn(x, k = 1, d = 2, lambda = 1)
pknn(q, k = 1, d = 2, lambda = 1)
qknn(p, k = 1, d = 2, lambda = 1)
rknn(n, k = 1, d = 2, lambda = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations to be generated.

k order of neighbour.

d dimension of space.

lambda intensity of Poisson point process.

Details

In a Poisson point process in d-dimensional space, let the random variable R be the distance from a
fixed point to the k-th nearest random point, or the distance from a random point to the k-th nearest
other random point.

Then Rd has a Gamma distribution with shape parameter k and rate λ ∗ α where α is a constant
(equal to the volume of the unit ball in d-dimensional space). See e.g. Cressie (1991, page 61).

These functions support calculation and simulation for the distribution of R.

Value

A numeric vector: dknn returns the probability density, pknn returns cumulative probabilities (dis-
tribution function), qknn returns quantiles, and rknn generates random deviates.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Cressie, N.A.C. (1991) Statistics for spatial data. John Wiley and Sons, 1991.
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Examples

x <- seq(0, 5, length=20)
densities <- dknn(x, k=3, d=2)
cdfvalues <- pknn(x, k=3, d=2)
randomvalues <- rknn(100, k=3, d=2)
deciles <- qknn((1:9)/10, k=3, d=2)

rlabel Random Re-Labelling of Point Pattern

Description

Randomly allocates marks to a point pattern, or permutes the existing marks, or resamples from the
existing marks.

Usage

rlabel(X, labels=marks(X), permute=TRUE, group=NULL, ..., nsim=1, drop=TRUE)

Arguments

X Point pattern (object of class "ppp", "lpp", "pp3" or "ppx") or line segment
pattern (object of class "psp").

labels Vector of values from which the new marks will be drawn at random. Defaults
to the vector of existing marks.

permute Logical value indicating whether to generate new marks by randomly permuting
labels or by drawing a random sample with replacement.

group Optional. A factor, or other data dividing the points into groups. Random rela-
belling will be performed separately within each group. See Details.

... Additional arguments passed to cut.ppp to determine the grouping factor, when
group is given.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This very simple function allocates random marks to an existing point pattern X. It is useful for
hypothesis testing purposes. (The function can also be applied to line segment patterns.)

In the simplest case, the command rlabel(X) yields a point pattern obtained from X by randomly
permuting the marks of the points.

If permute=TRUE, then labels should be a vector of length equal to the number of points in X. The
result of rlabel will be a point pattern with locations given by X and marks given by a random
permutation of labels (i.e. a random sample without replacement).
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If permute=FALSE, then labels may be a vector of any length. The result of rlabel will be a
point pattern with locations given by X and marks given by a random sample from labels (with
replacement).

The argument group specifies that the points are divided into several different groups, and that the
random labelling shall be performed separately on each group. The arguments group and ... are
passed to cut.ppp to determine the grouping. Thus group could be a factor, or the name of a
column of marks in X, or a tessellation, or a factor-valued pixel image, etc.

Value

If nsim = 1 and drop=TRUE, a marked point pattern (of the same class as X). If nsim > 1, a list of
point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

marks<- to assign arbitrary marks.

Examples

amacrine

# Randomly permute the marks "on" and "off"
# Result always has 142 "off" and 152 "on"
Y <- rlabel(amacrine)

# randomly allocate marks "on" and "off"
# with probabilities p(off) = 0.48, p(on) = 0.52
Y <- rlabel(amacrine, permute=FALSE)

# randomly allocate marks "A" and "B" with equal probability
Y <- rlabel(cells, labels=factor(c("A", "B")), permute=FALSE)

# divide the window into tiles and
# randomly permute the marks within each tile
Z <- rlabel(amacrine, group=quadrats(Window(amacrine), 4, 3))

rLGCP Simulate Log-Gaussian Cox Process

Description

Generate a random point pattern, a realisation of the log-Gaussian Cox process.
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Usage

rLGCP(model=c("exponential", "gauss", "stable", "gencauchy", "matern"),
mu = 0, param = NULL,
...,
win=NULL, saveLambda=TRUE, nsim=1, drop=TRUE)

Arguments

model character string (partially matched) giving the name of a covariance model for
the Gaussian random field.

mu mean function of the Gaussian random field. Either a single number, a function(x,y,
...) or a pixel image (object of class "im").

param List of parameters for the covariance. Standard arguments are var and scale.

... Additional parameters for the covariance, or arguments passed to as.mask to
determine the pixel resolution.

win Window in which to simulate the pattern. An object of class "owin".

saveLambda Logical. If TRUE (the default) then the simulated random intensity will also be
saved, and returns as an attribute of the point pattern.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of a log-Gaussian Cox process (LGCP). This is a Cox point
process in which the logarithm of the random intensity is a Gaussian random field with mean func-
tion µ and covariance function c(r). Conditional on the random intensity, the point process is a
Poisson process with this intensity.

The string model specifies the covariance function of the Gaussian random field, and the parameters
of the covariance are determined by param and ....

All models recognise the parameters var for the variance at distance zero, and scale for the scale
parameter. Some models require additional parameters which are listed below.

The available models are as follows:

model="exponential": the exponential covariance function

C(r) = σ2 exp(−r/h)

where σ2 is the variance parameter var, and h is the scale parameter scale.

model="gauss": the Gaussian covariance function

C(r) = σ2 exp(−(r/h)2)

where σ2 is the variance parameter var, and h is the scale parameter scale.
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model="stable": the stable covariance function

C(r) = σ2 exp(−(r/h)α)

where σ2 is the variance parameter var, h is the scale parameter scale, and α is the shape
parameter alpha. The parameter alpha must be given, either as a stand-alone argument, or as
an entry in the list param.

model="gencauchy": the generalised Cauchy covariance function

C(r) = σ2(1 + (x/h)α)−β/α

where σ2 is the variance parameter var, h is the scale parameter scale, and α and β are the
shape parameters alpha and beta. The parameters alpha and beta must be given, either as
stand-alone arguments, or as entries in the list param.

model="matern": the Whittle-Matérn covariance function

C(r) = σ2 1

2ν−1Γ(ν)
(
√
2ν r/h)νKν(

√
2ν r/h)

where σ2 is the variance parameter var, h is the scale parameter scale, and ν is the shape
parameter nu. The parameter nu must be given, either as a stand-alone argument, or as an
entry in the list param.

The algorithm uses the circulant embedding technique to generate values of a Gaussian random
field, with the specified mean function mu and the covariance specified by the arguments model and
param, on the points of a regular grid. The exponential of this random field is taken as the intensity
of a Poisson point process, and a realisation of the Poisson process is then generated by the function
rpoispp in the spatstat.random package.

If the simulation window win is missing or NULL, then it defaults to Window(mu) if mu is a pixel
image, and it defaults to the unit square otherwise.

The LGCP model can be fitted to data using kppm.

Value

A point pattern (object of class "ppp") or a list of point patterns.

Additionally, the simulated intensity function for each point pattern is returned as an attribute
"Lambda" of the point pattern, if saveLambda=TRUE.

Warning: new implementation

The simulation algorithm for rLGCP has been completely re-written in spatstat.random version
3.2-0 to avoid depending on the package RandomFields which is now defunct (and is sadly
missed).

It is no longer possible to replicate results that were obtained using rLGCP in previous versions of
spatstat.random.

The current code is a new implementation and should be considered vulnerable to new bugs.

Author(s)

Abdollah Jalilian and Rasmus Waagepetersen. Modified by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.
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References

Møller, J., Syversveen, A. and Waagepetersen, R. (1998) Log Gaussian Cox Processes. Scandina-
vian Journal of Statistics 25, 451–482.

See Also

rpoispp, rMatClust, rGaussPoisson, rNeymanScott.

For fitting the model, see kppm, lgcp.estK.

Examples

online <- interactive()

# homogeneous LGCP with exponential covariance function
X <- rLGCP("exp", 3, var=0.2, scale=.1)

# inhomogeneous LGCP with Gaussian covariance function
m <- as.im(function(x, y){5 - 1.5 * (x - 0.5)^2 + 2 * (y - 0.5)^2}, W=owin())
X <- rLGCP("gauss", m, var=0.15, scale =0.1)

if(online) {
plot(attr(X, "Lambda"))
points(X)
}

# inhomogeneous LGCP with Matern covariance function
X <- rLGCP("matern", function(x, y){ 1 - 0.4 * x},

var=2, scale=0.7, nu=0.5,
win = owin(c(0, 10), c(0, 10)))

if(online) plot(X)

rMatClust Simulate Matern Cluster Process

Description

Generate a random point pattern, a simulated realisation of the Matérn Cluster Process.

Usage

rMatClust(kappa, scale, mu, win = square(1),
nsim=1, drop=TRUE, ...,
n.cond=NULL, w.cond=NULL,
algorithm=c("BKBC", "naive"),
nonempty=TRUE,
poisthresh=1e-6, saveparents=FALSE, saveLambda=FALSE,
kappamax=NULL, mumax=NULL)
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Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

scale Radius of the clusters. A single positive number.

mu Mean number of points per cluster (a single positive number) or reference inten-
sity for the cluster points (a function or a pixel image).

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

... Passed to clusterfield to control the image resolution when saveLambda=TRUE.

n.cond Optional. Integer specifying a fixed number of points. See the section on Con-
ditional Simulation.

w.cond Optional. Conditioning region. A window (object of class "owin") specify-
ing the region which must contain exactly n.cond points. See the section on
Conditional Simulation.

algorithm String (partially matched) specifying the simulation algorithm. See Details.

nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which par-
ents are generated conditionally on having at least one offspring point in the
window. If FALSE, parents are generated even if they have no offspring in the
window. The default is recommended unless you need to simulate all the parent
points for some other purpose.

poisthresh Numerical threshold below which the model will be treated as a Poisson process.
See Details.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent
points will also be calculated and saved, and returns as an attribute of the point
pattern.

kappamax Optional. Numerical value which is an upper bound for the values of kappa,
when kappa is a pixel image or a function.

mumax Optional. Numerical value which is an upper bound for the values of mu, when
mu is a pixel image or a function.

Details

This algorithm generates a realisation of Matérn’s cluster process, a special case of the Neyman-
Scott process, inside the window win.

In the simplest case, where kappa and mu are single numbers, the cluster process is formed by first
generating a uniform Poisson point process of “parent” points with intensity kappa. Then each
parent point is replaced by a random cluster of “offspring” points, the number of points per cluster
being Poisson (mu) distributed, and their positions being placed and uniformly inside a disc of
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radius scale centred on the parent point. The resulting point pattern is a realisation of the classical
“stationary Matérn cluster process”. This point process has intensity kappa * mu.

The algorithm can also generate spatially inhomogeneous versions of the Matérn cluster process:

• The parent points can be spatially inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process that generates the parent points.

• The offspring points can be inhomogeneous. If the argument mu is a function(x,y) or a
pixel image (object of class "im"), then it is interpreted as the reference density for offspring
points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute
a Poisson process with intensity function equal to mu/(pi * scale^2) inside the disc of radius
scale centred on the parent point, and zero intensity outside this disc. Equivalently we first
generate, for each parent point, a Poisson (M ) random number of offspring (where M is the
maximum value of mu) placed independently and uniformly in the disc of radius scale centred
on the parent location, and then randomly thin the offspring points, with retention probability
mu/M.

• Both the parent points and the offspring points can be inhomogeneous, as described above.

The intensity of the Matérn cluster process is kappa * mu if either kappa or mu is a single number.
In the general case the intensity is an integral involving kappa, mu and scale.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pat-
tern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute
"Lambda", if saveLambda=TRUE.

Simulation Algorithm

Two simulation algorithms are implemented.

• The naive algorithm generates the cluster process by directly following the description given
above. First the window win is expanded by a distance equal to scale. Then the parent points
are generated in the expanded window according to a Poisson process with intensity kappa.
Then each parent point is replaced by a finite cluster of offspring points as described above.
The naive algorithm is used if algorithm="naive" or if nonempty=FALSE.

• The BKBC algorithm, proposed by Baddeley and Chang (2023), is a modification of the al-
gorithm of Brix and Kendall (2002). Parents are generated in the infinite plane, subject to
the condition that they have at least one offspring point inside the window win. The BKBC
algorithm is used when algorithm="BKBC" (the default) and nonempty=TRUE (the default).

The naive algorithm becomes very slow when scale is large, while the BKBC algorithm is uni-
formly fast (Baddeley and Chang, 2023).

If saveparents=TRUE, then the simulated point pattern will have an attribute "parents" containing
the coordinates of the parent points, and an attribute "parentid" mapping each offspring point to
its parent.
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If nonempty=TRUE (the default), then parents are generated subject to the condition that they have at
least one offspring point in the window win. nonempty=FALSE, then parents without offspring will
be included; this option is not available in the BKBC algorithm.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because
an offspring point inside win could have its parent point lying outside win. In order to allow this,
the naive simulation algorithm first expands the original window win by a distance equal to scale
and generates the Poisson process of parent points on this larger window. If kappa is a pixel image,
its domain must contain this larger window.

If the pair correlation function of the model is very close to that of a Poisson process, with maximum
deviation less than poisthresh, then the model is approximately a Poisson process. This is detected
by the naive algorithm which then simulates a Poisson process with intensity kappa * mu, using
rpoispp. This avoids computations that would otherwise require huge amounts of memory.

Fitting cluster models to data

The Matérn cluster process model with homogeneous parents (i.e. where kappa is a single number)
where the offspring are either homogeneous or inhomogeneous (mu is a single number, a function
or pixel image) can be fitted to point pattern data using kppm, or fitted to the inhomogeneous K
function using matclust.estK or matclust.estpcf.

Currently spatstat does not support fitting the Matérn cluster process model with inhomogeneous
parents.

A fitted Matérn cluster process model can be simulated automatically using simulate.kppm (which
invokes rMatClust to perform the simulation).

Conditional Simulation

If n.cond is specified, it should be a single integer. Simulation will be conditional on the event
that the pattern contains exactly n.cond points (or contains exactly n.cond points inside the region
w.cond if it is given).

Conditional simulation uses the rejection algorithm described in Section 6.2 of Moller, Syversveen
and Waagepetersen (1998). There is a maximum number of proposals which will be attempted.
Consequently the return value may contain fewer than nsim point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ya-Mei Chang <yamei628@gmail.com>
and Rolf Turner <rolfturner@posteo.net>.
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See Also

rpoispp, rThomas, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson.

For fitting the model, see kppm, clusterfit.

Examples

# homogeneous
X <- rMatClust(10, 0.05, 4)
# inhomogeneous
ff <- function(x,y){ 4 * exp(2 * abs(x) - 1) }
Z <- as.im(ff, owin())
Y <- rMatClust(10, 0.05, Z)
YY <- rMatClust(ff, 0.05, 3)

rMaternI Simulate Matern Model I

Description

Generate a random point pattern, a simulated realisation of the Matérn Model I inhibition process
model.

Usage

rMaternI(kappa, r, win = owin(c(0,1),c(0,1)), stationary=TRUE, ...,
nsim=1, drop=TRUE)

Arguments

kappa Intensity of the Poisson process of proposal points. A single positive number.

r Inhibition distance.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. Alternatively a higher-dimensional box of class
"box3" or "boxx".

stationary Logical. Whether to start with a stationary process of proposal points (stationary=TRUE)
or to generate the proposal points only inside the window (stationary=FALSE).

... Ignored.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.
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Details

This algorithm generates one or more realisations of Matérn’s Model I inhibition process inside the
window win.

The process is constructed by first generating a uniform Poisson point process of “proposal” points
with intensity kappa. If stationary = TRUE (the default), the proposal points are generated in a
window larger than win that effectively means the proposals are stationary. If stationary=FALSE
then the proposal points are only generated inside the window win.

A proposal point is then deleted if it lies within r units’ distance of another proposal point. Other-
wise it is retained.

The retained points constitute Matérn’s Model I.

Value

A point pattern if nsim=1, or a list of point patterns if nsim > 1. Each point pattern is normally an
object of class "ppp", but may be of class "pp3" or "ppx" depending on the window.

Author(s)

Ute Hahn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rpoispp, rMatClust

Examples

X <- rMaternI(20, 0.05)
Y <- rMaternI(20, 0.05, stationary=FALSE)

rMaternII Simulate Matern Model II

Description

Generate a random point pattern, a simulated realisation of the Matérn Model II inhibition process.

Usage

rMaternII(kappa, r, win = owin(c(0,1),c(0,1)), stationary=TRUE, ...,
nsim=1, drop=TRUE)
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Arguments

kappa Intensity of the Poisson process of proposal points. A single positive number.

r Inhibition distance.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. Alternatively a higher-dimensional box of class
"box3" or "boxx".

stationary Logical. Whether to start with a stationary process of proposal points (stationary=TRUE)
or to generate the proposal points only inside the window (stationary=FALSE).

... Ignored.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This algorithm generates one or more realisations of Matérn’s Model II inhibition process inside
the window win.

The process is constructed by first generating a uniform Poisson point process of “proposal” points
with intensity kappa. If stationary = TRUE (the default), the proposal points are generated in a
window larger than win that effectively means the proposals are stationary. If stationary=FALSE
then the proposal points are only generated inside the window win.

Then each proposal point is marked by an “arrival time”, a number uniformly distributed in [0, 1]
independently of other variables.

A proposal point is deleted if it lies within r units’ distance of another proposal point that has an
earlier arrival time. Otherwise it is retained. The retained points constitute Matérn’s Model II.

The difference between Matérn’s Model I and II is the italicised statement above. Model II has a
higher intensity for the same parameter values.

Value

A point pattern if nsim=1, or a list of point patterns if nsim > 1. Each point pattern is normally an
object of class "ppp", but may be of class "pp3" or "ppx" depending on the window.

Author(s)

Ute Hahn, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rpoispp, rMatClust, rMaternI

Examples

X <- rMaternII(20, 0.05)
Y <- rMaternII(20, 0.05, stationary=FALSE)
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rmh Simulate point patterns using the Metropolis-Hastings algorithm.

Description

Generic function for running the Metropolis-Hastings algorithm to produce simulated realisations
of a point process model.

Usage

rmh(model, ...)

Arguments

model The point process model to be simulated.

... Further arguments controlling the simulation.

Details

The Metropolis-Hastings algorithm can be used to generate simulated realisations from a wide range
of spatial point processes. For caveats, see below.

The function rmh is generic; it has methods rmh.ppm (for objects of class "ppm") and rmh.default
(the default). The actual implementation of the Metropolis-Hastings algorithm is contained in
rmh.default. For details of its use, see rmh.ppm or rmh.default.

[If the model is a Poisson process, then Metropolis-Hastings is not used; the Poisson model is
generated directly using rpoispp or rmpoispp.]

In brief, the Metropolis-Hastings algorithm is a Markov Chain, whose states are spatial point pat-
terns, and whose limiting distribution is the desired point process. After running the algorithm for
a very large number of iterations, we may regard the state of the algorithm as a realisation from the
desired point process.

However, there are difficulties in deciding whether the algorithm has run for “long enough”. The
convergence of the algorithm may indeed be extremely slow. No guarantees of convergence are
given!

While it is fashionable to decry the Metropolis-Hastings algorithm for its poor convergence and
other properties, it has the advantage of being easy to implement for a wide range of models.

Value

A point pattern, in the form of an object of class "ppp". See rmh.default for details.
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Warning

As of version 1.22-1 of spatstat a subtle change was made to rmh.default(). We had noticed
that the results produced were sometimes not “scalable” in that two models, differing in effect only
by the units in which distances are measured and starting from the same seed, gave different results.
This was traced to an idiosyncracy of floating point arithmetic. The code of rmh.default() has
been changed so that the results produced by rmh are now scalable. The downside of this is that
code which users previously ran may now give results which are different from what they formerly
were.

In order to recover former behaviour (so that previous results can be reproduced) set spatstat.options(scalable=FALSE).
See the last example in the help for rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

rmh.default

Examples

# See examples in rmh.default and rmh.ppm

rmh.default Simulate Point Process Models using the Metropolis-Hastings Algo-
rithm.

Description

Generates a random point pattern, simulated from a chosen point process model, using the Metropolis-
Hastings algorithm.

Usage

## Default S3 method:
rmh(model, start=NULL,

control=default.rmhcontrol(model),
...,
nsim=1, drop=TRUE, saveinfo=TRUE,
verbose=TRUE, snoop=FALSE)
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Arguments

model Data specifying the point process model that is to be simulated.

start Data determining the initial state of the algorithm.

control Data controlling the iterative behaviour and termination of the algorithm.

... Further arguments passed to rmhcontrol or to trend functions in model.

nsim Number of simulated point patterns that should be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a single point pattern.

saveinfo Logical value indicating whether to save auxiliary information.

verbose Logical value indicating whether to print progress reports.

snoop Logical. If TRUE, activate the visual debugger.

Details

This function generates simulated realisations from any of a range of spatial point processes, using
the Metropolis-Hastings algorithm. It is the default method for the generic function rmh.

This function executes a Metropolis-Hastings algorithm with birth, death and shift proposals as
described in Geyer and Møller (1994).

The argument model specifies the point process model to be simulated. It is either a list, or an object
of class "rmhmodel", with the following components:

cif A character string specifying the choice of interpoint interaction for the point process.

par Parameter values for the conditional intensity function.

w (Optional) window in which the pattern is to be generated. An object of class "owin", or data
acceptable to as.owin.

trend Data specifying the spatial trend in the model, if it has a trend. This may be a function, a
pixel image (of class "im"), (or a list of functions or images if the model is multitype).
If the trend is a function or functions, any auxiliary arguments ... to rmh.default will be
passed to these functions, which should be of the form function(x, y, ...).

types List of possible types, for a multitype point process.

