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All Include all columns of a dataframe.

Description

This constructs a formula object for all the columns of a dataframe.

Usage

All(df, numeric=TRUE, character=FALSE, logical=FALSE, factor=FALSE,
complex=FALSE, raw=FALSE, other=FALSE,
texify=getOption("tables.texify", FALSE))

Arguments

df The dataframe in which to find the columns.
numeric, character, logical, factor, complex, raw

Whether to include columns of specified types. See the Details below.

other Whether to include columns that match none of the previous types.

texify Whether to escape LaTeX special characters in column names.
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Details

This function constructs a formula from the columns of a dataframe. By default, only numeric
columns are included. The arguments numeric, character, logical, factor, complex and raw
control the inclusion of columns of the corresponding types. The argument other controls inclusion
of any other columns.

If these arguments are TRUE, such columns will be included in the formula.

If a function (or the name of a function given as a character string) is passed, such columns will be
transformed by the function before inclusion. For example, All(df, factor=as.character) will
convert all factor columns into their character representation for inclusion.

In other cases, the columns will be skipped.

Value

Language to insert into the table formula to achieve the desired table.

Examples

# Show mean and sd of all numeric columns in the iris data
tabular( Species ~

All(iris)*(mean + sd), data=iris )

AllObs Display all observations in a table.

Description

These functions generate the code for a tabular table to include all observations in a dataset,
possibly divided up according to other factors.

Usage

AllObs(data = NULL, show = FALSE, label = "Obsn.", within = NULL)
RowNum(within = NULL, perrow = 5, show = FALSE, label = "Row", data = NULL)

Arguments

data The full dataset, used only to find the number of observations.

show Whether to show the observation number or row number in the table.

label The label to use when show = TRUE.

within A factor or list of factors by which to break up the observations.

perrow How many observations per row when RowNum is used in the row specification,
or per column when it is part of the column specification.
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Details

AllObs is used to display all of the observations in a dataset. It generates a (usually undisplayed)
factor with a different level for each observation, sets a function to display the value, and calls
DropEmpty to suppress display of empty rows, columns or cells.

If the within argument is specified in AllObs, the factor levels are restarted within each grouping.
(within is interpreted as the INDEX argument of tapply, with one exception described below.) This
may be useful when displaying the observation number, and is definitely useful if AllObs is used
as a column specification in the table. It will also save some computation time if the table is very
large, since fewer factor levels will be generated and later dropped.

RowNum is unlikely to be useful in a table by itself, but is helpful when displaying large datasets with
AllObs. It allows a large number of observations to be broken into several rows and columns.

Because RowNum affects both rows and columns, its use is somewhat unusual. Normally it should
be called before calling tabular, and its result saved in a variable. That variable (e.g. rownum) is
used in the row specification for the table wrapped in I(), and in the column specification of the
table in the within argument to AllObs. (This is the exception mentioned above.)

Despite its name, RowNum can be used as a column specifier, if you’d prefer column-major ordering
of the values displayed in the table.

Value

Both AllObs and RowNum return language objects to be used on tabular formulas.

See Also

tabular, DropEmpty

Examples

tabular(Factor(cyl)*Factor(gear)*AllObs(mtcars) ~
rownames(mtcars) + mpg, data=mtcars)

rownum <- with(mtcars, RowNum(list(cyl, gear)))
tabular(Factor(cyl)*Factor(gear)*I(rownum) ~

mpg * AllObs(mtcars, within = list(cyl, gear, rownum)),
data=mtcars)

Arguments Arguments pseudo-function

Description

The Arguments pseudo-function enables the use of analysis functions that take multiple arguments.

Usage

Arguments(...)
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Arguments

... Arguments to pass to the analysis function.

Details

The arguments to Arguments are evaluated in full, then those which are length n are subsetted for
each cell in the table.

If no analysis variable has been specified, but Arguments() has been, then the analysis function
will be called with arguments matching those given in .... If an analysis variable was specified, it
will be inserted as an unnamed first argument to the analysis function.

The Arguments() entry will not create a heading.

Only one Arguments() specification may be active in any term in the tabular formula.

Pseudo-functions

This is a “pseudo-function”: it takes the form of a function call, but is never actually called: it is
handled specially by tabular.