For full details of these parameters, see rmhmodel.default.

The argument start determines the initial state of the Metropolis-Hastings algorithm. It is either
NULL, or an object of class "rmhstart", or a list with the following components:

n.start Number of points in the initial point pattern. A single integer, or a vector of integers giving
the numbers of points of each type in a multitype point pattern. Incompatible with x.start.

x.start Initial point pattern configuration. Incompatible with n.start.
x.start may be a point pattern (an object of class "ppp"), or data which can be coerced to
this class by as.ppp, or an object with components x and y, or a two-column matrix. In the
last two cases, the window for the pattern is determined by model$w. In the first two cases,
if model$w is also present, then the final simulated pattern will be clipped to the window
model$w.
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For full details of these parameters, see rmhstart.

The third argument control controls the simulation procedure (including conditional simulation),
iterative behaviour, and termination of the Metropolis-Hastings algorithm. It is either NULL, or a
list, or an object of class "rmhcontrol", with components:

p The probability of proposing a “shift” (as opposed to a birth or death) in the Metropolis-Hastings
algorithm.

q The conditional probability of proposing a death (rather than a birth) given that birth/death has
been chosen over shift.

nrep The number of repetitions or iterations to be made by the Metropolis-Hastings algorithm. It
should be large.

expand Either a numerical expansion factor, or a window (object of class "owin"). Indicates that
the process is to be simulated on a larger domain than the original data window w, then clipped
to w when the algorithm has finished.
The default is to expand the simulation window if the model is stationary and non-Poisson
(i.e. it has no trend and the interaction is not Poisson) and not to expand in all other cases.
If the model has a trend, then in order for expansion to be feasible, the trend must be given
either as a function, or an image whose bounding box is large enough to contain the expanded
window.

periodic A logical scalar; if periodic is TRUE we simulate a process on the torus formed by
identifying opposite edges of a rectangular window.

ptypes A vector of probabilities (summing to 1) to be used in assigning a random type to a new
point.

fixall A logical scalar specifying whether to condition on the number of points of each type.

nverb An integer specifying how often “progress reports” (which consist simply of the number of
repetitions completed) should be printed out. If nverb is left at 0, the default, the simulation
proceeds silently.

x.cond If this argument is present, then conditional simulation will be performed, and x.cond
specifies the conditioning points and the type of conditioning.

nsave,nburn If these values are specified, then intermediate states of the simulation algorithm will
be saved every nsave iterations, after an initial burn-in period of nburn iterations.

track Logical flag indicating whether to save the transition history of the simulations.

For full details of these parameters, see rmhcontrol. The control parameters can also be given in
the ... arguments.

Value

A point pattern (an object of class "ppp", see ppp.object) or a list of point patterns.

The returned value has an attribute info containing modified versions of the arguments model,
start, and control which together specify the exact simulation procedure. The info attribute can
be printed (and is printed automatically by summary.ppp). For computational efficiency, the info
attribute can be omitted by setting saveinfo=FALSE.

The value of .Random.seed at the start of the simulations is also saved and returned as an attribute
seed.
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If the argument track=TRUE was given (see rmhcontrol), the transition history of the algorithm
is saved, and returned as an attribute history. The transition history is a data frame containing
a factor proposaltype identifying the proposal type (Birth, Death or Shift) and a logical vec-
tor accepted indicating whether the proposal was accepted. The data frame also has columns
numerator, denominator which give the numerator and denominator of the Hastings ratio for the
proposal.

If the argument nsave was given (see rmhcontrol), the return value has an attribute saved which
is a list of point patterns, containing the intermediate states of the algorithm.

Conditional Simulation

There are several kinds of conditional simulation.

• Simulation conditional upon the number of points, that is, holding the number of points fixed.
To do this, set control$p (the probability of a shift) equal to 1. The number of points is then
determined by the starting state, which may be specified either by setting start$n.start to
be a scalar, or by setting the initial pattern start$x.start.

• In the case of multitype processes, it is possible to simulate the model conditionally upon the
number of points of each type, i.e. holding the number of points of each type to be fixed. To do
this, set control$p equal to 1 and control$fixall to be TRUE. The number of points is then
determined by the starting state, which may be specified either by setting start$n.start to
be an integer vector, or by setting the initial pattern start$x.start.

• Simulation conditional on the configuration observed in a sub-window, that is, requiring that,
inside a specified sub-window V , the simulated pattern should agree with a specified point
pattern y.To do this, set control$x.cond to equal the specified point pattern y, making sure
that it is an object of class "ppp" and that the window Window(control$x.cond) is the con-
ditioning window V .

• Simulation conditional on the presence of specified points, that is, requiring that the simulated
pattern should include a specified set of points. This is simulation from the Palm distribution
of the point process given a pattern y. To do this, set control$x.cond to be a data.frame
containing the coordinates (and marks, if appropriate) of the specified points.

For further information, see rmhcontrol.

Note that, when we simulate conditionally on the number of points, or conditionally on the number
of points of each type, no expansion of the window is possible.

Visual Debugger

If snoop = TRUE, an interactive debugger is activated. On the current plot device, the debugger
displays the current state of the Metropolis-Hastings algorithm together with the proposed transition
to the next state. Clicking on this graphical display (using the left mouse button) will re-centre the
display at the clicked location. Surrounding this graphical display is an array of boxes representing
different actions. Clicking on one of the action boxes (using the left mouse button) will cause the
action to be performed. Debugger actions include:

• Zooming in or out

• Panning (shifting the field of view) left, right, up or down

• Jumping to the next iteration
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• Skipping 10, 100, 1000, 10000 or 100000 iterations

• Jumping to the next Birth proposal (etc)

• Changing the fate of the proposal (i.e. changing whether the proposal is accepted or rejected)

• Dumping the current state and proposal to a file

• Printing detailed information at the terminal

• Exiting the debugger (so that the simulation algorithm continues without further interruption).

Right-clicking the mouse will also cause the debugger to exit.

Warnings

There is never a guarantee that the Metropolis-Hastings algorithm has converged to its limiting
distribution.

If start$x.start is specified then expand is set equal to 1 and simulation takes place in Window(x.start).
Any specified value for expand is simply ignored.

The presence of both a component w of model and a non-null value for Window(x.start) makes
sense ONLY if w is contained in Window(x.start).

For multitype processes make sure that, even if there is to be no trend corresponding to a particular
type, there is still a component (a NULL component) for that type, in the list.

Other models

In theory, any finite point process model can be simulated using the Metropolis-Hastings algorithm,
provided the conditional intensity is uniformly bounded.

In practice, the list of point process models that can be simulated using rmh.default is limited to
those that have been implemented in the package’s internal C code. More options will be added in
the future.

Note that the lookup conditional intensity function permits the simulation (in theory, to any desired
degree of approximation) of any pairwise interaction process for which the interaction depends only
on the distance between the pair of points.

Reproducible simulations

If the user wants the simulation to be exactly reproducible (e.g. for a figure in a journal article,
where it is useful to have the figure consistent from draft to draft) then the state of the random
number generator should be set before calling rmh.default. This can be done either by calling
set.seed or by assigning a value to .Random.seed. In the examples below, we use set.seed.

If a simulation has been performed and the user now wants to repeat it exactly, the random seed
should be extracted from the simulated point pattern X by seed <- attr(x, "seed"), then assigned
to the system random nunber state by .Random.seed <- seed before calling rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>
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See Also

rmh, rmh.ppm, rStrauss, ppp, ppm

Interactions: AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton, Fiksel, Geyer, Hardcore,
Hybrid, LennardJones, MultiStrauss, MultiStraussHard, PairPiece, Penttinen, Poisson,
Softcore, Strauss, StraussHard and Triplets.

Examples

if(interactive()) {
nr <- 1e5
nv <- 5000
ns <- 200

} else {
nr <- 20
nv <- 5
ns <- 20
oldopt <- spatstat.options()
spatstat.options(expand=1.05)

}
set.seed(961018)

# Strauss process.
mod01 <- list(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))
X1.strauss <- rmh(model=mod01,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X1.strauss)

# Strauss process, conditioning on n = 42:
X2.strauss <- rmh(model=mod01,start=list(n.start=42),

control=list(p=1,nrep=nr,nverb=nv))
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# Tracking algorithm progress:
# (a) saving intermediate states:
X <- rmh(model=mod01,start=list(n.start=ns),

control=list(nrep=nr, nsave=nr/5, nburn=nr/2))
Saved <- attr(X, "saved")
plot(Saved)

# (b) inspecting transition history:
X <- rmh(model=mod01,start=list(n.start=ns),

control=list(nrep=nr, track=TRUE))
History <- attr(X, "history")
head(History)

# Hard core process:
mod02 <- list(cif="hardcore",par=list(beta=2,hc=0.7),w=c(0,10,0,10))
X3.hardcore <- rmh(model=mod02,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X3.hardcore)

# Strauss process equal to pure hardcore:
mod02s <- list(cif="strauss",par=list(beta=2,gamma=0,r=0.7),w=c(0,10,0,10))
X3.strauss <- rmh(model=mod02s,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

# Strauss process in a polygonal window.
x <- c(0.55,0.68,0.75,0.58,0.39,0.37,0.19,0.26,0.42)
y <- c(0.20,0.27,0.68,0.99,0.80,0.61,0.45,0.28,0.33)
mod03 <- list(cif="strauss",par=list(beta=2000,gamma=0.6,r=0.07),

w=owin(poly=list(x=x,y=y)))
X4.strauss <- rmh(model=mod03,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X4.strauss)

# Strauss process in a polygonal window, conditioning on n = 80.
X5.strauss <- rmh(model=mod03,start=list(n.start=ns),

control=list(p=1,nrep=nr,nverb=nv))

# Strauss process, starting off from X4.strauss, but with the
# polygonal window replace by a rectangular one. At the end,
# the generated pattern is clipped to the original polygonal window.
xxx <- X4.strauss
Window(xxx) <- as.owin(c(0,1,0,1))
X6.strauss <- rmh(model=mod03,start=list(x.start=xxx),

control=list(nrep=nr,nverb=nv))

# Strauss with hardcore:
mod04 <- list(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),

w=c(0,10,0,10))
X1.straush <- rmh(model=mod04,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

# Another Strauss with hardcore (with a perhaps surprising result):
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mod05 <- list(cif="straush",par=list(beta=80,gamma=0.36,r=45,hc=2.5),
w=c(0,250,0,250))

X2.straush <- rmh(model=mod05,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

# Pure hardcore (identical to X3.strauss).
mod06 <- list(cif="straush",par=list(beta=2,gamma=1,r=1,hc=0.7),

w=c(0,10,0,10))
X3.straush <- rmh(model=mod06,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

# Soft core:
w <- c(0,10,0,10)
mod07 <- list(cif="sftcr",par=list(beta=0.8,sigma=0.1,kappa=0.5),

w=c(0,10,0,10))
X.sftcr <- rmh(model=mod07,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.sftcr)

# Area-interaction process:
mod42 <- rmhmodel(cif="areaint",par=list(beta=2,eta=1.6,r=0.7),

w=c(0,10,0,10))
X.area <- rmh(model=mod42,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.area)

# Triplets process
modtrip <- list(cif="triplets",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))
X.triplets <- rmh(model=modtrip,

start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X.triplets)

# Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- list(cif="straussm",par=list(beta=beta,gamma=gmma,radii=r),

w=c(0,250,0,250))
X1.straussm <- rmh(model=mod08,start=list(n.start=ns),

control=list(ptypes=c(0.75,0.25),nrep=nr,nverb=nv))
if(interactive()) plot(X1.straussm)

# Multitype Strauss conditioning upon the total number
# of points being 80:
X2.straussm <- rmh(model=mod08,start=list(n.start=ns),

control=list(p=1,ptypes=c(0.75,0.25),nrep=nr,
nverb=nv))

# Conditioning upon the number of points of type 1 being 60
# and the number of points of type 2 being 20:
X3.straussm <- rmh(model=mod08,start=list(n.start=c(60,20)),
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control=list(fixall=TRUE,p=1,ptypes=c(0.75,0.25),
nrep=nr,nverb=nv))

# Multitype Strauss hardcore:
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
mod09 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,

iradii=r,hradii=rhc),w=c(0,250,0,250))
X.straushm <- rmh(model=mod09,start=list(n.start=ns),

control=list(ptypes=c(0.75,0.25),nrep=nr,nverb=nv))

# Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
tr3 <- function(x,y){x <- x/250; y <- y/250;

exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
# log quadratic trend

tr4 <- function(x,y){x <- x/250; y <- y/250;
exp(-0.6*x+0.5*y)}
# log linear trend

mod10 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
iradii=r,hradii=rhc),w=c(0,250,0,250),
trend=list(tr3,tr4))

X1.straushm.trend <- rmh(model=mod10,start=list(n.start=ns),
control=list(ptypes=c(0.75,0.25),
nrep=nr,nverb=nv))

if(interactive()) plot(X1.straushm.trend)

# Multitype Strauss hardcore with trends for each type, given as images:
bigwin <- square(250)
i1 <- as.im(tr3, bigwin)
i2 <- as.im(tr4, bigwin)
mod11 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,

iradii=r,hradii=rhc),w=bigwin,
trend=list(i1,i2))

X2.straushm.trend <- rmh(model=mod11,start=list(n.start=ns),
control=list(ptypes=c(0.75,0.25),expand=1,
nrep=nr,nverb=nv))

# Diggle, Gates, and Stibbard:
mod12 <- list(cif="dgs",par=list(beta=3600,rho=0.08),w=c(0,1,0,1))
X.dgs <- rmh(model=mod12,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.dgs)

# Diggle-Gratton:
mod13 <- list(cif="diggra",

par=list(beta=1800,kappa=3,delta=0.02,rho=0.04),
w=square(1))

X.diggra <- rmh(model=mod13,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X.diggra)

# Fiksel:
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modFik <- list(cif="fiksel",
par=list(beta=180,r=0.15,hc=0.07,kappa=2,a= -1.0),
w=square(1))

X.fiksel <- rmh(model=modFik,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

if(interactive()) plot(X.fiksel)

# Geyer:
mod14 <- list(cif="geyer",par=list(beta=1.25,gamma=1.6,r=0.2,sat=4.5),

w=c(0,10,0,10))
X1.geyer <- rmh(model=mod14,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X1.geyer)

# Geyer; same as a Strauss process with parameters
# (beta=2.25,gamma=0.16,r=0.7):

mod15 <- list(cif="geyer",par=list(beta=2.25,gamma=0.4,r=0.7,sat=10000),
w=c(0,10,0,10))

X2.geyer <- rmh(model=mod15,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

mod16 <- list(cif="geyer",par=list(beta=8.1,gamma=2.2,r=0.08,sat=3))

X3.geyer <- rmh(model=mod16,start=list(x.start=redwood),
control=list(periodic=TRUE,nrep=nr,nverb=nv))

# Geyer, starting from the redwood data set, simulating
# on a torus, and conditioning on n:
X4.geyer <- rmh(model=mod16,start=list(x.start=redwood),

control=list(p=1,periodic=TRUE,nrep=nr,nverb=nv))

# Lookup (interaction function h_2 from page 76, Diggle (2003)):
r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1
mod17 <- list(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
X.lookup <- rmh(model=mod17,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
if(interactive()) plot(X.lookup)

# Strauss with trend
tr <- function(x,y){x <- x/250; y <- y/250;

exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}

beta <- 0.3
gmma <- 0.5
r <- 45
modStr <- list(cif="strauss",par=list(beta=beta,gamma=gmma,r=r),

w=square(250), trend=tr)
X1.strauss.trend <- rmh(model=modStr,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
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# Baddeley-Geyer
r <- seq(0,0.2,length=8)[-1]
gmma <- c(0.5,0.6,0.7,0.8,0.7,0.6,0.5)
mod18 <- list(cif="badgey",par=list(beta=4000, gamma=gmma,r=r,sat=5),

w=square(1))
X1.badgey <- rmh(model=mod18,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
mod19 <- list(cif="badgey",

par=list(beta=4000, gamma=gmma,r=r,sat=1e4),
w=square(1))

set.seed(1329)
X2.badgey <- rmh(model=mod18,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))

# Check:
h <- ((prod(gmma)/cumprod(c(1,gmma)))[-8])^2
hs <- stepfun(r,c(h,1))
mod20 <- list(cif="lookup",par=list(beta=4000,h=hs),w=square(1))
set.seed(1329)
X.check <- rmh(model=mod20,start=list(n.start=ns),

control=list(nrep=nr,nverb=nv))
# X2.badgey and X.check will be identical.

mod21 <- list(cif="badgey",par=list(beta=300,gamma=c(1,0.4,1),
r=c(0.035,0.07,0.14),sat=5), w=square(1))

X3.badgey <- rmh(model=mod21,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

# Same result as Geyer model with beta=300, gamma=0.4, r=0.07,
# sat = 5 (if seeds and control parameters are the same)

# Or more simply:
mod22 <- list(cif="badgey",

par=list(beta=300,gamma=0.4,r=0.07, sat=5),
w=square(1))

X4.badgey <- rmh(model=mod22,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))

# Same again --- i.e. the BadGey model includes the Geyer model.

# Illustrating scalability.
if(FALSE) {
M1 <- rmhmodel(cif="strauss",par=list(beta=60,gamma=0.5,r=0.04),w=owin())
set.seed(496)
X1 <- rmh(model=M1,start=list(n.start=300))
M2 <- rmhmodel(cif="strauss",par=list(beta=0.6,gamma=0.5,r=0.4),

w=owin(c(0,10),c(0,10)))
set.seed(496)
X2 <- rmh(model=M2,start=list(n.start=300))
chk <- affine(X1,mat=diag(c(10,10)))
all.equal(chk,X2,check.attributes=FALSE)
# Under the default spatstat options the foregoing all.equal()
# will yield TRUE. Setting spatstat.options(scalable=FALSE) and
# re-running the code will reveal differences between X1 and X2.
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}

if(!interactive()) spatstat.options(oldopt)

rmhcontrol Set Control Parameters for Metropolis-Hastings Algorithm.

Description

Sets up a list of parameters controlling the iterative behaviour of the Metropolis-Hastings algorithm.

Usage

rmhcontrol(...)

## Default S3 method:
rmhcontrol(..., p=0.9, q=0.5, nrep=5e5,

expand=NULL, periodic=NULL, ptypes=NULL,
x.cond=NULL, fixall=FALSE, nverb=0,
nsave=NULL, nburn=nsave, track=FALSE,
pstage=c("block", "start"))

Arguments

... Arguments passed to methods.

p Probability of proposing a shift (as against a birth/death).

q Conditional probability of proposing a death given that a birth or death will be
proposed.

nrep Total number of steps (proposals) of Metropolis-Hastings algorithm that should
be run.

expand Simulation window or expansion rule. Either a window (object of class "owin")
or a numerical expansion factor, specifying that simulations are to be performed
in a domain other than the original data window, then clipped to the original data
window. This argument is passed to rmhexpand. A numerical expansion factor
can be in several formats: see rmhexpand.

periodic Logical value (or NULL) indicating whether to simulate “periodically”, i.e. iden-
tifying opposite edges of the rectangular simulation window. A NULL value
means “undecided.”

ptypes For multitype point processes, the distribution of the mark attached to a new
random point (when a birth is proposed)

x.cond Conditioning points for conditional simulation.

fixall (Logical) for multitype point processes, whether to fix the number of points of
each type.

nverb Progress reports will be printed every nverb iterations
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nsave, nburn If these values are specified, then intermediate states of the simulation algorithm
will be saved every nsave iterations, after an initial burn-in period of nburn
iterations.

track Logical flag indicating whether to save the transition history of the simulations.

pstage Character string specifying when to generate proposal points. Either "start"
or "block".

Details

The Metropolis-Hastings algorithm, implemented as rmh, generates simulated realisations of point
process models. The function rmhcontrol sets up a list of parameters which control the iterative
behaviour and termination of the Metropolis-Hastings algorithm, for use in a subsequent call to rmh.
It also checks that the parameters are valid.

(A separate function rmhstart determines the initial state of the algorithm, and rmhmodel deter-
mines the model to be simulated.)

The parameters are as follows:

p The probability of proposing a “shift” (as opposed to a birth or death) in the Metropolis-Hastings
algorithm.
If p = 1 then the algorithm only alters existing points, so the number of points never changes,
i.e. we are simulating conditionally upon the number of points. The number of points is
determined by the initial state (specified by rmhstart).
If p = 1 and fixall=TRUE and the model is a multitype point process model, then the algo-
rithm only shifts the locations of existing points and does not alter their marks (types). This is
equivalent to simulating conditionally upon the number of points of each type. These numbers
are again specified by the initial state.
If p = 1 then no expansion of the simulation window is allowed (see expand below).
The default value of p can be changed by setting the parameter rmh.p in spatstat.options.

q The conditional probability of proposing a death (rather than a birth) given that a shift is not
proposed. This is of course ignored if p is equal to 1.
The default value of q can be changed by setting the parameter rmh.q in spatstat.options.

nrep The number of repetitions or iterations to be made by the Metropolis-Hastings algorithm. It
should be large.
The default value of nrep can be changed by setting the parameter rmh.nrep in spatstat.options.

expand Either a number or a window (object of class "owin"). Indicates that the process is to
be simulated on a domain other than the original data window w, then clipped to w when the
algorithm has finished. This would often be done in order to approximate the simulation of
a stationary process (Geyer, 1999) or more generally a process existing in the whole plane,
rather than just in the window w.
If expand is a window object, it is taken as the larger domain in which simulation is performed.
If expand is numeric, it is interpreted as an expansion factor or expansion distance for de-
termining the simulation domain from the data window. It should be a named scalar, such as
expand=c(area=2), expand=c(distance=0.1), expand=c(length=1.2). See rmhexpand()
for more details. If the name is omitted, it defaults to area.
Expansion is not permitted if the number of points has been fixed by setting p = 1 or if the
starting configuration has been specified via the argument x.start in rmhstart.
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If expand is NULL, this is interpreted to mean “not yet decided”. An expansion rule will be
determined at a later stage, using appropriate defaults. See rmhexpand.

periodic A logical value (or NULL) determining whether to simulate “periodically”. If periodic is
TRUE, and if the simulation window is a rectangle, then the simulation algorithm effectively
identifies opposite edges of the rectangle. Points near the right-hand edge of the rectangle are
deemed to be close to points near the left-hand edge. Periodic simulation usually gives a better
approximation to a stationary point process. For periodic simulation, the simulation window
must be a rectangle. (The simulation window is determined by expand as described above.)
The value NULL means ‘undecided’. The decision is postponed until rmh is called. Depending
on the point process model to be simulated, rmh will then set periodic=TRUE if the simu-
lation window is expanded and the expanded simulation window is rectangular; otherwise
periodic=FALSE.
Note that periodic=TRUE is only permitted when the simulation window (i.e. the expanded
window) is rectangular.

ptypes A vector of probabilities (summing to 1) to be used in assigning a random type to a new
point. Defaults to a vector each of whose entries is 1/nt where nt is the number of types for
the process. Convergence of the simulation algorithm should be improved if ptypes is close
to the relative frequencies of the types which will result from the simulation.

x.cond If this argument is given, then conditional simulation will be performed, and x.cond spec-
ifies the location of the fixed points as well as the type of conditioning. It should be either
a point pattern (object of class "ppp") or a list(x,y) or a data.frame. See the section on
Conditional Simulation.

fixall A logical scalar specifying whether to condition on the number of points of each type. Mean-
ingful only if a marked process is being simulated, and if p = 1. A warning message is given
if fixall is set equal to TRUE when it is not meaningful.

nverb An integer specifying how often “progress reports” (which consist simply of the number of
repetitions completed) should be printed out. If nverb is left at 0, the default, the simulation
proceeds silently.

nsave,nburn If these integers are given, then the current state of the simulation algorithm (i.e.
the current random point pattern) will be saved every nsave iterations, starting from itera-
tion nburn. (Alternatively nsave can be a vector, specifying different numbers of iterations
between each successive save. This vector will be recycled until the end of the simulations.)

track Logical flag indicating whether to save the transition history of the simulations (i.e. infor-
mation specifying what type of proposal was made, and whether it was accepted or rejected,
for each iteration).

pstage Character string specifying the stage of the algorithm at which the randomised proposal
points should be generated. If pstage="start" or if nsave=0, the entire sequence of nrep
random proposal points is generated at the start of the algorithm. This is the original behaviour
of the code, and should be used in order to maintain consistency with older versions of spat-
stat. If pstage="block" and nsave > 0, then a set of nsave random proposal points will be
generated before each block of nsave iterations. This is much more efficient. The default is
pstage="block".

Value

An object of class "rmhcontrol", which is essentially a list of parameter values for the algorithm.

There is a print method for this class, which prints a sensible description of the parameters chosen.
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Conditional Simulation

For a Gibbs point process X , the Metropolis-Hastings algorithm easily accommodates several kinds
of conditional simulation:

conditioning on the total number of points: We fix the total number of points N(X) to be equal
to n. We simulate from the conditional distribution of X given N(X) = n.

conditioning on the number of points of each type: In a multitype point process, where Yj de-
notes the process of points of type j, we fix the number N(Yj) of points of type j to be
equal to nj , for j = 1, 2, . . . ,m. We simulate from the conditional distribution of X given
N(Yj) = nj for j = 1, 2, . . . ,m.

conditioning on the realisation in a subwindow: We require that the point process X should, within
a specified sub-window V , coincide with a specified point pattern y. We simulate from the
conditional distribution of X given X ∩ V = y.

Palm conditioning: We require that the point process X include a specified list of points y. We
simulate from the point process with probability density g(x) = cf(x ∪ y) where f is the
probability density of the original process X , and c is a normalising constant.

To achieve each of these types of conditioning we do as follows:

conditioning on the total number of points: Set p=1. The number of points is determined by the
initial state of the simulation: see rmhstart.

conditioning on the number of points of each type: Set p=1 and fixall=TRUE. The number of
points of each type is determined by the initial state of the simulation: see rmhstart.

conditioning on the realisation in a subwindow: Set x.cond to be a point pattern (object of class
"ppp"). Its window V=Window(x.cond) becomes the conditioning subwindow V .

Palm conditioning: Set x.cond to be a list(x,y) or data.frame with two columns containing
the coordinates of the points, or a list(x,y,marks) or data.frame with three columns con-
taining the coordinates and marks of the points.

The arguments x.cond, p and fixall can be combined.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

rmh, rmhmodel, rmhstart, rmhexpand, spatstat.options
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Examples

# parameters given as named arguments
c1 <- rmhcontrol(p=0.3,periodic=TRUE,nrep=1e6,nverb=1e5)

# parameters given as a list
liz <- list(p=0.9, nrep=1e4)
c2 <- rmhcontrol(liz)

# parameters given in rmhcontrol object
c3 <- rmhcontrol(c1)

rmhexpand Specify Simulation Window or Expansion Rule

Description

Specify a spatial domain in which point process simulations will be performed. Alternatively, spec-
ify a rule which will be used to determine the simulation window.

Usage

rmhexpand(x = NULL, ..., area = NULL, length = NULL, distance = NULL)

Arguments

x Any kind of data determining the simulation window or the expansion rule. A
window (object of class "owin") specifying the simulation window, a numerical
value specifying an expansion factor or expansion distance, a list containing one
numerical value, an object of class "rmhexpand", or NULL.

... Ignored.

area Area expansion factor. Incompatible with other arguments.

length Length expansion factor. Incompatible with other arguments.

distance Expansion distance (buffer width). Incompatible with other arguments.

Details

In the Metropolis-Hastings algorithm rmh for simulating spatial point processes, simulations are
usually carried out on a spatial domain that is larger than the original window of the point process
model, then subsequently clipped to the original window.

The command rmhexpand can be used to specify the simulation window, or to specify a rule which
will later be used to determine the simulation window from data.

The arguments are all incompatible: at most one of them should be given.

If the first argument x is given, it may be any of the following:

• a window (object of class "owin") specifying the simulation window.
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• an object of class "rmhexpand" specifying the expansion rule.

• a single numerical value, without attributes. This will be interpreted as the value of the argu-
ment area.

• either c(area=v) or list(area=v), where v is a single numeric value. This will be inter-
preted as the value of the argument area.

• either c(length=v) or list(length=v), where v is a single numeric value. This will be
interpreted as the value of the argument length.

• either c(distance=v) or list(distance=v), where v is a single numeric value. This will be
interpreted as the value of the argument distance.

• NULL, meaning that the expansion rule is not yet determined.

If one of the arguments area, length or distance is given, then the simulation window is deter-
mined from the original data window as follows.

area The bounding box of the original data window will be extracted, and the simulation window
will be a scalar dilation of this rectangle. The argument area should be a numerical value,
greater than or equal to 1. It specifies the area expansion factor, i.e. the ratio of the area of the
simulation window to the area of the original point process window’s bounding box.

length The bounding box of the original data window will be extracted, and the simulation window
will be a scalar dilation of this rectangle. The argument length should be a numerical value,
greater than or equal to 1. It specifies the length expansion factor, i.e. the ratio of the width
(height) of the simulation window to the width (height) of the original point process window’s
bounding box.

distance The argument distance should be a numerical value, greater than or equal to 0. It speci-
fies the width of a buffer region around the original data window. If the original data window
is a rectangle, then this window is extended by a margin of width equal to distance around
all sides of the original rectangle. The result is a rectangle. If the original data window is
not a rectangle, then morphological dilation is applied using dilation.owin so that a margin
or buffer of width equal to distance is created around all sides of the original window. The
result is a non-rectangular window, typically of a different shape.

Value

An object of class "rmhexpand" specifying the expansion rule. There is a print method for this
class.

Undetermined expansion

If expand=NULL, this is interpreted to mean that the expansion rule is “not yet decided”. Expansion
will be decided later, by the simulation algorithm rmh. If the model cannot be expanded (for example
if the covariate data in the model are not available on a larger domain) then expansion will not occur.
If the model can be expanded, then if the point process model has a finite interaction range r, the
default is rmhexpand(distance=2*r), and otherwise rmhexpand(area=2).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>
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See Also

expand.owin to apply the rule to a window.

will.expand to test whether expansion will occur.

rmh, rmhcontrol for background details.

Examples

rmhexpand()
rmhexpand(2)
rmhexpand(1)
rmhexpand(length=1.5)
rmhexpand(distance=0.1)
rmhexpand(letterR)

rmhmodel Define Point Process Model for Metropolis-Hastings Simulation.

Description

Builds a description of a point process model for use in simulating the model by the Metropolis-
Hastings algorithm.

Usage

rmhmodel(...)

Arguments

... Arguments specifying the point process model in some format.

Details

Simulated realisations of many point process models can be generated using the Metropolis-Hastings
algorithm rmh. The algorithm requires the model to be specified in a particular format: an object of
class "rmhmodel".

The function rmhmodel takes a description of a point process model in some other format, and
converts it into an object of class "rmhmodel". It also checks that the parameters of the model are
valid.

The function rmhmodel is generic, with methods for

fitted point process models: an object of class "ppm", obtained by a call to the model-fitting func-
tion ppm. See rmhmodel.ppm.

lists: a list of parameter values in a certain format. See rmhmodel.list.

default: parameter values specified as separate arguments to .... See rmhmodel.default.
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Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

rmhmodel.ppm, rmhmodel.default, rmhmodel.list, rmh, rmhcontrol, rmhstart, ppm, Strauss,
Softcore, StraussHard, Triplets, MultiStrauss, MultiStraussHard, DiggleGratton, PairPiece
Penttinen

rmhmodel.default Build Point Process Model for Metropolis-Hastings Simulation.

Description

Builds a description of a point process model for use in simulating the model by the Metropolis-
Hastings algorithm.

Usage

## Default S3 method:
rmhmodel(...,

cif=NULL, par=NULL, w=NULL, trend=NULL, types=NULL)
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Arguments

... Ignored.

cif Character string specifying the choice of model

par Parameters of the model

w Spatial window in which to simulate

trend Specification of the trend in the model

types A vector of factor levels defining the possible marks, for a multitype process.

Details

The generic function rmhmodel takes a description of a point process model in some format, and
converts it into an object of class "rmhmodel" so that simulations of the model can be generated
using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.default is the default method. It builds a description of the point process
model from the simple arguments listed.

The argument cif is a character string specifying the choice of interpoint interaction for the point
process. The current options are

’areaint’ Area-interaction process.

’badgey’ Baddeley-Geyer (hybrid Geyer) process.

’dgs’ Diggle, Gates and Stibbard (1987) process

’diggra’ Diggle and Gratton (1984) process

’fiksel’ Fiksel double exponential process (Fiksel, 1984).

’geyer’ Saturation process (Geyer, 1999).

’hardcore’ Hard core process

’lennard’ Lennard-Jones process

’lookup’ General isotropic pairwise interaction process, with the interaction function specified
via a “lookup table”.

’multihard’ Multitype hardcore process

’penttinen’ The Penttinen process

’strauss’ The Strauss process

’straush’ The Strauss process with hard core

’sftcr’ The Softcore process

’straussm’ The multitype Strauss process

’straushm’ Multitype Strauss process with hard core

’triplets’ Triplets process (Geyer, 1999).

It is also possible to specify a hybrid of these interactions in the sense of Baddeley et al (2013). In
this case, cif is a character vector containing names from the list above. For example, cif=c('strauss',
'geyer') would specify a hybrid of the Strauss and Geyer models.

The argument par supplies parameter values appropriate to the conditional intensity function being
invoked. For the interactions listed above, these parameters are:



84 rmhmodel.default

areaint: (Area-interaction process.) A named list with components beta,eta,r which are respec-
tively the “base” intensity, the scaled interaction parameter and the interaction radius.

badgey: (Baddeley-Geyer process.) A named list with components beta (the “base” intensity),
gamma (a vector of non-negative interaction parameters), r (a vector of interaction radii, of the
same length as gamma, in increasing order), and sat (the saturation parameter(s); this may be
a scalar, or a vector of the same length as gamma and r; all values should be at least 1). Note
that because of the presence of “saturation” the gamma values are permitted to be larger than
1.

dgs: (Diggle, Gates, and Stibbard process. See Diggle, Gates, and Stibbard (1987)) A named list
with components beta and rho. This process has pairwise interaction function equal to

e(t) = sin2
(
πt

2ρ

)
for t < ρ, and equal to 1 for t ≥ ρ.

diggra: (Diggle-Gratton process. See Diggle and Gratton (1984) and Diggle, Gates and Stibbard
(1987).) A named list with components beta, kappa, delta and rho. This process has
pairwise interaction function e(t) equal to 0 for t < δ, equal to(

t− δ

ρ− δ

)κ

for δ ≤ t < ρ, and equal to 1 for t ≥ ρ. Note that here we use the symbol κ where Diggle,
Gates, and Stibbard use β since we reserve the symbol β for an intensity parameter.

fiksel: (Fiksel double exponential process, see Fiksel (1984)) A named list with components beta,
r, hc, kappa and a. This process has pairwise interaction function e(t) equal to 0 for t < hc,
equal to

exp(a exp(−κt))

for hc ≤ t < r, and equal to 1 for t ≥ r.

geyer: (Geyer’s saturation process. See Geyer (1999).) A named list with components beta,
gamma, r, and sat. The components beta, gamma, r are as for the Strauss model, and sat is the
“saturation” parameter. The model is Geyer’s “saturation” point process model, a modification
of the Strauss process in which we effectively impose an upper limit (sat) on the number of
neighbours which will be counted as close to a given point.
Explicitly, a saturation point process with interaction radius r, saturation threshold s, and
parameters β and γ, is the point process in which each point xi in the pattern X contributes a
factor

βγmin(s,t(xi,X))

to the probability density of the point pattern, where t(xi, X) denotes the number of “r-close
neighbours” of xi in the pattern X .
If the saturation threshold s is infinite, the Geyer process reduces to a Strauss process with
interaction parameter γ2 rather than γ.

hardcore: (Hard core process.) A named list with components beta and hc where beta is the
base intensity and hc is the hard core distance. This process has pairwise interaction function
e(t) equal to 1 if t > hc and 0 if t <= hc.
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lennard: (Lennard-Jones process.) A named list with components sigma and epsilon, where
sigma is the characteristic diameter and epsilon is the well depth. See LennardJones for
explanation.

multihard: (Multitype hard core process.) A named list with components beta and hradii, where
beta is a vector of base intensities for each type of point, and hradii is a matrix of hard core
radii between each pair of types.

penttinen: (Penttinen process.) A named list with components beta,gamma,r which are respec-
tively the “base” intensity, the pairwise interaction parameter, and the disc radius. Note that
gamma must be less than or equal to 1. See Penttinen for explanation. (Note that there is also
an algorithm for perfect simulation of the Penttinen process, rPenttinen)

strauss: (Strauss process.) A named list with components beta,gamma,r which are respectively
the “base” intensity, the pairwise interaction parameter and the interaction radius. Note that
gamma must be less than or equal to 1. (Note that there is also an algorithm for perfect simula-
tion of the Strauss process, rStrauss)

straush: (Strauss process with hardcore.) A named list with entries beta,gamma,r,hc where
beta, gamma, and r are as for the Strauss process, and hc is the hardcore radius. Of course hc
must be less than r.

sftcr: (Softcore process.) A named list with components beta,sigma,kappa. Again beta is a
“base” intensity. The pairwise interaction between two points u ̸= v is

exp

{
−
(

σ

||u− v||

)2/κ
}

Note that it is necessary that 0 < κ < 1.

straussm: (Multitype Strauss process.) A named list with components

• beta: A vector of “base” intensities, one for each possible type.
• gamma: A symmetric matrix of interaction parameters, with γij pertaining to the interac-

tion between type i and type j.
• radii: A symmetric matrix of interaction radii, with entries rij pertaining to the inter-

action between type i and type j.

straushm: (Multitype Strauss process with hardcore.) A named list with components beta and
gamma as for straussm and two “radii” components:

• iradii: the interaction radii
• hradii: the hardcore radii

which are both symmetric matrices of nonnegative numbers. The entries of hradii must be
less than the corresponding entries of iradii.

triplets: (Triplets process.) A named list with components beta,gamma,r which are respectively
the “base” intensity, the triplet interaction parameter and the interaction radius. Note that
gamma must be less than or equal to 1.

lookup: (Arbitrary pairwise interaction process with isotropic interaction.) A named list with
components beta, r, and h, or just with components beta and h.
This model is the pairwise interaction process with an isotropic interaction given by any cho-
sen function H . Each pair of points xi, xj in the point pattern contributes a factor H(d(xi, xj))
to the probability density, where d denotes distance and H is the pair interaction function.
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The component beta is a (positive) scalar which determines the “base” intensity of the pro-
cess.
In this implementation, H must be a step function. It is specified by the user in one of two
ways.

• as a vector of values: If r is present, then r is assumed to give the locations of jumps in
the function H , while the vector h gives the corresponding values of the function.
Specifically, the interaction function H(t) takes the value h[1] for distances t in the
interval [0, r[1]); takes the value h[i] for distances t in the interval [r[i-1], r[i])
where i = 2, . . . , n; and takes the value 1 for t ≥ r[n]. Here n denotes the length of r.
The components r and h must be numeric vectors of equal length. The r values must be
strictly positive, and sorted in increasing order.
The entries of h must be non-negative. If any entry of h is greater than 1, then the entry
h[1] must be 0 (otherwise the specified process is non-existent).
Greatest efficiency is achieved if the values of r are equally spaced.
[Note: The usage of r and h has changed from the previous usage in spatstat versions
1.4-7 to 1.5-1, in which ascending order was not required, and in which the first entry of
r had to be 0.]

• as a stepfun object: If r is absent, then h must be an object of class "stepfun" specifying
a step function. Such objects are created by stepfun.
The stepfun object h must be right-continuous (which is the default using stepfun.)
The values of the step function must all be nonnegative. The values must all be less than 1
unless the function is identically zero on some initial interval [0, r). The rightmost value
(the value of h(t) for large t) must be equal to 1.
Greatest efficiency is achieved if the jumps (the “knots” of the step function) are equally
spaced.

For a hybrid model, the argument par should be a list, of the same length as cif, such that par[[i]]
is a list of the parameters required for the interaction cif[i]. See the Examples.

The optional argument trend determines the spatial trend in the model, if it has one. It should be a
function or image (or a list of such, if the model is multitype) to provide the value of the trend at an
arbitrary point.

trend given as a function: A trend function may be a function of any number of arguments, but
the first two must be the x, y coordinates of a point. Auxiliary arguments may be passed to
the trend function at the time of simulation, via the ... argument to rmh.
The function must be vectorized. That is, it must be capable of accepting vector valued x and
y arguments. Put another way, it must be capable of calculating the trend value at a number of
points, simultaneously, and should return the vector of corresponding trend values.

trend given as an image: An image (see im.object) provides the trend values at a grid of points
in the observation window and determines the trend value at other points as the value at the
nearest grid point.

Note that the trend or trends must be non-negative; no checking is done for this.

The optional argument w specifies the window in which the pattern is to be generated. If specified,
it must be in a form which can be coerced to an object of class owin by as.owin.

The optional argument types specifies the possible types in a multitype point process. If the model
being simulated is multitype, and types is not specified, then this vector defaults to 1:ntypes
where ntypes is the number of types.
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Value

An object of class "rmhmodel", which is essentially a list of parameter values for the model.

There is a print method for this class, which prints a sensible description of the model chosen.

Warnings in Respect of “lookup”

For the lookup cif, the entries of the r component of par must be strictly positive and sorted into
ascending order.

Note that if you specify the lookup pairwise interaction function via stepfun() the arguments x
and y which are passed to stepfun() are slightly different from r and h: length(y) is equal to
1+length(x); the final entry of y must be equal to 1 — i.e. this value is explicitly supplied by the
user rather than getting tacked on internally.

The step function returned by stepfun() must be right continuous (this is the default behaviour of
stepfun()) otherwise an error is given.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Turner, R., Mateu, J. and Bevan, A. (2013) Hybrids of Gibbs point process models and
their implementation. Journal of Statistical Software 55:11, 1–43. DOI: 10.18637/jss.v055.i11

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

Fiksel, T. (1984) Estimation of parameterized pair potentials of marked and non-marked Gibbsian
point processes. Electronische Informationsverabeitung und Kybernetika 20, 270–278.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

rmh, rmhcontrol, rmhstart, ppm, AreaInter, BadGey, DiggleGatesStibbard, DiggleGratton,
Fiksel, Geyer, Hardcore, Hybrid, LennardJones, MultiStrauss, MultiStraussHard, PairPiece,
Penttinen, Poisson, Softcore, Strauss, StraussHard and Triplets.