See Also

Percent for a different way to specify a multiple argument analysis function.

Examples

# This is the example from the weighted.mean help page
wt <- c(5, 5, 4, 1)/15
x <- c(3.7,3.3,3.5,2.8)
gp <- c(1,1,2,2)
tabular( (Factor(gp) + 1)

~ weighted.mean*x*Arguments(w = wt) )

as.matrix.tabular Convert tabular object to matrix

Description

Convert a tabular object to a matrix of the strings that would print, or a matrix of values.

Usage

## S3 method for class 'tabular'
as.matrix(x, format = TRUE,

rowLabels = TRUE, colLabels = TRUE, justification = "n", ...)
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Arguments

x A "tabular" object.
format How to format; see Details below.
rowLabels, colLabels

Whether to include the row or column labels; only used if format = TRUE.
justification How to justify values; only used if format = TRUE.
... Other parameters to pass to format.tabular.

Details

If format=TRUE, then a matrix of formatted strings is produced. If not, then the format argument
is assumed to be a function (or name of a function passed as a character vector) to convert the
list-mode matrix to another mode, e.g. as.numeric.

Value

A matrix.

Examples

table <-
tabular( (Species + 1) ~ (n=1) + Format(digits=2)*

(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

print(table)
as.matrix(table)
as.matrix(table, format=as.numeric)

as.tabular Convert matrix or dataframe to tabular object.

Description

These functions construct or copy labels onto an existing matrix or dataframe.

Usage

as.tabular(x, like = NULL)
## Default S3 method:
as.tabular(x, like = NULL)
## S3 method for class 'data.frame'
as.tabular(x, like = NULL)

Arguments

x The object to convert.
like If not NULL, should be a tabular object with the same number of rows and

columns as x. Its labels will be used on the result.
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Value

A tabular object.

See Also

as.matrix.tabular

Examples

model <- tabular( (Species + 1) ~ (n=1) + Sepal.Length + Sepal.Width, data=iris )
model
as.tabular(matrix(1:12, 4,3), like=model)

DropEmpty DropEmpty pseudo-function

Description

Pseudo-function to indicate that rows or columns containing no observations should be dropped.

Usage

DropEmpty(empty = "", which = c("row", "col", "cell"))

Arguments

empty String to use in empty cells.

which A vector indicating what should be dropped. See the Details below.

Details

If the which argument contains "row", then any row in the table in which all cells are empty will
be dropped. Similarly, if it contains "col", empty columns will be dropped. If it contains "cell",
then cells in rows and columns that are not dropped will be set to the empty string.

Pseudo-functions

This is a “pseudo-function”: it takes the form of a function call, but is never actually called: it is
handled specially by tabular.
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Examples

df <- data.frame(row = factor(1:10), value = rnorm(10))
subset <- df[sample(10, 5),, drop = FALSE]

# Some rows did not get selected, so this looks ugly
tabular(row ~ value*mean, data = subset)

# This only shows rows with data in them
tabular(row*DropEmpty() ~ value*mean, data = subset)

# This shows empty cells as "(empty)"
tabular(row*DropEmpty("(empty)", "cell") ~ value*mean, data = subset)

Format Format pseudo-function

Description

Format controls the formatting of the cells it applies to. .Format is mainly for internal use.

Usage

Format(...)
.Format(n)

Arguments

... Arguments to pass to a formatting function, or a call to a formatting function.
n A format number.

Details

The Format pseudo-function changes the formatting of table cells, and it specifies that all values it
applies to will be formatted together.

In the first form, the “call” to Format looks like a call to format, but without specifying the ar-
gument x. When tabular() formats the output it will construct x from the entries in the table
governed by the Format() specification, and pass it to the standard format function along with the
other arguments.

In the second form, the “call” to Format contains a call to a function to do the formatting. Again,
an argument x will be added to the call, containing the values to be formatted.

In the first form, or if the explicit function is named format, any cells in the table with character
values will not be formatted. This is done so that a column can have mixed numeric and character
values, and the numerics are not converted to character before formatting.