Examples

# Strauss process:
mod01 <- rmhmodel(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))
mod01
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# The above could also be simulated using 'rStrauss'

# Strauss with hardcore:
mod04 <- rmhmodel(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),

w=owin(c(0,10),c(0,5)))

# Hard core:
mod05 <- rmhmodel(cif="hardcore",par=list(beta=2,hc=0.3),

w=square(5))

# Soft core:
w <- square(10)
mod07 <- rmhmodel(cif="sftcr",

par=list(beta=0.8,sigma=0.1,kappa=0.5),
w=w)

# Penttinen process:
modpen <- rmhmodel(cif="penttinen",par=list(beta=2,gamma=0.6,r=1),

w=c(0,10,0,10))

# Area-interaction process:
mod42 <- rmhmodel(cif="areaint",par=list(beta=2,eta=1.6,r=0.7),

w=c(0,10,0,10))

# Baddeley-Geyer process:
mod99 <- rmhmodel(cif="badgey",par=list(beta=0.3,

gamma=c(0.2,1.8,2.4),r=c(0.035,0.07,0.14),sat=5),
w=unit.square())

# Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- rmhmodel(cif="straussm",

par=list(beta=beta,gamma=gmma,radii=r),
w=square(250))

# specify types
mod09 <- rmhmodel(cif="straussm",

par=list(beta=beta,gamma=gmma,radii=r),
w=square(250),
types=c("A", "B"))

# Multitype Hardcore:
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
mod08hard <- rmhmodel(cif="multihard",

par=list(beta=beta,hradii=rhc),
w=square(250),
types=c("A", "B"))

# Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
ri <- matrix(c(45,45,45,45),2,2)



rmhmodel.list 89

rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
tr3 <- function(x,y){x <- x/250; y <- y/250;

exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
# log quadratic trend

tr4 <- function(x,y){x <- x/250; y <- y/250;
exp(-0.6*x+0.5*y)}
# log linear trend

mod10 <- rmhmodel(cif="straushm",par=list(beta=beta,gamma=gmma,
iradii=ri,hradii=rhc),w=c(0,250,0,250),
trend=list(tr3,tr4))

# Triplets process:
mod11 <- rmhmodel(cif="triplets",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))

# Lookup (interaction function h_2 from page 76, Diggle (2003)):
r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1
mod17 <- rmhmodel(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))

# hybrid model
modhy <- rmhmodel(cif=c('strauss', 'geyer'),

par=list(list(beta=100,gamma=0.5,r=0.05),
list(beta=1, gamma=0.7,r=0.1, sat=2)),

w=square(1))
modhy

rmhmodel.list Define Point Process Model for Metropolis-Hastings Simulation.

Description

Given a list of parameters, builds a description of a point process model for use in simulating the
model by the Metropolis-Hastings algorithm.

Usage

## S3 method for class 'list'
rmhmodel(model, ...)

Arguments

model A list of parameters. See Details.

... Optional list of additional named parameters.
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Details

The generic function rmhmodel takes a description of a point process model in some format, and
converts it into an object of class "rmhmodel" so that simulations of the model can be generated
using the Metropolis-Hastings algorithm rmh.

This function rmhmodel.list is the method for lists. The argument model should be a named list
of parameters of the form

list(cif, par, w, trend, types)

where cif and par are required and the others are optional. For details about these components,
see rmhmodel.default.

The subsequent arguments ... (if any) may also have these names, and they will take precedence
over elements of the list model.

Value

An object of class "rmhmodel", which is essentially a validated list of parameter values for the
model.

There is a print method for this class, which prints a sensible description of the model chosen.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

References

Diggle, P. J. (2003) Statistical Analysis of Spatial Point Patterns (2nd ed.) Arnold, London.

Diggle, P.J. and Gratton, R.J. (1984) Monte Carlo methods of inference for implicit statistical mod-
els. Journal of the Royal Statistical Society, series B 46, 193 – 212.

Diggle, P.J., Gates, D.J., and Stibbard, A. (1987) A nonparametric estimator for pairwise-interaction
point processes. Biometrika 74, 763 – 770. Scandinavian Journal of Statistics 21, 359–373.

Geyer, C.J. (1999) Likelihood Inference for Spatial Point Processes. Chapter 3 in O.E. Barndorff-
Nielsen, W.S. Kendall and M.N.M. Van Lieshout (eds) Stochastic Geometry: Likelihood and Com-
putation, Chapman and Hall / CRC, Monographs on Statistics and Applied Probability, number 80.
Pages 79–140.

See Also

rmhmodel, rmhmodel.default, rmhmodel.ppm, rmh, rmhcontrol, rmhstart, ppm, Strauss, Softcore,
StraussHard, MultiStrauss, MultiStraussHard, DiggleGratton, PairPiece

Examples

# Strauss process:
mod01 <- list(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))
mod01 <- rmhmodel(mod01)
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# Strauss with hardcore:
mod04 <- list(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),

w=owin(c(0,10),c(0,5)))
mod04 <- rmhmodel(mod04)

# Soft core:
w <- square(10)
mod07 <- list(cif="sftcr",

par=list(beta=0.8,sigma=0.1,kappa=0.5),
w=w)

mod07 <- rmhmodel(mod07)

# Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- list(cif="straussm",

par=list(beta=beta,gamma=gmma,radii=r),
w=square(250))

mod08 <- rmhmodel(mod08)

# specify types
mod09 <- rmhmodel(list(cif="straussm",

par=list(beta=beta,gamma=gmma,radii=r),
w=square(250),
types=c("A", "B")))

# Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
ri <- matrix(c(45,45,45,45),2,2)
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
tr3 <- function(x,y){x <- x/250; y <- y/250;

exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
# log quadratic trend

tr4 <- function(x,y){x <- x/250; y <- y/250;
exp(-0.6*x+0.5*y)}
# log linear trend

mod10 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
iradii=ri,hradii=rhc),w=c(0,250,0,250),
trend=list(tr3,tr4))

mod10 <- rmhmodel(mod10)

# Lookup (interaction function h_2 from page 76, Diggle (2003)):
r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1
mod17 <- list(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
mod17 <- rmhmodel(mod17)
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rmhstart Determine Initial State for Metropolis-Hastings Simulation.

Description

Builds a description of the initial state for the Metropolis-Hastings algorithm.

Usage

rmhstart(start, ...)
## Default S3 method:

rmhstart(start=NULL, ..., n.start=NULL, x.start=NULL)

Arguments

start An existing description of the initial state in some format. Incompatible with
the arguments listed below.

... There should be no other arguments.

n.start Number of initial points (to be randomly generated). Incompatible with x.start.

x.start Initial point pattern configuration. Incompatible with n.start.

Details

Simulated realisations of many point process models can be generated using the Metropolis-Hastings
algorithm implemented in rmh.

This function rmhstart creates a full description of the initial state of the Metropolis-Hastings al-
gorithm, including possibly the initial state of the random number generator, for use in a subsequent
call to rmh. It also checks that the initial state is valid.

The initial state should be specified either by the first argument start or by the other arguments
n.start, x.start etc.

If start is a list, then it should have components named n.start or x.start, with the same
interpretation as described below.

The arguments are:

n.start The number of “initial” points to be randomly (uniformly) generated in the simulation
window w. Incompatible with x.start.
For a multitype point process, n.start may be a vector (of length equal to the number of
types) giving the number of points of each type to be generated.
If expansion of the simulation window is selected (see the argument expand to rmhcontrol),
then the actual number of starting points in the simulation will be n.start multiplied by the
expansion factor (ratio of the areas of the expanded window and original window).
For faster convergence of the Metropolis-Hastings algorithm, the value of n.start should be
roughly equal to (an educated guess at) the expected number of points for the point process
inside the window.
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x.start Initial point pattern configuration. Incompatible with n.start.
x.start may be a point pattern (an object of class ppp), or an object which can be coerced to
this class by as.ppp, or a dataset containing vectors x and y.
If x.start is specified, then expansion of the simulation window (the argument expand of
rmhcontrol) is not permitted.

The parameters n.start and x.start are incompatible.

Value

An object of class "rmhstart", which is essentially a list of parameters describing the initial point
pattern and (optionally) the initial state of the random number generator.

There is a print method for this class, which prints a sensible description of the initial state.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

rmh, rmhcontrol, rmhmodel

Examples

# 30 random points
a <- rmhstart(n.start=30)
a

# a particular point pattern
b <- rmhstart(x.start=cells)

rMosaicField Mosaic Random Field

Description

Generate a realisation of a random field which is piecewise constant on the tiles of a given tessella-
tion.

Usage

rMosaicField(X,
rgen = function(n) { sample(0:1, n, replace = TRUE)},
...,
rgenargs=NULL)
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Arguments

X A tessellation (object of class "tess").

... Arguments passed to as.mask determining the pixel resolution.

rgen Function that generates random values for the tiles of the tessellation.

rgenargs List containing extra arguments that should be passed to rgen (typically speci-
fying parameters of the distribution of the values).

Details

This function generates a realisation of a random field which is piecewise constant on the tiles of
the given tessellation X. The values in each tile are independent and identically distributed.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

rpoislinetess, rMosaicSet

Examples

if(interactive()) {
lambda <- 3
d <- 256
n <- 30

} else {
lambda <- 1
d <- 32
n <- 5

}
X <- rpoislinetess(lambda)
plot(rMosaicField(X, runif, dimyx=d))
plot(rMosaicField(X, rnorm, rgenargs=list(mean=10, sd=2), dimyx=d))
Y <- dirichlet(runifpoint(n))
plot(rMosaicField(Y, rnorm, dimyx=d))
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rMosaicSet Mosaic Random Set

Description

Generate a random set by taking a random selection of tiles of a given tessellation.

Usage

rMosaicSet(X, p=0.5)

Arguments

X A tessellation (object of class "tess").

p Probability of including a given tile. A number strictly between 0 and 1.

Details

Given a tessellation X, this function randomly selects some of the tiles of X, including each tile with
probability p independently of the other tiles. The selected tiles are then combined to form a set in
the plane.

One application of this is Switzer’s (1965) example of a random set which has a Markov property.
It is constructed by generating X according to a Poisson line tessellation (see rpoislinetess).

Value

A window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Switzer, P. A random set process in the plane with a Markovian property. Annals of Mathematical
Statistics 36 (1965) 1859–1863.

See Also

rpoislinetess, rMosaicField
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Examples

if(interactive()) {
lambda <- 3
n <- 30

} else {
lambda <- 1
n <- 5

}
# Switzer's random set
X <- rpoislinetess(lambda)
plot(rMosaicSet(X, 0.5), col="green", border=NA)

# another example
Y <- dirichlet(runifpoint(n))
plot(rMosaicSet(Y, 0.4))

rmpoint Generate N Random Multitype Points

Description

Generate a random multitype point pattern with a fixed number of points, or a fixed number of
points of each type.

Usage

rmpoint(n, f=1, fmax=NULL, win=unit.square(),
types, ptypes,
..., giveup=1000, verbose=FALSE,
nsim=1, drop=TRUE)

Arguments

n Number of marked points to generate. Either a single number specifying the
total number of points, or a vector specifying the number of points of each type.

f The probability density of the multitype points, usually un-normalised. Either a
constant, a vector, a function f(x,y,m, ...), a pixel image, a list of functions
f(x,y,...) or a list of pixel images.

fmax An upper bound on the values of f. If missing, this number will be estimated.

win Window in which to simulate the pattern. Ignored if f is a pixel image or list of
pixel images.

types All the possible types for the multitype pattern.

ptypes Optional vector of probabilities for each type.

... Arguments passed to f if it is a function.

giveup Number of attempts in the rejection method after which the algorithm should
stop trying to generate new points.
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verbose Flag indicating whether to report details of performance of the simulation algo-
rithm.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates random multitype point patterns consisting of a fixed number of points.

Three different models are available:

I. Random location and type: If n is a single number and the argument ptypes is missing, then
n independent, identically distributed random multitype points are generated. Their locations
(x[i],y[i]) and types m[i] have joint probability density proportional to f(x, y,m).

II. Random type, and random location given type: If n is a single number and ptypes is given,
then n independent, identically distributed random multitype points are generated. Their types
m[i] have probability distribution ptypes. Given the types, the locations (x[i],y[i]) have
conditional probability density proportional to f(x, y,m).

III. Fixed types, and random location given type: If n is a vector, then we generate n[i] inde-
pendent, identically distributed random points of type types[i]. For points of type m the
conditional probability density of location (x, y) is proportional to f(x, y,m).

Note that the density f is normalised in different ways in Model I and Models II and III. In Model I
the normalised joint density is g(x, y,m) = f(x, y,m)/Z where

Z =
∑
m

∫ ∫
λ(x, y,m)dxdy

while in Models II and III the normalised conditional density is g(x, y | m) = f(x, y,m)/Zm

where
Zm =

∫ ∫
λ(x, y,m)dx dy.

In Model I, the marginal distribution of types is pm = Zm/Z.

The unnormalised density f may be specified in any of the following ways.

single number: If f is a single number, the conditional density of location given type is uniform.
That is, the points of each type are uniformly distributed. In Model I, the marginal distribution
of types is also uniform (all possible types have equal probability).

vector: If f is a numeric vector, the conditional density of location given type is uniform. That
is, the points of each type are uniformly distributed. In Model I, the marginal distribution of
types is proportional to the vector f. In Model II, the marginal distribution of types is ptypes,
that is, the values in f are ignored. The argument types defaults to names(f), or if that is
null, 1:length(f).

function: If f is a function, it will be called in the form f(x,y,m,...) at spatial location (x,y)
for points of type m. In Model I, the joint probability density of location and type is propor-
tional to f(x,y,m,...). In Models II and III, the conditional probability density of location
(x,y) given type m is proportional to f(x,y,m,...). The function f must work correctly
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with vectors x, y and m, returning a vector of function values. (Note that m will be a factor with
levels types.) The value fmax must be given and must be an upper bound on the values of
f(x,y,m,...) for all locations (x, y) inside the window win and all types m. The argument
types must be given.

list of functions: If f is a list of functions, then the functions will be called in the form f[[i]](x,y,...)
at spatial location (x,y) for points of type types[i]. In Model I, the joint probability density
of location and type is proportional to f[[m]](x,y,...). In Models II and III, the condi-
tional probability density of location (x,y) given type m is proportional to f[[m]](x,y,...).
The function f[[i]] must work correctly with vectors x and y, returning a vector of func-
tion values. The value fmax must be given and must be an upper bound on the values of
f[[i]](x,y,...) for all locations (x, y) inside the window win. The argument types de-
faults to names(f), or if that is null, 1:length(f).

pixel image: If f is a pixel image object of class "im" (see im.object), the unnormalised density
at a location (x,y) for points of any type is equal to the pixel value of f for the pixel nearest
to (x,y). In Model I, the marginal distribution of types is uniform. The argument win is
ignored; the window of the pixel image is used instead. The argument types must be given.

list of pixel images: If f is a list of pixel images, then the image f[[i]] determines the density val-
ues of points of type types[i]. The argument win is ignored; the window of the pixel image
is used instead. The argument types defaults to names(f), or if that is null, 1:length(f).

The implementation uses the rejection method. For Model I, rmpoispp is called repeatedly until
n points have been generated. It gives up after giveup calls if there are still fewer than n points.
For Model II, the types are first generated according to ptypes, then the locations of the points of
each type are generated using rpoint. For Model III, the locations of the points of each type are
generated using rpoint.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

im.object, owin.object, ppp.object.

Examples

abc <- c("a","b","c")

##### Model I

rmpoint(25, types=abc)
rmpoint(25, 1, types=abc)
# 25 points, equal probability for each type, uniformly distributed locations
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rmpoint(25, function(x,y,m) {rep(1, length(x))}, types=abc)
# same as above
rmpoint(25, list(function(x,y){rep(1, length(x))},

function(x,y){rep(1, length(x))},
function(x,y){rep(1, length(x))}),

types=abc)
# same as above

rmpoint(25, function(x,y,m) { x }, types=abc)
# 25 points, equal probability for each type,
# locations nonuniform with density proportional to x

rmpoint(25, function(x,y,m) { ifelse(m == "a", 1, x) }, types=abc)
rmpoint(25, list(function(x,y) { rep(1, length(x)) },

function(x,y) { x },
function(x,y) { x }),
types=abc)

# 25 points, UNEQUAL probabilities for each type,
# type "a" points uniformly distributed,
# type "b" and "c" points nonuniformly distributed.

##### Model II

rmpoint(25, 1, types=abc, ptypes=rep(1,3)/3)
rmpoint(25, 1, types=abc, ptypes=rep(1,3))
# 25 points, equal probability for each type,
# uniformly distributed locations

rmpoint(25, function(x,y,m) {rep(1, length(x))}, types=abc, ptypes=rep(1,3))
# same as above
rmpoint(25, list(function(x,y){rep(1, length(x))},

function(x,y){rep(1, length(x))},
function(x,y){rep(1, length(x))}),

types=abc, ptypes=rep(1,3))
# same as above

rmpoint(25, function(x,y,m) { x }, types=abc, ptypes=rep(1,3))
# 25 points, equal probability for each type,
# locations nonuniform with density proportional to x

rmpoint(25, function(x,y,m) { ifelse(m == "a", 1, x) }, types=abc, ptypes=rep(1,3))
# 25 points, EQUAL probabilities for each type,
# type "a" points uniformly distributed,
# type "b" and "c" points nonuniformly distributed.

###### Model III

rmpoint(c(12, 8, 4), 1, types=abc)
# 12 points of type "a",
# 8 points of type "b",
# 4 points of type "c",
# each uniformly distributed
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rmpoint(c(12, 8, 4), function(x,y,m) { ifelse(m=="a", 1, x)}, types=abc)
rmpoint(c(12, 8, 4), list(function(x,y) { rep(1, length(x)) },

function(x,y) { x },
function(x,y) { x }),

types=abc)

# 12 points of type "a", uniformly distributed
# 8 points of type "b", nonuniform
# 4 points of type "c", nonuniform

#########

## Randomising an existing point pattern:
# same numbers of points of each type, uniform random locations (Model III)
rmpoint(table(marks(demopat)), 1, win=Window(demopat))

# same total number of points, distribution of types estimated from X,
# uniform random locations (Model II)
rmpoint(npoints(demopat), 1, types=levels(marks(demopat)), win=Window(demopat),

ptypes=table(marks(demopat)))

rmpoispp Generate Multitype Poisson Point Pattern

Description

Generate a random point pattern, a realisation of the (homogeneous or inhomogeneous) multitype
Poisson process.

Usage

rmpoispp(lambda, lmax=NULL, win, types, ...,
nsim=1, drop=TRUE, warnwin=!missing(win))

Arguments

lambda Intensity of the multitype Poisson process. Either a single positive number, a
vector, a function(x,y,m, ...), a pixel image, a list of functions function(x,y,
...), or a list of pixel images.

lmax An upper bound for the value of lambda. May be omitted

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. Ignored if lambda is a pixel image or list of im-
ages.

types All the possible types for the multitype pattern.

... Arguments passed to lambda if it is a function.
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nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

warnwin Logical value specifying whether to issue a warning when win is ignored.

Details

This function generates a realisation of the marked Poisson point process with intensity lambda.

Note that the intensity function λ(x, y,m) is the average number of points of type m per unit area
near the location (x, y). Thus a marked point process with a constant intensity of 10 and three
possible types will have an average of 30 points per unit area, with 10 points of each type on
average.

The intensity function may be specified in any of the following ways.

single number: If lambda is a single number, then this algorithm generates a realisation of the
uniform marked Poisson process inside the window win with intensity lambda for each type.
The total intensity of points of all types is lambda * length(types). The argument types
must be given and determines the possible types in the multitype pattern.

vector: If lambda is a numeric vector, then this algorithm generates a realisation of the stationary
marked Poisson process inside the window win with intensity lambda[i] for points of type
types[i]. The total intensity of points of all types is sum(lambda). The argument types
defaults to names(lambda), or if that is null, 1:length(lambda).

function: If lambda is a function, the process has intensity lambda(x,y,m,...) at spatial location
(x,y) for points of type m. The function lambda must work correctly with vectors x, y and m,
returning a vector of function values. (Note that m will be a factor with levels equal to types.)
The value lmax, if present, must be an upper bound on the values of lambda(x,y,m,...)
for all locations (x, y) inside the window win and all types m. The argument types must be
given.

list of functions: If lambda is a list of functions, the process has intensity lambda[[i]](x,y,...)
at spatial location (x,y) for points of type types[i]. The function lambda[[i]] must work
correctly with vectors x and y, returning a vector of function values. The value lmax, if
given, must be an upper bound on the values of lambda(x,y,...) for all locations (x, y)
inside the window win. The argument types defaults to names(lambda), or if that is null,
1:length(lambda).

pixel image: If lambda is a pixel image object of class "im" (see im.object), the intensity at a
location (x,y) for points of any type is equal to the pixel value of lambda for the pixel nearest
to (x,y). The argument win is ignored; the window of the pixel image is used instead. The
argument types must be given.

list of pixel images: If lambda is a list of pixel images, then the image lambda[[i]] determines
the intensity of points of type types[i]. The argument win is ignored; the window of the
pixel image is used instead. The argument types defaults to names(lambda), or if that is null,
1:length(lambda).

If lmax is missing, an approximate upper bound will be calculated.

To generate an inhomogeneous Poisson process the algorithm uses “thinning”: it first generates a
uniform Poisson process of intensity lmax for points of each type m, then randomly deletes or retains
each point independently, with retention probability p(x, y,m) = λ(x, y,m)/lmax.
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Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1. Each
point pattern is multitype (it carries a vector of marks which is a factor).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

rpoispp for unmarked Poisson point process; rmpoint for a fixed number of random marked
points; im.object, owin.object, ppp.object.

Examples

# uniform bivariate Poisson process with total intensity 100 in unit square
pp <- rmpoispp(50, types=c("a","b"))

# stationary bivariate Poisson process with intensity A = 30, B = 70
pp <- rmpoispp(c(30,70), types=c("A","B"))
pp <- rmpoispp(c(30,70))

# works in any window
pp <- rmpoispp(c(30,70), win=letterR, types=c("A","B"))

# inhomogeneous lambda(x,y,m)
# note argument 'm' is a factor
lam <- function(x,y,m) { 50 * (x^2 + y^3) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"))
# extra arguments
lam <- function(x,y,m,scal) { scal * (x^2 + y^3) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"), scal=50)

# list of functions lambda[[i]](x,y)
lams <- list(function(x,y){50 * x^2}, function(x,y){20 * abs(y)})
pp <- rmpoispp(lams, win=letterR, types=c("A","B"))
pp <- rmpoispp(lams, win=letterR)
# functions with extra arguments
lams <- list(function(x,y,scal){5 * scal * x^2},

function(x,y, scal){2 * scal * abs(y)})
pp <- rmpoispp(lams, win=letterR, types=c("A","B"), scal=10)
pp <- rmpoispp(lams, win=letterR, scal=10)

# florid example
lams <- list(function(x,y){

100*exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
# log quadratic trend

,
function(x,y){
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100*exp(-0.6*x+0.5*y)
}
# log linear trend

)
X <- rmpoispp(lams, win=unit.square(), types=c("on", "off"))

# pixel image
Z <- as.im(function(x,y){30 * (x^2 + y^3)}, letterR)
pp <- rmpoispp(Z, types=c("A","B"))

# list of pixel images
ZZ <- list(

as.im(function(x,y){20 * (x^2 + y^3)}, letterR),
as.im(function(x,y){40 * (x^3 + y^2)}, letterR))

pp <- rmpoispp(ZZ, types=c("A","B"))
pp <- rmpoispp(ZZ)

# randomising an existing point pattern
rmpoispp(intensity(amacrine), win=Window(amacrine))

rNeymanScott Simulate Neyman-Scott Process

Description

Generate a random point pattern, a realisation of the Neyman-Scott cluster process.

Usage

rNeymanScott(kappa, expand, rcluster, win = unit.square(),
..., nsim=1, drop=TRUE,
nonempty=TRUE, saveparents=TRUE,
kappamax=NULL, mumax=NULL)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

expand Size of the expansion of the simulation window for generating parent points. A
single non-negative number.

rcluster A function which generates random clusters, or other data specifying the random
cluster mechanism. See Details.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

... Arguments passed to rcluster.

nsim Number of simulated realisations to be generated.
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drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which par-
ents are generated conditionally on having at least one offspring point. If FALSE,
parents are generated even if they have no offspring. Both choices are valid;
the default is recommended unless you need to simulate all the parent points for
some other purpose.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

kappamax Optional. Upper bound on the values of kappa when kappa is a function or pixel
image.

mumax Optional. Upper bound on the values of mu when mu=rcluster[[1]] is a func-
tion or pixel image.

Details

This algorithm generates a realisation of the general Neyman-Scott process, with the cluster mech-
anism given by the function rcluster.

First, the algorithm generates a Poisson point process of “parent” points with intensity kappa in
an expanded window as explained below. Here kappa may be a single positive number, a function
kappa(x,y), or a pixel image object of class "im" (see im.object). See rpoispp for details.

Second, each parent point is replaced by a random cluster of points. These clusters are combined
together to yield a single point pattern, and the restriction of this pattern to the window win is then
returned as the result of rNeymanScott.

The expanded window consists of as.rectangle(win) extended by the amount expand in each
direction. The size of the expansion is saved in the attribute "expand" and may be extracted by
attr(X, "expand") where X is the generated point pattern.

The argument rcluster specifies the cluster mechanism. It may be either:

• A function which will be called to generate each random cluster (the offspring points of each
parent point). The function should expect to be called in the form rcluster(x0,y0,...)
for a parent point at a location (x0,y0). The return value of rcluster should specify the
coordinates of the points in the cluster; it may be a list containing elements x,y, or a point
pattern (object of class "ppp"). If it is a marked point pattern then the result of rNeymanScott
will be a marked point pattern.

• A list(mu, f) where mu specifies the mean number of offspring points in each cluster, and
f generates the random displacements (vectors pointing from the parent to the offspring).
In this case, the number of offspring in a cluster is assumed to have a Poisson distribution,
implying that the Neyman-Scott process is also a Cox process. The first element mu should
be either a single nonnegative number (interpreted as the mean of the Poisson distribution of
cluster size) or a pixel image or a function(x,y) giving a spatially varying mean cluster size
(interpreted in the sense of Waagepetersen, 2007). The second element f should be a function
that will be called once in the form f(n) to generate n independent and identically distributed
displacement vectors (i.e. as if there were a cluster of size n with a parent at the origin (0,0)).
The function should return a point pattern (object of class "ppp") or something acceptable to
xy.coords that specifies the coordinates of n points.
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If required, the intermediate stages of the simulation (the parents and the individual clusters) can
also be extracted from the return value of rNeymanScott through the attributes "parents" and
"parentid". The attribute "parents" is the point pattern of parent points. The attribute "parentid"
is an integer vector specifying the parent for each of the points in the simulated pattern.

Neyman-Scott models where kappa is a single number and rcluster = list(mu,f) can be fitted
to data using the function kppm.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point
pattern: see Details.

Inhomogeneous Neyman-Scott Processes

There are several different ways of specifying a spatially inhomogeneous Neyman-Scott process:

• The point process of parent points can be inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process according to which the parent points are generated.

• The number of points in a typical cluster can be spatially varying. If the argument rcluster is
a list of two elements mu, f and the first entry mu is a function(x,y) or a pixel image (object
of class "im"), then mu is interpreted as the reference intensity for offspring points, in the sense
of Waagepetersen (2007). For a given parent point, the offspring constitute a Poisson process
with intensity function equal to mu(x, y) * g(x-x0, y-y0) where g is the probability density
of the offspring displacements generated by the function f.
Equivalently, clusters are first generated with a constant expected number of points per cluster:
the constant is mumax, the maximum of mu. Then the offspring are randomly thinned (see
rthin) with spatially-varying retention probabilities given by mu/mumax.

• The entire mechanism for generating a cluster can be dependent on the location of the parent
point. If the argument rcluster is a function, then the cluster associated with a parent point
at location (x0,y0) will be generated by calling rcluster(x0, y0, ...). The behaviour of
this function could depend on the location (x0,y0) in any fashion.

Note that if kappa is an image, the spatial domain covered by this image must be large enough
to include the expanded window in which the parent points are to be generated. This requirement
means that win must be small enough so that the expansion of as.rectangle(win) is contained
in the spatial domain of kappa. As a result, one may wind up having to simulate the process in a
window smaller than what is really desired.

In the first two cases, the intensity of the Neyman-Scott process is equal to kappa * mu if at least
one of kappa or mu is a single number, and is otherwise equal to an integral involving kappa, mu
and f.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>
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References

Neyman, J. and Scott, E.L. (1958) A statistical approach to problems of cosmology. Journal of the
Royal Statistical Society, Series B 20, 1–43.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

rpoispp, rThomas, rGaussPoisson, rMatClust, rCauchy, rVarGamma

Examples

# each cluster consist of 10 points in a disc of radius 0.2
nclust <- function(x0, y0, radius, n) {

return(runifdisc(n, radius, centre=c(x0, y0)))
}

plot(rNeymanScott(10, 0.2, nclust, radius=0.2, n=5))

# multitype Neyman-Scott process (each cluster is a multitype process)
nclust2 <- function(x0, y0, radius, n, types=c("a", "b")) {

X <- runifdisc(n, radius, centre=c(x0, y0))
M <- sample(types, n, replace=TRUE)
marks(X) <- M
return(X)

}
plot(rNeymanScott(15,0.1,nclust2, radius=0.1, n=5))

rnoise Random Pixel Noise

Description

Generate a pixel image whose pixel values are random numbers following a specified probability
distribution.

Usage

rnoise(rgen = runif, w = square(1), ...)

Arguments

rgen Random generator for the pixel values. A function in the R language.

w Window (region or pixel raster) in which to generate the image. Any data ac-
ceptable to as.mask.

... Arguments, matched by name, to be passed to rgen to specify the parameters of
the probability distribution, or passed to as.mask to control the pixel resolution.
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Details

The argument w could be a window (class "owin"), a pixel image (class "im") or other data. It is
first converted to a binary mask by as.mask using any relevant arguments in ....

Then each pixel inside the window (i.e. with logical value TRUE in the mask) is assigned a random
numerical value by calling the function rgen.

The function rgen would typically be one of the standard random variable generators like runif
(uniformly distributed random values) or rnorm (Gaussian random values). Its first argument n is
the number of values to be generated. Other arguments to rgen must be matched by name.

Value

A pixel image (object of class "im").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

as.mask, as.im, Distributions.

Examples

plot(rnoise(), main="Uniform noise")
plot(rnoise(rnorm, dimyx=32, mean=2, sd=1),

main="White noise")

rPenttinen Perfect Simulation of the Penttinen Process

Description

Generate a random pattern of points, a simulated realisation of the Penttinen process, using a perfect
simulation algorithm.

Usage

rPenttinen(beta, gamma=1, R, W = owin(), expand=TRUE, nsim=1, drop=TRUE)
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Arguments

beta intensity parameter (a positive number).

gamma Interaction strength parameter (a number between 0 and 1).

R disc radius (a non-negative number).

W window (object of class "owin") in which to generate the random pattern.

expand Logical. If FALSE, simulation is performed in the window W, which must be
rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Penttinen point process in the window W using a ‘perfect
simulation’ algorithm.

Penttinen (1984, Example 2.1, page 18), citing Cormack (1979), described the pairwise interaction
point process with interaction factor

h(d) = eθA(d) = γA(d)

between each pair of points separated by a distance $d$. Here A(d) is the area of intersection
between two discs of radius R separated by a distance d, normalised so that A(0) = 1.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, based on original code for the Strauss pro-
cess by Kasper Klitgaard Berthelsen.
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See Also

rmh,

rStrauss, rHardcore, rStraussHard, rDiggleGratton, rDGS.

Penttinen.

Examples

X <- rPenttinen(50, 0.5, 0.02)
Z <- rPenttinen(50, 0.5, 0.01, nsim=2)

rpoint Generate N Random Points

Description

Generate a random point pattern containing n independent, identically distributed random points
with any specified distribution.

Usage

rpoint(n, f, fmax=NULL, win=unit.square(),
..., giveup=1000, warn=TRUE, verbose=FALSE,
nsim=1, drop=TRUE, forcewin=FALSE)
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Arguments

n Number of points to generate.

f The probability density of the points, possibly un-normalised. Either a constant,
a function f(x,y,...), or a pixel image object.

fmax An upper bound on the values of f. If missing, this number will be estimated.

win Window in which to simulate the pattern. (Ignored if f is a pixel image, unless
forcewin=TRUE).

... Arguments passed to the function f.

giveup Number of attempts in the rejection method after which the algorithm should
stop trying to generate new points.

warn Logical value specifying whether to issue a warning if n is very large. See
Details.

verbose Flag indicating whether to report details of performance of the simulation algo-
rithm.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

forcewin Logical. If TRUE, then simulations will be generated inside win in all cases. If
FALSE (the default), the argument win is ignored when f is a pixel image.

Details

This function generates n independent, identically distributed random points with common proba-
bility density proportional to f.

The argument f may be

a numerical constant: uniformly distributed random points will be generated.

a function: random points will be generated in the window win with probability density propor-
tional to f(x,y,...) where x and y are the cartesian coordinates. The function f must accept
two vectors of coordinates x,y and return the corresponding vector of function values. Addi-
tional arguments ... of any kind may be passed to the function.

a pixel image: if f is a pixel image (object of class "im", see im.object) then random points will
be generated with probability density proportional to the pixel values of f. To be precise,
pixels are selected with probabilities proportional to the pixel values, and within each selected
pixel, a point is generated with a uniform distribution inside the pixel.
The window of the simulated point pattern is determined as follows. If forcewin=FALSE (the
default) then the argument win is ignored, and the simulation window is the window of the
pixel image, Window(f). If forcefit=TRUE then the simulation window is win.

The algorithm is as follows:

• If f is a constant, we invoke runifpoint.

• If f is a function, then we use the rejection method. Proposal points are generated from the
uniform distribution. A proposal point (x, y) is accepted with probability f(x,y,...)/fmax
and otherwise rejected. The algorithm continues until n points have been accepted. It gives up
after giveup * n proposals if there are still fewer than n points.
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• If f is a pixel image, then a random sequence of pixels is selected (using sample) with proba-
bilities proportional to the pixel values of f. Then for each pixel in the sequence we generate
a uniformly distributed random point in that pixel.

The algorithm for pixel images is more efficient than that for functions.

If warn=TRUE (the default), a warning will be issued if n is very large. The threshold is spatstat.options("huge.npoints").
This warning has no consequences, but it helps to trap a number of common errors.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

ppp.object, owin.object, im.object, runifpoint

Examples

# 100 uniform random points in the unit square
X <- rpoint(100)

# 100 random points with probability density proportional to x^2 + y^2
X <- rpoint(100, function(x,y) { x^2 + y^2}, 1)

# `fmax' may be omitted
X <- rpoint(100, function(x,y) { x^2 + y^2})

# irregular window
X <- rpoint(100, function(x,y) { x^2 + y^2}, win=letterR)

# make a pixel image
Z <- setcov(letterR)
# 100 points with density proportional to pixel values
X <- rpoint(100, Z)

rpoisline Generate Poisson Random Line Process

Description

Generate a random pattern of line segments obtained from the Poisson line process.

Usage

rpoisline(lambda, win=owin())
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Arguments

lambda Intensity of the Poisson line process. A positive number.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

Details

This algorithm generates a realisation of the uniform Poisson line process, and clips it to the window
win.

The argument lambda must be a positive number. It controls the intensity of the process. The
expected number of lines intersecting a convex region of the plane is equal to lambda times the
perimeter length of the region. The expected total length of the lines crossing a region of the plane
is equal to lambda * pi times the area of the region.

Value

A line segment pattern (an object of class "psp").

The result also has an attribute called "lines" (an object of class "infline" specifying the original
infinite random lines) and an attribute "linemap" (an integer vector mapping the line segments to
their parent lines).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

psp

Examples

# uniform Poisson line process with intensity 10,
# clipped to the unit square
rpoisline(10)

rpoislinetess Poisson Line Tessellation

Description

Generate a tessellation delineated by the lines of the Poisson line process

Usage

rpoislinetess(lambda, win = owin())
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Arguments

lambda Intensity of the Poisson line process. A positive number.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. Currently, the window must be a rectangle.

Details

This algorithm generates a realisation of the uniform Poisson line process, and divides the window
win into tiles separated by these lines.

The argument lambda must be a positive number. It controls the intensity of the process. The
expected number of lines intersecting a convex region of the plane is equal to lambda times the
perimeter length of the region. The expected total length of the lines crossing a region of the plane
is equal to lambda * pi times the area of the region.

Value

A tessellation (object of class "tess").

Also has an attribute "lines" containing the realisation of the Poisson line process, as an object of
class "infline".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

rpoisline to generate the lines only.

Examples

X <- rpoislinetess(3)
plot(as.im(X), main="rpoislinetess(3)")
plot(X, add=TRUE)

rpoispp Generate Poisson Point Pattern

Description

Generate a random point pattern using the (homogeneous or inhomogeneous) Poisson process. In-
cludes CSR (complete spatial randomness).

Usage

rpoispp(lambda, lmax=NULL, win=owin(), ...,
nsim=1, drop=TRUE, ex=NULL,
forcewin=FALSE, warnwin=TRUE)
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Arguments

lambda Intensity of the Poisson process. Either a single positive number, a function(x,y,
...), or a pixel image.

lmax Optional. An upper bound for the value of lambda(x,y), if lambda is a function.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. (Ignored if lambda is a pixel image unless forcewin=TRUE.)

... Arguments passed to lambda if it is a function.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

ex Optional. A point pattern to use as the example. If ex is given and lambda,lmax,win
are missing, then lambda and win will be calculated from the point pattern ex.

forcewin Logical value specifying whether to use the argument win as the simulation
window when lambda is an image.

warnwin Logical value specifying whether to issue a warning when win is ignored (which
occurs when lambda is an image, win is present and forcewin=FALSE).

Details

If lambda is a single number, then this algorithm generates a realisation of the uniform Poisson
process (also known as Complete Spatial Randomness, CSR) inside the window win with intensity
lambda (points per unit area).

If lambda is a function, then this algorithm generates a realisation of the inhomogeneous Poisson
process with intensity function lambda(x,y,...) at spatial location (x,y) inside the window win.
The function lambda must work correctly with vectors x and y.

If lmax is given, it must be an upper bound on the values of lambda(x,y,...) for all locations
(x, y) inside the window win. That is, we must have lambda(x,y,...) <= lmax for all locations
(x,y). If this is not true then the results of the algorithm will be incorrect.

If lmax is missing or NULL, an approximate upper bound is computed by finding the maximum
value of lambda(x,y,...) on a grid of locations (x,y) inside the window win, and adding a safety
margin equal to 5 percent of the range of lambda values. This can be computationally intensive, so
it is advisable to specify lmax if possible.

If lambda is a pixel image object of class "im" (see im.object), this algorithm generates a reali-
sation of the inhomogeneous Poisson process with intensity equal to the pixel values of the image.
(The value of the intensity function at an arbitrary location is the pixel value of the nearest pixel.)
If forcewin=FALSE (the default), the simulation window will be the window of the pixel image
(converted to a rectangle if possible using rescue.rectangle). If forcewin=TRUE, the simulation
window will be the argument win.

For marked point patterns, use rmpoispp.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.
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Warning

Note that lambda is the intensity, that is, the expected number of points per unit area. The total
number of points in the simulated pattern will be random with expected value mu = lambda * a
where a is the area of the window win.

Reproducibility

The simulation algorithm, for the case where lambda is a pixel image, was changed in spatstat
version 1.42-3. Set spatstat.options(fastpois=FALSE) to use the previous, slower algorithm,
if it is desired to reproduce results obtained with earlier versions.

The previous slower algorithm uses “thinning”: it first generates a uniform Poisson process of
intensity lmax, then randomly deletes or retains each point, independently of other points, with
retention probability p(x, y) = λ(x, y)/lmax. The new faster algorithm randomly selects pixels
with probability proportional to intensity, and generates point locations inside the selected pixels.

Thinning is still used when lambda is a function(x,y,...).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rmpoispp for Poisson marked point patterns, runifpoint for a fixed number of independent uni-
form random points; rpoint, rmpoint for a fixed number of independent random points with any
distribution; rMaternI, rMaternII, rSSI, rStrauss, rstrat for random point processes with spa-
tial inhibition or regularity; rThomas, rGaussPoisson, rMatClust, rcell for random point pro-
cesses exhibiting clustering; rmh.default for Gibbs processes. See also ppp.object, owin.object.

Examples

# uniform Poisson process with intensity 100 in the unit square
pp <- rpoispp(100)

# uniform Poisson process with intensity 1 in a 10 x 10 square
pp <- rpoispp(1, win=owin(c(0,10),c(0,10)))
# plots should look similar !

# inhomogeneous Poisson process in unit square
# with intensity lambda(x,y) = 100 * exp(-3*x)
# Intensity is bounded by 100
pp <- rpoispp(function(x,y) {100 * exp(-3*x)}, 100)

# How to tune the coefficient of x
lamb <- function(x,y,a) { 100 * exp( - a * x)}
pp <- rpoispp(lamb, 100, a=3)

# pixel image
Z <- as.im(function(x,y){100 * sqrt(x+y)}, unit.square())
pp <- rpoispp(Z)
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# randomising an existing point pattern
rpoispp(intensity(cells), win=Window(cells))
rpoispp(ex=cells)

rpoispp3 Generate Poisson Point Pattern in Three Dimensions

Description

Generate a random three-dimensional point pattern using the homogeneous Poisson process.

Usage

rpoispp3(lambda, domain = box3(), nsim=1, drop=TRUE)

Arguments

lambda Intensity of the Poisson process. A single positive number.

domain Three-dimensional box in which the process should be generated. An object of
class "box3".

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the homogeneous Poisson process in three dimensions, with
intensity lambda (points per unit volume).

The realisation is generated inside the three-dimensional region domain which currently must be a
rectangular box (object of class "box3").

Value

If nsim = 1 and drop=TRUE, a point pattern in three dimensions (an object of class "pp3"). If nsim
> 1, a list of such point patterns.

Note

The intensity lambda is the expected number of points per unit volume.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

runifpoint3, pp3, box3
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Examples

X <- rpoispp3(50)

rpoisppOnLines Generate Poisson Point Pattern on Line Segments

Description

Given a line segment pattern, generate a Poisson random point pattern on the line segments.

Usage

rpoisppOnLines(lambda, L, lmax = NULL, ..., nsim=1, drop=TRUE)

Arguments

lambda Intensity of the Poisson process. A single number, a function(x,y), a pixel
image (object of class "im"), or a vector of numbers, a list of functions, or a list
of images.

L Line segment pattern (object of class "psp") on which the points should be
generated.

lmax Optional upper bound (for increased computational efficiency). A known upper
bound for the values of lambda, if lambda is a function or a pixel image. That
is, lmax should be a number which is known to be greater than or equal to all
values of lambda.

... Additional arguments passed to lambda if it is a function.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This command generates a Poisson point process on the one-dimensional system of line segments
in L. The result is a point pattern consisting of points lying on the line segments in L. The number
of random points falling on any given line segment follows a Poisson distribution. The patterns of
points on different segments are independent.

The intensity lambda is the expected number of points per unit length of line segment. It may be
constant, or it may depend on spatial location.

In order to generate an unmarked Poisson process, the argument lambda may be a single number,
or a function(x,y), or a pixel image (object of class "im").

In order to generate a marked Poisson process, lambda may be a numeric vector, a list of functions,
or a list of images, each entry giving the intensity for a different mark value.

If lambda is not numeric, then the (Lewis-Shedler) rejection method is used. The rejection method
requires knowledge of lmax, the maximum possible value of lambda. This should be either a single
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number, or a numeric vector of the same length as lambda. If lmax is not given, it will be computed
approximately, by sampling many values of lambda.

If lmax is given, then it must be larger than any possible value of lambda, otherwise the results of
the algorithm will be incorrect.

Value

If nsim = 1, a point pattern (object of class "ppp") in the same window as L. If nsim > 1, a list of
such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

psp, ppp, runifpointOnLines, rpoispp

Examples

live <- interactive()
L <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
if(live) plot(L, main="")

# uniform intensity
Y <- rpoisppOnLines(4, L)
if(live) plot(Y, add=TRUE, pch="+")

# uniform MARKED process with types 'a' and 'b'
Y <- rpoisppOnLines(c(a=4, b=5), L)
if(live) {

plot(L, main="")
plot(Y, add=TRUE, pch="+")

}

# intensity is a function
Y <- rpoisppOnLines(function(x,y){ 10 * x^2}, L, 10)
if(live) {

plot(L, main="")
plot(Y, add=TRUE, pch="+")

}

# intensity is an image
Z <- as.im(function(x,y){10 * sqrt(x+y)}, unit.square())
Y <- rpoisppOnLines(Z, L, 15)
if(live) {
plot(L, main="")
plot(Y, add=TRUE, pch="+")
}
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rpoisppx Generate Poisson Point Pattern in Any Dimensions

Description

Generate a random multi-dimensional point pattern using the homogeneous Poisson process.

Usage

rpoisppx(lambda, domain, nsim=1, drop=TRUE)

Arguments

lambda Intensity of the Poisson process. A single positive number.
domain Multi-dimensional box in which the process should be generated. An object of

class "boxx".
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a single point pattern.

Details

This function generates a realisation of the homogeneous Poisson process in multi dimensions, with
intensity lambda (points per unit volume).

The realisation is generated inside the multi-dimensional region domain which currently must be a
rectangular box (object of class "boxx").

Value

If nsim = 1 and drop=TRUE, a point pattern (an object of class "ppx"). If nsim > 1 or drop=FALSE,
a list of such point patterns.

Note

The intensity lambda is the expected number of points per unit volume.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

runifpointx, ppx, boxx

Examples

w <- boxx(x=c(0,1), y=c(0,1), z=c(0,1), t=c(0,3))
X <- rpoisppx(10, w)
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rPoissonCluster Simulate Poisson Cluster Process

Description

Generate a random point pattern, a realisation of the general Poisson cluster process.

Usage

rPoissonCluster(kappa, expand, rcluster, win = owin(c(0,1),c(0,1)),
..., nsim=1, drop=TRUE, saveparents=TRUE, kappamax=NULL)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

expand Size of the expansion of the simulation window for generating parent points. A
single non-negative number.

rcluster A function which generates random clusters.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

... Arguments passed to rcluster

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

kappamax Optional. Upper bound on the values of kappa when kappa is a function or pixel
image.

Details

This algorithm generates a realisation of the general Poisson cluster process, with the cluster mech-
anism given by the function rcluster.

First, the algorithm generates a Poisson point process of “parent” points with intensity kappa in an
expanded window as explained below.. Here kappa may be a single positive number, a function
kappa(x, y), or a pixel image object of class "im" (see im.object). See rpoispp for details.

Second, each parent point is replaced by a random cluster of points, created by calling the function
rcluster. These clusters are combined together to yield a single point pattern, and the restriction
of this pattern to the window win is then returned as the result of rPoissonCluster.

The expanded window consists of as.rectangle(win) extended by the amount expand in each
direction. The size of the expansion is saved in the attribute "expand" and may be extracted by
attr(X, "expand") where X is the generated point pattern.
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The function rcluster should expect to be called as rcluster(xp[i],yp[i],...) for each parent
point at a location (xp[i],yp[i]). The return value of rcluster should be a list with elements
x,y which are vectors of equal length giving the absolute x and y coordinates of the points in the
cluster.

If the return value of rcluster is a point pattern (object of class "ppp") then it may have marks.
The result of rPoissonCluster will then be a marked point pattern.

If required, the intermediate stages of the simulation (the parents and the individual clusters) can
also be extracted from the return value of rPoissonCluster through the attributes "parents"
and "parentid". The attribute "parents" is the point pattern of parent points. The attribute
"parentid" is an integer vector specifying the parent for each of the points in the simulated pattern.
(If these data are not required, it is more efficient to set saveparents=FALSE.)

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of the point
pattern: see Details.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

rpoispp, rMatClust, rThomas, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson.

Examples

# each cluster consist of 10 points in a disc of radius 0.2
nclust <- function(x0, y0, radius, n) {

return(runifdisc(n, radius, centre=c(x0, y0)))
}

plot(rPoissonCluster(10, 0.2, nclust, radius=0.2, n=5))

# multitype Neyman-Scott process (each cluster is a multitype process)
nclust2 <- function(x0, y0, radius, n, types=c("a", "b")) {

X <- runifdisc(n, radius, centre=c(x0, y0))
M <- sample(types, n, replace=TRUE)
marks(X) <- M
return(X)

}
plot(rPoissonCluster(15,0.1,nclust2, radius=0.1, n=5))
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rpoistrunc Random Values from the Truncated Poisson Distribution

Description

Generate realisations of a Poisson random variable which are truncated, that is, conditioned to be
nonzero, or conditioned to be at least a given number.

Usage

rpoisnonzero(n, lambda, method=c("harding", "transform"), implem=c("R", "C"))
rpoistrunc(n, lambda, minimum = 1, method=c("harding", "transform"), implem=c("R", "C"))

Arguments

n Number of random values to be generated.

lambda Mean value of the un-truncated Poisson distribution. A nonnegative number, or
vector of nonnegative numbers.

minimum Minimum permitted value for the random variables. A nonnegative integer, or
vector of nonnegative integers.

method Character string (partially matched) specifying the simulation algorithm to be
used. See Details.

implem Character string specifying whether to use the implementation in interpreted R
code (implem="R", the default) or C code (implem="C").

Details

rpoisnonzero generates realisations of the Poisson distribution with mean lambda conditioned on
the event that the values are not equal to zero.

rpoistrunc generates realisations of the Poisson distribution with mean lambda conditioned on
the event that the values are greater than or equal to minimum. The default minimum=1 is equivalent
to generating zero-truncated Poisson random variables using rpoisnonzero. The value minimum=0
is equivalent to generating un-truncated Poisson random variables using rpois.

The arguments lambda and minimum can be vectors of length n, specifying different means for the
un-truncated Poisson distribution, and different minimum values, for each of the n random output
values.

If method="transform" the simulated values are generated by transforming a uniform random
variable using the quantile function of the Poisson distribution. If method="harding" (the default)
the simulated values are generated using an algorithm proposed by E.F. Harding which exploits
properties of the Poisson point process. The Harding algorithm seems to be faster.

Value

An integer vector of length n.
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Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, after ideas of Ted Harding and Peter Dal-
gaard.

See Also

rpois for Poisson random variables.

recipEnzpois for the reciprocal moment of rpoisnonzero.

Examples

rpoisnonzero(10, 0.8)

rpoistrunc(10, 1, 2)

rPSNCP Simulate Product Shot-noise Cox Process

Description

Generate a random multitype point pattern, a realisation of the product shot-noise Cox process.

Usage

rPSNCP(lambda=rep(100, 4), kappa=rep(25, 4), omega=rep(0.03, 4),
alpha=matrix(runif(16, -1, 3), nrow=4, ncol=4),
kernels=NULL, nu.ker=NULL, win=owin(), nsim=1, drop=TRUE,
...,
cnames=NULL, epsth=0.001)

Arguments

lambda List of intensities of component processes. Either a numeric vector determining
the constant (homogeneous) intensities or a list of pixel images (objects of class
"im") determining the (inhomogeneous) intensity functions of component pro-
cesses. The length of lambda determines the number of component processes.

kappa Numeric vector of intensities of the Poisson process of cluster centres for com-
ponent processes. Must have the same size as lambda.

omega Numeric vector of bandwidths of cluster dispersal kernels for component pro-
cesses. Must have the same size as lambda and kappa.

alpha Matrix of interaction parameters. Square numeric matrix with the same number
of rows and columns as the length of lambda, kappa and omega. All entries of
alpha must be greater than -1.
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kernels Vector of character string determining the cluster dispersal kernels of component
processes. Implemented kernels are Gaussian kernel ("Thomas") with band-
width omega, Variance-Gamma (Bessel) kernel ("VarGamma") with bandwidth
omega and shape parameter nu.ker and Cauchy kernel ("Cauchy") with band-
width omega. Must have the same length as lambda, kappa and omega.

nu.ker Numeric vector of bandwidths of shape parameters for Variance-Gamma ker-
nels.

win Window in which to simulate the pattern. An object of class "owin".
nsim Number of simulated realisations to be generated.
cnames Optional vector of character strings giving the names of the component pro-

cesses.
... Optional arguments passed to as.mask to determine the pixel array geometry.

See as.mask.
epsth Numerical threshold to determine the maximum interaction range for cluster

kernels.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.

Details

This function generates a realisation of a product shot-noise Cox process (PSNCP). This is a mul-
titype (multivariate) Cox point process in which each element of the multivariate random intensity
Λ(u) of the process is obtained by

Λi(u) = λi(u)Si(u)
∏
j ̸=i

Eji(u)

where λi(u) is the intensity of component i of the process,

Si(u) =
1

κi

∑
v∈Φi

ki(u− v)

is the shot-noise random field for component i and

Eji(u) = exp(−κjαji/kj(0))
∏
v∈Φj

1 + αji
kj(u− v)

kj(0)

is a product field controlling impulses from the parent Poisson process Φj with constant intensity κj

of component process j on Λi(u). Here ki(u) is an isotropic kernel (probability density) function
on R2 with bandwidth ωi and shape parameter νi, and αji > −1 is the interaction parameter.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1. Each
point pattern is multitype (it carries a vector of marks which is a factor).

Author(s)

Abdollah Jalilian. Modified by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner
<rolfturner@posteo.net> and Ege Rubak <rubak@math.aau.dk>.
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References

Jalilian, A., Guan, Y., Mateu, J. and Waagepetersen, R. (2015) Multivariate product-shot-noise Cox
point process models. Biometrics 71(4), 1022–1033.

See Also

rmpoispp, rThomas, rVarGamma, rCauchy, rNeymanScott

Examples

online <- interactive()
# Example 1: homogeneous components
lambda <- c(250, 300, 180, 400)
kappa <- c(30, 25, 20, 25)
omega <- c(0.02, 0.025, 0.03, 0.02)
alpha <- matrix(runif(16, -1, 1), nrow=4, ncol=4)
if(!online) {

lambda <- lambda[1:2]/10
kappa <- kappa[1:2]
omega <- omega[1:2]
alpha <- alpha[1:2, 1:2]

}
X <- rPSNCP(lambda, kappa, omega, alpha)
if(online) {
plot(X)
plot(split(X))

}

#Example 2: inhomogeneous components
z1 <- scaletointerval.im(bei.extra$elev, from=0, to=1)
z2 <- scaletointerval.im(bei.extra$grad, from=0, to=1)
if(!online) {

## reduce resolution to reduce check time
z1 <- as.im(z1, dimyx=c(40,80))
z2 <- as.im(z2, dimyx=c(40,80))

}
lambda <- list(

exp(-8 + 1.5 * z1 + 0.5 * z2),
exp(-7.25 + 1 * z1 - 1.5 * z2),
exp(-6 - 1.5 * z1 + 0.5 * z2),
exp(-7.5 + 2 * z1 - 3 * z2))

kappa <- c(35, 30, 20, 25) / (1000 * 500)
omega <- c(15, 35, 40, 25)
alpha <- matrix(runif(16, -1, 1), nrow=4, ncol=4)
if(!online) {

lambda <- lapply(lambda[1:2], "/", e2=10)
kappa <- kappa[1:2]
omega <- omega[1:2]
alpha <- alpha[1:2, 1:2]

} else {
sapply(lambda, integral)

}
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X <- rPSNCP(lambda, kappa, omega, alpha, win = Window(bei), dimyx=dim(z1))
if(online) {

plot(X)
plot(split(X), cex=0.5)

}

rshift Random Shift

Description

Randomly shifts the points of a point pattern or line segment pattern. Generic.

Usage

rshift(X, ...)

Arguments

X Pattern to be subjected to a random shift. A point pattern (class "ppp"), a line
segment pattern (class "psp") or an object of class "splitppp".

... Arguments controlling the generation of the random shift vector, or specifying
which parts of the pattern will be shifted.

Details

This operation applies a random shift (vector displacement) to the points in a point pattern, or to the
segments in a line segment pattern.

The argument X may be

• a point pattern (an object of class "ppp")
• a line segment pattern (an object of class "psp")
• an object of class "splitppp" (basically a list of point patterns, obtained from split.ppp).

The function rshift is generic, with methods for the three classes "ppp", "psp" and "splitppp".

See the help pages for these methods, rshift.ppp, rshift.psp and rshift.splitppp, for further
information.

Value

An object of the same type as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

rshift.ppp, rshift.psp, rshift.splitppp
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rshift.ppp Randomly Shift a Point Pattern

Description

Randomly shifts the points of a point pattern.

Usage

## S3 method for class 'ppp'
rshift(X, ..., which=NULL, group, nsim=1, drop=TRUE)

Arguments

X Point pattern to be subjected to a random shift. An object of class "ppp"

... Arguments that determine the random shift. See Details.

group Optional. Factor specifying a grouping of the points of X, or NULL indicating
that all points belong to the same group. Each group will be shifted together,
and separately from other groups. By default, points in a marked point pattern
are grouped according to their mark values, while points in an unmarked point
pattern are treated as a single group.

which Optional. Identifies which groups of the pattern will be shifted, while other
groups are not shifted. A vector of levels of group.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This operation randomly shifts the locations of the points in a point pattern.

The function rshift is generic. This function rshift.ppp is the method for point patterns.

The most common use of this function is to shift the points in a multitype point pattern. By de-
fault, points of the same type are shifted in parallel (i.e. points of a common type are shifted by
a common displacement vector), and independently of other types. This is useful for testing the
hypothesis of independence of types (the null hypothesis that the sub-patterns of points of each type
are independent point processes).

In general the points of X are divided into groups, then the points within a group are shifted by a
common random displacement vector. Different groups of points are shifted independently. The
grouping is determined as follows:

• If the argument group is present, then this determines the grouping.

• Otherwise, if X is a multitype point pattern, the marks determine the grouping.

• Otherwise, all points belong to a single group.
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The argument group should be a factor, of length equal to the number of points in X. Alternatively
group may be NULL, which specifies that all points of X belong to a single group.

By default, every group of points will be shifted. The argument which indicates that only some of
the groups should be shifted, while other groups should be left unchanged. which must be a vector
of levels of group (for example, a vector of types in a multitype pattern) indicating which groups
are to be shifted.

The displacement vector, i.e. the vector by which the data points are shifted, is generated at random.
Parameters that control the randomisation and the handling of edge effects are passed through the
... argument. They are

radius,width,height Parameters of the random shift vector.

edge String indicating how to deal with edges of the pattern. Options are "torus", "erode" and
"none".

clip Optional. Window to which the final point pattern should be clipped.

If the window is a rectangle, the default behaviour is to generate a displacement vector at random
with equal probability for all possible displacements. This means that the x and y coordinates of
the displacement vector are independent random variables, uniformly distributed over the range of
possible coordinates.

Alternatively, the displacement vector can be generated by another random mechanism, controlled
by the arguments radius, width and height.

rectangular: if width and height are given, then the displacement vector is uniformly distributed
in a rectangle of these dimensions, centred at the origin. The maximum possible displacement
in the x direction is width/2. The maximum possible displacement in the y direction is
height/2. The x and y displacements are independent. (If width and height are actually
equal to the dimensions of the observation window, then this is equivalent to the default.)

radial: if radius is given, then the displacement vector is generated by choosing a random point
inside a disc of the given radius, centred at the origin, with uniform probability density over
the disc. Thus the argument radius determines the maximum possible displacement distance.
The argument radius is incompatible with the arguments width and height.

The argument edge controls what happens when a shifted point lies outside the window of X. Op-
tions are:

"none": Points shifted outside the window of X simply disappear.

"torus": Toroidal or periodic boundary. Treat opposite edges of the window as identical, so that
a point which disappears off the right-hand edge will re-appear at the left-hand edge. This is
called a “toroidal shift” because it makes the rectangle topologically equivalent to the surface
of a torus (doughnut).
The window must be a rectangle. Toroidal shifts are undefined if the window is non-rectangular.

"erode": Clip the point pattern to a smaller window.
If the random displacements are generated by a radial mechanism (see above), then the win-
dow of X is eroded by a distance equal to the value of the argument radius, using erosion.
If the random displacements are generated by a rectangular mechanism, then the window of X
is (if it is not rectangular) eroded by a distance max(height,width) using erosion; or (if it
is rectangular) trimmed by a margin of width width at the left and right sides and trimmed by
a margin of height height at the top and bottom.
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The rationale for this is that the clipping window is the largest window for which edge effects
can be ignored.

The optional argument clip specifies a smaller window to which the pattern should be restricted.

If nsim > 1, then the simulation procedure is performed nsim times; the result is a list of nsim point
patterns.

Value

A point pattern (object of class "ppp") or a list of point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

rshift, rshift.psp

Examples

# random toroidal shift
# shift "on" and "off" points separately
X <- rshift(amacrine)

# shift "on" points and leave "off" points fixed
X <- rshift(amacrine, which="on")

# shift all points simultaneously
X <- rshift(amacrine, group=NULL)

# maximum displacement distance 0.1 units
X <- rshift(amacrine, radius=0.1, nsim=2)

# shift with erosion
X <- rshift(amacrine, radius=0.1, edge="erode")

rshift.psp Randomly Shift a Line Segment Pattern

Description

Randomly shifts the segments in a line segment pattern.

Usage

## S3 method for class 'psp'
rshift(X, ..., group=NULL, which=NULL)
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Arguments

X Line segment pattern to be subjected to a random shift. An object of class "psp".

... Arguments controlling the randomisation and the handling of edge effects. See
rshift.ppp.

group Optional. Factor specifying a grouping of the line segments of X, or NULL in-
dicating that all line segments belong to the same group. Each group will be
shifted together, and separately from other groups.

which Optional. Identifies which groups of the pattern will be shifted, while other
groups are not shifted. A vector of levels of group.

Details

This operation randomly shifts the locations of the line segments in a line segment pattern.

The function rshift is generic. This function rshift.psp is the method for line segment patterns.

The line segments of X are first divided into groups, then the line segments within a group are
shifted by a common random displacement vector. Different groups of line segments are shifted
independently. If the argument group is present, then this determines the grouping. Otherwise, all
line segments belong to a single group.

The argument group should be a factor, of length equal to the number of line segments in X. Alter-
natively group may be NULL, which specifies that all line segments of X belong to a single group.

By default, every group of line segments will be shifted. The argument which indicates that only
some of the groups should be shifted, while other groups should be left unchanged. which must be
a vector of levels of group indicating which groups are to be shifted.

The displacement vector, i.e. the vector by which the data line segments are shifted, is generated
at random. The default behaviour is to generate a displacement vector at random with equal prob-
ability for all possible displacements. This means that the x and y coordinates of the displacement
vector are independent random variables, uniformly distributed over the range of possible coordi-
nates.

Alternatively, the displacement vector can be generated by another random mechanism, controlled
by the arguments radius, width and height.

rectangular: if width and height are given, then the displacement vector is uniformly distributed
in a rectangle of these dimensions, centred at the origin. The maximum possible displacement
in the x direction is width/2. The maximum possible displacement in the y direction is
height/2. The x and y displacements are independent. (If width and height are actually
equal to the dimensions of the observation window, then this is equivalent to the default.)

radial: if radius is given, then the displacement vector is generated by choosing a random line
segment inside a disc of the given radius, centred at the origin, with uniform probability den-
sity over the disc. Thus the argument radius determines the maximum possible displacement
distance. The argument radius is incompatible with the arguments width and height.

The argument edge controls what happens when a shifted line segment lies partially or completely
outside the window of X. Currently the only option is "erode" which specifies that the segments
will be clipped to a smaller window.

The optional argument clip specifies a smaller window to which the pattern should be restricted.
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Value

A line segment pattern (object of class "psp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

rshift, rshift.ppp

Examples

X <- psp(runif(20), runif(20), runif(20), runif(20), window=owin())
Y <- rshift(X, radius=0.1)

rshift.splitppp Randomly Shift a List of Point Patterns

Description

Randomly shifts each point pattern in a list of point patterns.

Usage

## S3 method for class 'splitppp'
rshift(X, ..., which=seq_along(X), nsim=1, drop=TRUE)

Arguments

X An object of class "splitppp". Basically a list of point patterns.

... Parameters controlling the generation of the random shift vector and the han-
dling of edge effects. See rshift.ppp.

which Optional. Identifies which patterns will be shifted, while other patterns are not
shifted. Any valid subset index for X.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a split point
pattern object, rather than a list containing the split point pattern.
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Details

This operation applies a random shift to each of the point patterns in the list X.

The function rshift is generic. This function rshift.splitppp is the method for objects of class
"splitppp", which are essentially lists of point patterns, created by the function split.ppp.

By default, every pattern in the list X will be shifted. The argument which indicates that only some
of the patterns should be shifted, while other groups should be left unchanged. which can be any
valid subset index for X.

Each point pattern in the list X (or each pattern in X[which]) is shifted by a random displacement
vector. The shifting is performed by rshift.ppp.

See the help page for rshift.ppp for details of the other arguments.

If nsim > 1, then the simulation procedure is performed nsim times; the result is a list of split point
patterns.

Value

Another object of class "splitppp", or a list of such objects.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

rshift, rshift.ppp

Examples

Y <- split(amacrine)

# random toroidal shift
# shift "on" and "off" points separately
X <- rshift(Y)

# shift "on" points and leave "off" points fixed
X <- rshift(Y, which="on")

# maximum displacement distance 0.1 units
X <- rshift(Y, radius=0.1)

# shift with erosion
X <- rshift(Y, radius=0.1, edge="erode")
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rSSI Simulate Simple Sequential Inhibition

Description

Generate a random point pattern, a realisation of the Simple Sequential Inhibition (SSI) process.

Usage

rSSI(r, n=Inf, win = square(1), giveup = 1000, x.init=NULL, ...,
f=NULL, fmax=NULL, nsim=1, drop=TRUE, verbose=TRUE)

Arguments

r Inhibition distance.

n Maximum number of points allowed. If n is finite, stop when the total number
of points in the point pattern reaches n. If n is infinite (the default), stop only
when it is apparently impossible to add any more points. See Details.

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin. The default window is the unit square, unless
x.init is specified, when the default window is the window of x.init.

giveup Number of rejected proposals after which the algorithm should terminate.

x.init Optional. Initial configuration of points. A point pattern (object of class "ppp").
The pattern returned by rSSI consists of this pattern together with the points
added via simple sequential inhibition. See Details.

... Ignored.

f, fmax Optional arguments passed to rpoint to specify a non-uniform probability den-
sity for the random points.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

verbose Logical value specifying whether to print progress reports when nsim > 1.

Details

This algorithm generates one or more realisations of the Simple Sequential Inhibition point process
inside the window win.

Starting with an empty window (or with the point pattern x.init if specified), the algorithm adds
points one-by-one. Each new point is generated uniformly in the window and independently of
preceding points. If the new point lies closer than r units from an existing point, then it is rejected
and another random point is generated. The algorithm terminates when either

(a) the desired number n of points is reached, or
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(b) the current point configuration has not changed for giveup iterations, suggesting that it is no
longer possible to add new points.

If n is infinite (the default) then the algorithm terminates only when (b) occurs. The result is some-
times called a Random Sequential Packing.

Note that argument n specifies the maximum permitted total number of points in the pattern re-
turned by rSSI(). If x.init is not NULL then the number of points that are added is at most n -
npoints(x.init) if n is finite.

Thus if x.init is not NULL then argument n must be at least as large as npoints(x.init), otherwise
an error is given. If n==npoints(x.init) then a warning is given and the call to rSSI() has no
real effect; x.init is returned.

There is no requirement that the points of x.init be at a distance at least r from each other. All of
the added points will be at a distance at least r from each other and from any point of x.init.

The points will be generated inside the window win and the result will be a point pattern in the same
window.

The default window is the unit square, win = square(1), unless x.init is specified, when the
default is win=Window(x.init), the window of x.init.

If both win and x.init are specified, and if the two windows are different, then a warning will be
issued. Any points of x.init lying outside win will be removed, with a warning.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rpoispp, rMaternI, rMaternII.

Examples

Vinf <- rSSI(0.07)

V100 <- rSSI(0.07, 100)

X <- runifpoint(100)
Y <- rSSI(0.03,142,x.init=X) # Y consists of X together with

# 42 added points.
plot(Y, main="rSSI")
plot(X,add=TRUE,chars=20,cols="red")

## inhomogeneous
Z <- rSSI(0.07, 50, f=function(x,y){x})
plot(Z)



rstrat 135

rstrat Simulate Stratified Random Point Pattern

Description

Generates a “stratified random” pattern of points in a window, by dividing the window into rectan-
gular tiles and placing k random points independently in each tile.

Usage

rstrat(win=square(1), nx, ny=nx, k = 1, nsim=1, drop=TRUE)

Arguments

win A window. An object of class owin, or data in any format acceptable to as.owin().

nx Number of tiles in each column.

ny Number of tiles in each row.

k Number of random points to generate in each tile.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a random pattern of points in a “stratified random” sampling design. It can
be useful for generating random spatial sampling points.

The bounding rectangle of win is divided into a regular nx × ny grid of rectangular tiles. In each
tile, k random points are generated independently with a uniform distribution in that tile.

Some of these grid points may lie outside the window win: if they do, they are deleted.

The result is a point pattern inside the window win.

This function is useful in creating dummy points for quadrature schemes (see quadscheme) as well
as in simulating random point patterns.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

rsyst, runifpoint, quadscheme
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Examples

X <- rstrat(nx=10)
plot(X)

# polygonal boundary
X <- rstrat(letterR, 5, 10, k=3)
plot(X)

rStrauss Perfect Simulation of the Strauss Process

Description

Generate a random pattern of points, a simulated realisation of the Strauss process, using a perfect
simulation algorithm.

Usage

rStrauss(beta, gamma = 1, R = 0, W = owin(), expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).

gamma interaction parameter (a number between 0 and 1, inclusive).

R interaction radius (a non-negative number).

W window (object of class "owin") in which to generate the random pattern.

expand Logical. If FALSE, simulation is performed in the window W, which must be
rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Strauss point process in the window W using a ‘perfect
simulation’ algorithm.

The Strauss process (Strauss, 1975; Kelly and Ripley, 1976) is a model for spatial inhibition, ranging
from a strong ‘hard core’ inhibition to a completely random pattern according to the value of gamma.

The Strauss process with interaction radius R and parameters β and γ is the pairwise interaction
point process with probability density

f(x1, . . . , xn) = αβn(x)γs(x)
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where x1, . . . , xn represent the points of the pattern, n(x) is the number of points in the pattern,
s(x) is the number of distinct unordered pairs of points that are closer than R units apart, and α is the
normalising constant. Intuitively, each point of the pattern contributes a factor β to the probability
density, and each pair of points closer than r units apart contributes a factor γ to the density.

The interaction parameter γ must be less than or equal to 1 in order that the process be well-defined
(Kelly and Ripley, 1976). This model describes an “ordered” or “inhibitive” pattern. If γ = 1 it
reduces to a Poisson process (complete spatial randomness) with intensity β. If γ = 0 it is called a
“hard core process” with hard core radius R/2, since no pair of points is permitted to lie closer than
R units apart.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.

Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Kasper Klitgaard Berthelsen, adapted for spatstat by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Kelly, F.P. and Ripley, B.D. (1976) On Strauss’s model for clustering. Biometrika 63, 357–360.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

Strauss, D.J. (1975) A model for clustering. Biometrika 62, 467–475.

See Also

rmh, Strauss, rHardcore, rStraussHard, rDiggleGratton, rDGS, rPenttinen.

Examples

X <- rStrauss(0.05,0.2,1.5,square(50))
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rStraussHard Perfect Simulation of the Strauss-Hardcore Process

Description

Generate a random pattern of points, a simulated realisation of the Strauss-Hardcore process, using
a perfect simulation algorithm.

Usage

rStraussHard(beta, gamma = 1, R = 0, H = 0, W = owin(),
expand=TRUE, nsim=1, drop=TRUE)

Arguments

beta intensity parameter (a positive number).

gamma interaction parameter (a number between 0 and 1, inclusive).

R interaction radius (a non-negative number).

H hard core distance (a non-negative number smaller than R).

W window (object of class "owin") in which to generate the random pattern. Cur-
rently this must be a rectangular window.

expand Logical. If FALSE, simulation is performed in the window W, which must be
rectangular. If TRUE (the default), simulation is performed on a larger window,
and the result is clipped to the original window W. Alternatively expand can
be an object of class "rmhexpand" (see rmhexpand) determining the expansion
method.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates a realisation of the Strauss-Hardcore point process in the window W using a
‘perfect simulation’ algorithm.

The Strauss-Hardcore process is described in StraussHard.

The simulation algorithm used to generate the point pattern is ‘dominated coupling from the past’
as implemented by Berthelsen and Møller (2002, 2003). This is a ‘perfect simulation’ or ‘exact
simulation’ algorithm, so called because the output of the algorithm is guaranteed to have the cor-
rect probability distribution exactly (unlike the Metropolis-Hastings algorithm used in rmh, whose
output is only approximately correct).

A limitation of the perfect simulation algorithm is that the interaction parameter γ must be less than
or equal to 1. To simulate a Strauss-hardcore process with γ > 1, use rmh.

There is a tiny chance that the algorithm will run out of space before it has terminated. If this occurs,
an error message will be generated.
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Value

If nsim = 1, a point pattern (object of class "ppp"). If nsim > 1, a list of point patterns.

Author(s)

Kasper Klitgaard Berthelsen and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Berthelsen, K.K. and Møller, J. (2002) A primer on perfect simulation for spatial point processes.
Bulletin of the Brazilian Mathematical Society 33, 351-367.

Berthelsen, K.K. and Møller, J. (2003) Likelihood and non-parametric Bayesian MCMC inference
for spatial point processes based on perfect simulation and path sampling. Scandinavian Journal of
Statistics 30, 549-564.

Møller, J. and Waagepetersen, R. (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

See Also

rmh, StraussHard.

rHardcore, rStrauss, rDiggleGratton, rDGS, rPenttinen.

Examples

Z <- rStraussHard(100,0.7,0.05,0.02)
Y <- rStraussHard(100,0.7,0.05,0.01, nsim=2)

rtemper Simulated Annealing or Simulated Tempering for Gibbs Point Pro-
cesses

Description

Performs simulated annealing or simulated tempering for a Gibbs point process model using a
specified annealing schedule.

Usage

rtemper(model, invtemp, nrep, ..., track=FALSE, start = NULL, verbose = FALSE)
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Arguments

model A Gibbs point process model: a fitted Gibbs point process model (object of class
"ppm"), or any data acceptable to rmhmodel.

invtemp A numeric vector of positive numbers. The sequence of values of inverse tem-
perature that will be used.

nrep An integer vector of the same length as invtemp. The value nrep[i] specifies
the number of steps of the Metropolis-Hastings algorithm that will be performed
at inverse temperature invtemp[i].

start Initial starting state for the simulation. Any data acceptable to rmhstart.
track Logical flag indicating whether to save the transition history of the simulations.
... Additional arguments passed to rmh.default.
verbose Logical value indicating whether to print progress reports.

Details

The Metropolis-Hastings simulation algorithm rmh is run for nrep[1] steps at inverse temperature
invtemp[1], then for nrep[2] steps at inverse temperature invtemp[2], and so on.

Setting the inverse temperature to a value α means that the probability density of the Gibbs model,
f(x), is replaced by g(x) = C f(x)α where C is a normalising constant depending on α. Larger
values of α exaggerate the high and low values of probability density, while smaller values of α
flatten out the probability density.

For example if the original model is a Strauss process, the modified model is close to a hard core
process for large values of inverse temperature, and close to a Poisson process for small values of
inverse temperature.

Value

A point pattern (object of class "ppp").

If track=TRUE, the result also has an attribute "history" which is a data frame with columns
proposaltype, accepted, numerator and denominator, as described in rmh.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rmh.default, rmh.

Examples

stra <- rmhmodel(cif="strauss",
par=list(beta=2,gamma=0.2,r=0.7),
w=square(10))

nr <- if(interactive()) 1e5 else 1e3
Y <- rtemper(stra, c(1, 2, 4, 8), nr * (1:4), verbose=TRUE, track=TRUE)
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rthin Random Thinning

Description

Applies independent random thinning to a point pattern or segment pattern.

Usage

rthin(X, P, ..., nsim=1, drop=TRUE)

Arguments

X A point pattern (object of class "ppp" or "lpp" or "pp3" or "ppx") or line
segment pattern (object of class "psp") that will be thinned.

P Data giving the retention probabilities, i.e. the probability that each point or
line in X will be retained. Either a single number, or a vector of numbers, or
a function(x,y) in the R language, or a function object (class "funxy" or
"linfun"), or a pixel image (object of class "im" or "linim").

... Additional arguments passed to P, if it is a function.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

In a random thinning operation, each point of the point pattern X is randomly either deleted or
retained (i.e. not deleted). The result is a point pattern, consisting of those points of X that were
retained.

Independent random thinning means that the retention/deletion of each point is independent of other
points.

The argument P determines the probability of retaining each point. It may be

a single number, so that each point will be retained with the same probability P;

a vector of numbers, so that the ith point of X will be retained with probability P[i];

a function P(x,y), so that a point at a location (x,y) will be retained with probability P(x,y);

an object of class "funxy" or "linfun", so that points in the pattern X will be retained with prob-
abilities P(X);

a pixel image, containing values of the retention probability for all locations in a region encom-
passing the point pattern.

If P is a function P(x,y), it should be ‘vectorised’, that is, it should accept vector arguments x,y and
should yield a numeric vector of the same length. The function may have extra arguments which
are passed through the ... argument.
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Value

An object of the same kind as X if nsim=1, or a list of such objects if nsim > 1.

Reproducibility

The algorithm for random thinning was changed in spatstat version 1.42-3. Set spatstat.options(fastthin=FALSE)
to use the previous, slower algorithm, if it is desired to reproduce results obtained with earlier ver-
sions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

Examples

plot(redwood, main="thinning")

# delete 20% of points
Y <- rthin(redwood, 0.8)
points(Y, col="green", cex=1.4)

# function
f <- function(x,y) { ifelse(x < 0.4, 1, 0.5) }
Y <- rthin(redwood, f)

# pixel image
Z <- as.im(f, Window(redwood))
Y <- rthin(redwood, Z)

# thin other kinds of patterns
E <- rthin(osteo$pts[[1]], 0.6)
L <- rthin(copper$Lines, 0.5)

rthinclumps Random Thinning of Clumps

Description

Finds the topologically-connected clumps of a spatial region and randomly deletes some of the
clumps.

Usage

rthinclumps(W, p, ...)
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Arguments

W Window (object of class "owin" or pixel image (object of class "im").

p Probability of retaining each clump. A single number between 0 and 1.

... Additional arguments passed to connected.im or connected.owin to deter-
mine the connected clumps.

Details

The argument W specifies a region of space, typically consisting of several clumps that are not
connected to each other. The algorithm randomly deletes or retains each clump. The fate of each
clump is independent of other clumps.

If W is a spatial window (class "owin") then it will be divided into clumps using connected.owin.
Each clump will either be retained (with probability p) or deleted in its entirety (with probability
1-p).

If W is a pixel image (class "im") then its domain will be divided into clumps using connected.im.
The default behaviour depends on the type of pixel values. If the pixel values are logical, then the
spatial region will be taken to consist of all pixels whose value is TRUE. Otherwise, the spatial region
is taken to consist of all pixels whose value is defined (i.e. not equal to NA). This behaviour can be
changed using the argument background passed to connected.im.

The result is a window comprising all the clumps that were retained.

Value

Window (object of class "owin").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

rthin for thinning other kinds of objects.

Examples

A <- (distmap(cells) < 0.06)
opa <- par(mfrow=c(1,2))
plot(A)
plot(rthinclumps(A, 0.5))
par(opa)
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rThomas Simulate Thomas Process

Description

Generate a random point pattern, a simulated realisation of the Thomas cluster process.

Usage

rThomas(kappa, scale, mu, win = square(1),
nsim=1, drop=TRUE,
...,
algorithm=c("BKBC", "naive"),
nonempty=TRUE,
poisthresh=1e-6,
expand = 4*scale,
saveparents=FALSE, saveLambda=FALSE,
kappamax=NULL, mumax=NULL, sigma)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

scale Cluster size. Standard deviation of random displacement (along each coordinate
axis) of a point from its cluster centre. A single positive number.

mu Mean number of points per cluster (a single positive number) or reference inten-
sity for the cluster points (a function or a pixel image).

win Window in which to simulate the pattern. An object of class "owin" or some-
thing acceptable to as.owin.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

... Passed to clusterfield to control the image resolution when saveLambda=TRUE.

algorithm String (partially matched) specifying the simulation algorithm. See Details.

nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which par-
ents are generated conditionally on having at least one offspring point in the
window. If FALSE, parents are generated even if they have no offspring in the
window. The default is recommended unless you need to simulate all the parent
points for some other purpose.

poisthresh Numerical threshold below which the model will be treated as a Poisson process.
See Details.

expand Window expansion distance. A single number. The distance by which the orig-
inal window will be expanded in order to generate parent points. Has a sensible
default.
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saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent
points will also be calculated and saved, and returns as an attribute of the point
pattern.

kappamax Optional. Numerical value which is an upper bound for the values of kappa,
when kappa is a pixel image or a function.

mumax Optional. Numerical value which is an upper bound for the values of mu, when
mu is a pixel image or a function.

sigma Deprecated. Equivalent to scale.

Details

This algorithm generates a realisation of the (‘modified’) Thomas process, a special case of the
Neyman-Scott process, inside the window win.

In the simplest case, where kappa and mu are single numbers, the cluster process is formed by first
generating a uniform Poisson point process of “parent” points with intensity kappa. Then each
parent point is replaced by a random cluster of “offspring” points, the number of points per cluster
being Poisson (mu) distributed, and their positions being isotropic Gaussian displacements from
the cluster parent location. The resulting point pattern is a realisation of the classical “stationary
Thomas process” generated inside the window win. This point process has intensity kappa * mu.

Note that, for correct simulation of the model, the parent points are not restricted to lie inside the
window win; the parent process is effectively the uniform Poisson process on the infinite plane.

The algorithm can also generate spatially inhomogeneous versions of the Thomas process:

• The parent points can be spatially inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process that generates the parent points.

• The offspring points can be inhomogeneous. If the argument mu is a function(x,y) or a
pixel image (object of class "im"), then it is interpreted as the reference density for offspring
points, in the sense of Waagepetersen (2007). For a given parent point, the offspring constitute
a Poisson process with intensity function equal to mu * f, where f is the Gaussian probability
density centred at the parent point. Equivalently we first generate, for each parent point, a
Poisson (mumax) random number of offspring (where M is the maximum value of mu) with
independent Gaussian displacements from the parent location, and then randomly thin the
offspring points, with retention probability mu/M.

• Both the parent points and the offspring points can be spatially inhomogeneous, as described
above.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because
an offspring point inside win could have its parent point lying outside win. In order to allow this,
the simulation algorithm first expands the original window win by a distance expand and generates
the Poisson process of parent points on this larger window. If kappa is a pixel image, its domain
must contain this larger window.

The intensity of the Thomas process is kappa * mu if either kappa or mu is a single number. In the
general case the intensity is an integral involving kappa, mu and f.
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If the pair correlation function of the model is very close to that of a Poisson process, deviating by
less than poisthresh, then the model is approximately a Poisson process, and will be simulated as
a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would
otherwise require huge amounts of memory.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pat-
tern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute
"Lambda", if saveLambda=TRUE.

Simulation Algorithm

Two simulation algorithms are implemented.

• The naive algorithm generates the cluster process by directly following the description given
above. First the window win is expanded by a distance equal to expand. Then the parent
points are generated in the expanded window according to a Poisson process with intensity
kappa. Then each parent point is replaced by a finite cluster of offspring points as described
above. The naive algorithm is used if algorithm="naive" or if nonempty=FALSE.

• The BKBC algorithm, proposed by Baddeley and Chang (2023), is a modification of the al-
gorithm of Brix and Kendall (2002). Parents are generated in the infinite plane, subject to
the condition that they have at least one offspring point inside the window win. The BKBC
algorithm is used when algorithm="BKBC" (the default) and nonempty=TRUE (the default).

The naive algorithm becomes very slow when scale is large, while the BKBC algorithm is uni-
formly fast (Baddeley and Chang, 2023).

If saveparents=TRUE, then the simulated point pattern will have an attribute "parents" containing
the coordinates of the parent points, and an attribute "parentid" mapping each offspring point to
its parent.

If nonempty=TRUE (the default), then parents are generated subject to the condition that they have at
least one offspring point in the window win. nonempty=FALSE, then parents without offspring will
be included; this option is not available in the BKBC algorithm.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because
an offspring point inside win could have its parent point lying outside win. In order to allow this,
the naive simulation algorithm first expands the original window win by a distance equal to expand
and generates the Poisson process of parent points on this larger window. If kappa is a pixel image,
its domain must contain this larger window.

If the pair correlation function of the model is very close to that of a Poisson process, with maximum
deviation less than poisthresh, then the model is approximately a Poisson process. This is detected
by the naive algorithm which then simulates a Poisson process with intensity kappa * mu, using
rpoispp. This avoids computations that would otherwise require huge amounts of memory.

Fitting cluster models to data

The Thomas model with homogeneous parents (i.e. where kappa is a single number) where the
offspring are either homogeneous or inhomogeneous (mu is a single number, a function or pixel
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image) can be fitted to point pattern data using kppm, or fitted to the inhomogeneous K function
using thomas.estK or thomas.estpcf.

Currently spatstat does not support fitting the Thomas cluster process model with inhomogeneous
parents.

A Thomas cluster process model fitted by kppm can be simulated automatically using simulate.kppm
(which invokes rThomas to perform the simulation).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ya-Mei Chang <yamei628@gmail.com>.

References

Baddeley, A. and Chang, Y.-M. (2023) Robust algorithms for simulating cluster point processes.
Journal of Statistical Computation and Simulation. In Press. DOI 10.1080/00949655.2023.2166045.

Brix, A. and Kendall, W.S. (2002) Simulation of cluster point processes without edge effects. Ad-
vances in Applied Probability 34, 267–280.

Diggle, P. J., Besag, J. and Gleaves, J. T. (1976) Statistical analysis of spatial point patterns by
means of distance methods. Biometrics 32 659–667.

Thomas, M. (1949) A generalisation of Poisson’s binomial limit for use in ecology. Biometrika 36,
18–25.

Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-
Scott processes. Biometrics 63, 252–258.

See Also

rpoispp, rMatClust, rCauchy, rVarGamma, rNeymanScott, rGaussPoisson.

For fitting the model, see kppm, clusterfit.

Examples

#homogeneous
X <- rThomas(10, 0.2, 5)
#inhomogeneous
Z <- as.im(function(x,y){ 5 * exp(2 * x - 1) }, owin())
Y <- rThomas(10, 0.2, Z)

runifdisc Generate N Uniform Random Points in a Disc

Description

Generate a random point pattern containing n independent uniform random points in a circular disc.
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Usage

runifdisc(n, radius=1, centre=c(0,0), ..., nsim=1, drop=TRUE)

Arguments

n Number of points.

radius Radius of the circle.

centre Coordinates of the centre of the circle.

... Arguments passed to disc controlling the accuracy of approximation to the cir-
cle.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates n independent random points, uniformly distributed in a circular disc.

It is faster (for a circular window) than the general code used in runifpoint.

To generate random points in an ellipse, first generate points in a circle using runifdisc, then
transform to an ellipse using affine, as shown in the examples.

To generate random points in other windows, use runifpoint. To generate non-uniform random
points, use rpoint.

Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

disc, runifpoint, rpoint

Examples

# 100 random points in the unit disc
plot(runifdisc(100))
# 42 random points in the ellipse with major axis 3 and minor axis 1
X <- runifdisc(42)
Y <- affine(X, mat=diag(c(3,1)))
plot(Y)
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runifpoint Generate N Uniform Random Points

Description

Generate a random point pattern containing n independent uniform random points.

Usage

runifpoint(n, win=owin(c(0,1),c(0,1)), giveup=1000, warn=TRUE, ...,
nsim=1, drop=TRUE, ex=NULL)

Arguments

n Number of points.
win Window in which to simulate the pattern. An object of class "owin" or some-

thing acceptable to as.owin. (Alternatively a tessellation; see the section on
tessellations).

giveup Number of attempts in the rejection method after which the algorithm should
stop trying to generate new points.

warn Logical. Whether to issue a warning if n is very large. See Details.
... Ignored.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.
ex Optional. A point pattern to use as the example. If ex is given and n and win are

missing, then n and win will be calculated from the point pattern ex.

Details

This function generates n independent random points, uniformly distributed in the window win.
(For nonuniform distributions, see rpoint.)

The algorithm depends on the type of window, as follows:

• If win is a rectangle then n independent random points, uniformly distributed in the rectangle,
are generated by assigning uniform random values to their cartesian coordinates.

• If win is a binary image mask, then a random sequence of pixels is selected (using sample)
with equal probabilities. Then for each pixel in the sequence we generate a uniformly dis-
tributed random point in that pixel.

• If win is a polygonal window, the algorithm uses the rejection method. It finds a rectangle
enclosing the window, generates points in this rectangle, and tests whether they fall in the
desired window. It gives up when giveup * n tests have been performed without yielding n
successes.

The algorithm for binary image masks is faster than the rejection method but involves discretisation.

If warn=TRUE (the default), a warning will be issued if n is very large. The threshold is spatstat.options("huge.npoints").
This warning has no consequences, but it helps to trap a number of common errors.
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Value

A point pattern (an object of class "ppp") or a list of point patterns.

Tessellation

The argument win may be a tessellation (object of class "tess", see tess). Then the specified
number of points n will be randomly generated inside each tile of the tessellation. The argument n
may be either a single integer, or an integer vector specifying the number of points to be generated
in each individual tile. The result will be a point pattern in the window as.owin(win).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

ppp.object, owin.object, rpoispp, rpoint

Examples

# 100 random points in the unit square
pp <- runifpoint(100)
# irregular window
letterR
# polygonal
pp <- runifpoint(100, letterR)
# binary image mask
pp <- runifpoint(100, as.mask(letterR))

# randomising an existing point pattern
runifpoint(npoints(cells), win=Window(cells))
runifpoint(ex=cells)

# tessellation
A <- quadrats(unit.square(), 2, 3)
# different numbers of points in each cell
X <- runifpoint(1:6, A)

runifpoint3 Generate N Uniform Random Points in Three Dimensions

Description

Generate a random point pattern containing n independent, uniform random points in three dimen-
sions.

Usage

runifpoint3(n, domain = box3(), nsim=1, drop=TRUE)
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Arguments

n Number of points to be generated.

domain Three-dimensional box in which the process should be generated. An object of
class "box3".

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This function generates n independent random points, uniformly distributed in the three-dimensional
box domain.

Value

If nsim = 1 and drop=TRUE, a point pattern in three dimensions (an object of class "pp3"). If nsim
> 1, a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

rpoispp3, pp3, box3

Examples

X <- runifpoint3(50)

runifpointOnLines Generate N Uniform Random Points On Line Segments

Description

Given a line segment pattern, generate a random point pattern consisting of n points uniformly
distributed on the line segments.

Usage

runifpointOnLines(n, L, nsim=1, drop=TRUE)
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Arguments

n Number of points to generate.

L Line segment pattern (object of class "psp") on which the points should lie.

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

This command generates a point pattern consisting of n independent random points, each point
uniformly distributed on the line segment pattern. This means that, for each random point,

• the probability of falling on a particular segment is proportional to the length of the segment;
and

• given that the point falls on a particular segment, it has uniform probability density along that
segment.

If n is a single integer, the result is an unmarked point pattern containing n points. If n is a vector of
integers, the result is a marked point pattern, with m different types of points, where m = length(n),
in which there are n[j] points of type j.

Value

If nsim = 1, a point pattern (object of class "ppp") with the same window as L. If nsim > 1, a list of
point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

psp, ppp, pointsOnLines, runifpoint

Examples

X <- psp(runif(10), runif(10), runif(10), runif(10), window=owin())
Y <- runifpointOnLines(20, X)
plot(X, main="")
plot(Y, add=TRUE)
Z <- runifpointOnLines(c(5,5), X)
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runifpointx Generate N Uniform Random Points in Any Dimensions

Description

Generate a random point pattern containing n independent, uniform random points in any number
of spatial dimensions.

Usage

runifpointx(n, domain, nsim=1, drop=TRUE)

Arguments

n Number of points to be generated.

domain Multi-dimensional box in which the process should be generated. An object of
class "boxx".

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a single point pattern.

Details

This function generates a pattern of n independent random points, uniformly distributed in the
multi-dimensional box domain.

Value

If nsim = 1 and drop=TRUE, a point pattern (an object of class "ppx"). If nsim > 1 or drop=FALSE,
a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>.

See Also

rpoisppx, ppx, boxx

Examples

w <- boxx(x=c(0,1), y=c(0,1), z=c(0,1), t=c(0,3))
X <- runifpointx(50, w)



154 rVarGamma

rVarGamma Simulate Neyman-Scott Point Process with Variance Gamma cluster
kernel

Description

Generate a random point pattern, a simulated realisation of the Neyman-Scott process with Variance
Gamma (Bessel) cluster kernel.

Usage

rVarGamma(kappa, scale, mu,
nu,
win = square(1),
nsim=1, drop=TRUE,
...,
algorithm=c("BKBC", "naive"),
nonempty=TRUE,
thresh = 0.001,
poisthresh=1e-6,
expand = NULL,
saveparents=FALSE, saveLambda=FALSE,
kappamax=NULL, mumax=NULL)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function, or a pixel image.

scale Scale parameter for cluster kernel. Determines the size of clusters. A single
positive number, in the same units as the spatial coordinates.

mu Mean number of points per cluster (a single positive number) or reference inten-
sity for the cluster points (a function or a pixel image).

nu Shape parameter for the cluster kernel. A number greater than -1.
win Window in which to simulate the pattern. An object of class "owin" or some-

thing acceptable to as.owin.
nsim Number of simulated realisations to be generated.
drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-

tern, rather than a list containing a point pattern.
... Passed to clusterfield to control the image resolution when saveLambda=TRUE,

and to clusterradius when expand is missing or NULL.
algorithm String (partially matched) specifying the simulation algorithm. See Details.
nonempty Logical. If TRUE (the default), a more efficient algorithm is used, in which par-

ents are generated conditionally on having at least one offspring point. If FALSE,
parents are generated even if they have no offspring. Both choices are valid;
the default is recommended unless you need to simulate all the parent points for
some other purpose.
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thresh Threshold relative to the cluster kernel value at the origin (parent location) deter-
mining when the cluster kernel will be treated as zero for simulation purposes.
Will be overridden by argument expand if that is given.

poisthresh Numerical threshold below which the model will be treated as a Poisson process.
See Details.

expand Window expansion distance. A single number. The distance by which the orig-
inal window will be expanded in order to generate parent points. Has a sensible
default, determined by calling clusterradius with the numeric threshold value
given in thresh.

saveparents Logical value indicating whether to save the locations of the parent points as an
attribute.

saveLambda Logical. If TRUE then the random intensity corresponding to the simulated parent
points will also be calculated and saved, and returns as an attribute of the point
pattern.

kappamax Optional. Numerical value which is an upper bound for the values of kappa,
when kappa is a pixel image or a function.

mumax Optional. Numerical value which is an upper bound for the values of mu, when
mu is a pixel image or a function.

Details

This algorithm generates a realisation of the Neyman-Scott process with Variance Gamma (Bessel)
cluster kernel, inside the window win.

The process is constructed by first generating a Poisson point process of “parent” points with in-
tensity kappa. Then each parent point is replaced by a random cluster of points, the number of
points in each cluster being random with a Poisson (mu) distribution, and the points being placed
independently and uniformly according to a Variance Gamma kernel.

Note that, for correct simulation of the model, the parent points are not restricted to lie inside the
window win; the parent process is effectively the uniform Poisson process on the infinite plane.

The shape of the kernel is determined by the dimensionless index nu. This is the parameter nu′

(nu-prime) ν′ = α/2− 1 appearing in equation (12) on page 126 of Jalilian et al (2013).

The scale of the kernel is determined by the argument scale, which is the parameter η appearing
in equations (12) and (13) of Jalilian et al (2013). It is expressed in units of length (the same as the
unit of length for the window win).

The algorithm can also generate spatially inhomogeneous versions of the cluster process:

• The parent points can be spatially inhomogeneous. If the argument kappa is a function(x,y)
or a pixel image (object of class "im"), then it is taken as specifying the intensity function of
an inhomogeneous Poisson process that generates the parent points.

• The offspring points can be inhomogeneous. If the argument mu is a function(x,y) or a
pixel image (object of class "im"), then it is interpreted as the reference density for offspring
points, in the sense of Waagepetersen (2006).

If the pair correlation function of the model is very close to that of a Poisson process, deviating by
less than poisthresh, then the model is approximately a Poisson process, and will be simulated as
a Poisson process with intensity kappa * mu, using rpoispp. This avoids computations that would
otherwise require huge amounts of memory.
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Value

A point pattern (an object of class "ppp") if nsim=1, or a list of point patterns if nsim > 1.

Additionally, some intermediate results of the simulation are returned as attributes of this point pat-
tern (see rNeymanScott). Furthermore, the simulated intensity function is returned as an attribute
"Lambda", if saveLambda=TRUE.

Simulation Algorithm

Two simulation algorithms are implemented.

• The naive algorithm generates the cluster process by directly following the description given
above. First the window win is expanded by a distance equal to expand. Then the parent
points are generated in the expanded window according to a Poisson process with intensity
kappa. Then each parent point is replaced by a finite cluster of offspring points as described
above. The naive algorithm is used if algorithm="naive" or if nonempty=FALSE.

• The BKBC algorithm, proposed by Baddeley and Chang (2023), is a modification of the al-
gorithm of Brix and Kendall (2002). Parents are generated in the infinite plane, subject to
the condition that they have at least one offspring point inside the window win. The BKBC
algorithm is used when algorithm="BKBC" (the default) and nonempty=TRUE (the default).

The naive algorithm becomes very slow when scale is large, while the BKBC algorithm is uni-
formly fast (Baddeley and Chang, 2023).

If saveparents=TRUE, then the simulated point pattern will have an attribute "parents" containing
the coordinates of the parent points, and an attribute "parentid" mapping each offspring point to
its parent.

If nonempty=TRUE (the default), then parents are generated subject to the condition that they have at
least one offspring point in the window win. nonempty=FALSE, then parents without offspring will
be included; this option is not available in the BKBC algorithm.

Note that if kappa is a pixel image, its domain must be larger than the window win. This is because
an offspring point inside win could have its parent point lying outside win. In order to allow this,
the naive simulation algorithm first expands the original window win by a distance equal to expand
and generates the Poisson process of parent points on this larger window. If kappa is a pixel image,
its domain must contain this larger window.

If the pair correlation function of the model is very close to that of a Poisson process, with maximum
deviation less than poisthresh, then the model is approximately a Poisson process. This is detected
by the naive algorithm which then simulates a Poisson process with intensity kappa * mu, using
rpoispp. This avoids computations that would otherwise require huge amounts of memory.

Fitting cluster models to data

The Variance-Gamma cluster model with homogeneous parents (i.e. where kappa is a single num-
ber) where the offspring are either homogeneous or inhomogeneous (mu is a single number, a func-
tion or pixel image) can be fitted to point pattern data using kppm, or fitted to the inhomogeneous
K function using vargamma.estK or vargamma.estpcf.

Currently spatstat does not support fitting the Variance-Gamma cluster process model with inho-
mogeneous parents.
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A Variance-Gamma cluster process model fitted by kppm can be simulated automatically using
simulate.kppm (which invokes rVarGamma to perform the simulation).

Warning

The argument nu is the parameter ν′ (nu-prime) ν′ = α/2 − 1 appearing in equation (12) on page
126 of Jalilian et al (2013). This is different from the parameter called ν appearing in equation(14)
on page 127 of Jalilian et al (2013), defined by ν = α − 1. This has been a frequent source of
confusion.

Author(s)

Original algorithm by Abdollah Jalilian and Rasmus Waagepetersen. Adapted for spatstat by
Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>. Brix-Kendall-Baddeley-Chang algorithm
implemented by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Ya-Mei Chang <yamei628@gmail.com>.
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See Also

rpoispp, rMatClust, rThomas, rCauchy, rNeymanScott, rGaussPoisson.

For fitting the model, see kppm, clusterfit, vargamma.estK, vargamma.estpcf.

Examples

# homogeneous
X <- rVarGamma(kappa=5, scale=2, mu=5, nu=-1/4)
# inhomogeneous
ff <- function(x,y){ exp(2 - 3 * abs(x)) }
fmax <- exp(2)
Z <- as.im(ff, W= owin())
Y <- rVarGamma(kappa=5, scale=2, mu=Z, nu=0)
YY <- rVarGamma(kappa=ff, scale=2, mu=3, nu=0, kappamax=fmax)
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update.rmhcontrol Update Control Parameters of Metropolis-Hastings Algorithm

Description

update method for class "rmhcontrol".

Usage

## S3 method for class 'rmhcontrol'
update(object, ...)

Arguments

object Object of class "rmhcontrol" containing control parameters for a Metropolis-
Hastings algorithm.

... Arguments to be updated in the new call to rmhcontrol.

Details

This is a method for the generic function update for the class "rmhcontrol". An object of class
"rmhcontrol" describes a set of control parameters for the Metropolis-Hastings simulation algo-
rithm. See rmhcontrol).

update.rmhcontrol will modify the parameters specified by object according to the new argu-
ments given.

Value

Another object of class "rmhcontrol".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

Examples

a <- rmhcontrol(expand=1)
update(a, expand=2)



will.expand 159

will.expand Test Expansion Rule

Description

Determines whether an expansion rule will actually expand the window or not.

Usage

will.expand(x)

Arguments

x Expansion rule. An object of class "rmhexpand".

Details

An object of class "rmhexpand" describes a rule for expanding a simulation window. See rmhexpand
for details.

One possible expansion rule is to do nothing, i.e. not to expand the window.

This command inspects the expansion rule x and determines whether it will or will not actually
expand the window. It returns TRUE if the window will be expanded.

Value

Logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

rmhexpand, expand.owin

Examples

x <- rmhexpand(distance=0.2)
y <- rmhexpand(area=1)
will.expand(x)
will.expand(y)
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Window.rmhmodel Extract Window of Spatial Object

Description

Given a spatial object (such as a point pattern or pixel image) in two dimensions, these functions
extract the window in which the object is defined.

Usage

## S3 method for class 'rmhmodel'
Window(X, ...)

Arguments

X A spatial object.

... Ignored.

Details

These are methods for the generic function Window which extract the spatial window in which the
object X is defined.

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Window, Window.ppp, Window.psp.

owin.object

Examples

A <- rmhmodel(cif='poisson', par=list(beta=10), w=square(2))
Window(A)
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clusterkernel, 13, 15
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disc, 148
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domain.rmhmodel, 20
dpakes, 21
dpois, 19

envelope, 16, 17
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expand.owin, 22, 81, 159

Fiksel, 69, 87

Frame, 21
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Geyer, 69, 87
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Hybrid, 69, 87

im.object, 86, 98, 101, 102, 104, 110, 111,
114, 120
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is.marked, 25
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Kest, 35
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OrdThresh, 44
owin, 11, 34, 135
owin.object, 10, 11, 98, 102, 111, 115, 150,
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PairPiece, 69, 82, 87, 90
Penttinen, 69, 82, 85, 87, 109
pixellate.ppp, 12
pknn (rknn), 51
pmixpois (dmixpois), 18
pointsOnLines, 152
Poisson, 69, 87
pp3, 116, 151
ppakes (dpakes), 21
ppm, 18, 44, 69, 81, 82, 87, 90
ppois, 19
ppp, 69, 118, 152
ppp.object, 66, 98, 102, 111, 115, 150
ppx, 119, 153
psp, 112, 118, 152

qknn (rknn), 51
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qmixpois (dmixpois), 18
qpakes (dpakes), 21
qpois, 19
qqplot.ppm, 16, 17
quadratcount, 27
quadratresample, 6, 8, 26
quadrats, 27
quadscheme, 135
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rCauchy, 6, 8, 13, 15, 31, 38, 40, 60, 106, 121,

125, 147, 157
rcell, 6, 8, 34, 37, 115
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rDiggleGratton, 6, 8, 42, 42, 49, 109, 137,

139
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rPoissonCluster, 6, 120
rpoistrunc, 122
rPSNCP, 123
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rshift.splitppp, 126, 131
rSSI, 6, 7, 115, 133
rstrat, 6, 7, 35, 115, 135
rStrauss, 6, 8, 42–44, 48, 49, 69, 85, 109,

115, 136, 139
rStraussHard, 6, 8, 42, 43, 49, 109, 137, 138
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rtemper, 139
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rthinclumps, 142
rThomas, 6, 8, 13, 15, 34, 38, 40, 48, 60, 106,
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runif, 107
runifdisc, 6, 7, 147
runifpoint, 6, 7, 35, 110, 111, 115, 135, 148,

149, 152
runifpoint3, 7, 116, 150
runifpointOnLines, 6, 8, 118, 151
runifpointx, 7, 119, 153
rVarGamma, 6, 8, 13, 15, 34, 38, 40, 60, 106,

121, 125, 147, 154

sample, 111, 149
set.seed, 68
shift, 23
simulate.kppm, 33, 59, 147, 157
simulate.ppm, 16
Softcore, 69, 82, 87, 90
spatstat.options, 39, 76, 78, 111, 149
spatstat.random

(spatstat.random-package), 4
spatstat.random-package, 4
split.ppp, 126, 132
stepfun, 86, 87
Strauss, 44, 69, 82, 87, 90, 137
StraussHard, 69, 82, 87, 90, 138, 139
summary.ppp, 66

tess, 150
thomas.estK, 147
thomas.estpcf, 147
Triplets, 69, 82, 87

update, 158
update.rmhcontrol, 18, 158

varblock, 27
vargamma.estK, 156, 157
vargamma.estpcf, 156, 157

will.expand, 81, 159
Window, 21, 160
Window.ppp, 160
Window.psp, 160
Window.rmhmodel, 160

xy.coords, 104
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