The pseudo-function .Format is mainly intended for internal use. It takes a single integer argument,
saying that data governed by this call uses the same formatting as the format specification indicated
by the integer. In this way entries can be commonly formatted even when they are not contiguous.
The integers are assigned sequentially as the format specification is parsed; users will likely need
trial and error to find the right value in a complicated table with multiple formats.
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Pseudo-functions

This is a “pseudo-function”: it takes the form of a function call, but is never actually called: it is
handled specially by tabular.

Examples

# Using the first form
tabular( (Sepal.Length+Sepal.Width) ~

Format(digits=2)*(mean + sd), data=iris )

# The same table, using the second form
tabular( (Sepal.Length+Sepal.Width) ~

Format(format(digits=2))*(mean + sd), data=iris )

Heading Heading pseudo-function

Description

The Heading pseudo-function normally overrides the automatic heading on the following items in
a table. Setting override=FALSE is used in automatically generated expressions.

Usage

Heading(name = NULL, override = TRUE, character.only = FALSE, nearData = TRUE)

Arguments

name A legal R variable name, or a character constant.

override Whether this heading should override one that is already present.

character.only If TRUE, the name argument will be interpreted as an expression evaluating to a
character value.

nearData See Details below.

Details

This replaces the automatic heading or row label on the following item with the name or string as
specified. If no argument is given, the heading or label is suppressed.

An alternative form of Heading(name) is (name=...), where ... is an expression to be displayed
in the table.

If override = FALSE, the label is only supplied if there is no other label. This is used in the code
for Factor.

The nearData argument is rarely used. It affects the situation where "+" is used to join tables with
different numbers of labels. If nearData = TRUE (the default), the shorter list of labels are pushed
close to the data, i.e. to the right side for row labels, the bottom for column labels. If FALSE, they
are pushed to the opposite side.
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Pseudo-functions

This is a “pseudo-function”: it takes the form of a function call, but is never actually called: it is
handled specially by tabular.

Examples

tabular( (Sepal.Length+Sepal.Width) ~
(Heading(Mean)*mean + (S.D.=sd)), data=iris )

heading <- "Variable Heading"
tabular( (Sepal.Length+Sepal.Width) ~

(Heading(heading, character.only = TRUE)*mean + (S.D.=sd)),
data=iris )

Hline Add a horizontal line to a LaTeX table.

Description

This function inserts a LaTeX directive to draw a full or partial line in a table.

Usage

Hline(columns, nearData = FALSE)

Arguments

columns Which columns should receive the line?

nearData See the Details section of Heading.

Details

Hline() is not very flexible: it must be the leftmost header in a row specification for the table, i.e.
mean * Hline() is not allowed. Anything to the right of the Hline() factor will be ignored.

Value

Produces an expression to insert a label which will be interpreted by LaTeX as a request for a
horizontal line.

Examples

toLatex( tabular( Species + Hline() + 1 ~ mean*Sepal.Width, data=iris) )
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html.tabular Display a tabular object using HTML.

Description

This is similar to print.tabular, but it inserts the code to display the table in an HTML table.

Usage

toHTML(object, file = "", options = NULL,
id = NULL, append = FALSE,
browsable = TRUE, ...)

html.tabular(object, ...)
writeCSS(CSS = htmloptions()$CSS, id = NULL)

Arguments

object The tabular object.

file A filename or connection to which to write the HTML code, or "" to write to
the console.

options A list of options to set for the duration of the call.

id A unique identifier to set for this table and the associated CSS style, or NULL, for
no id.

append If TRUE, opens file for appending (if it is a filename rather than a connection).

browsable Should the output be marked as browsable?

... Settings for default formatting. See Details below.

CSS A character vector to use as CSS.

Details

The toHTML() function produces HTML output suitable for inclusion in an HTML page.

The html.tabular function is set up to work as a method for the html generic in Hmisc, but is not
registered as a method, so that tables can work when Hmisc is not installed.

In HTML, it is mainly the CSS style sheet that determines the look of the table. When formatting
a table, html.tabular sets the CSS class according to the table’s Justify setting; justifications
of c("l", "c", "r") are translated to classes c("left", "center", "right") respectively; other
strings will be passed through and used directly as class names. If the id value is not NULL, then it
will be used as the CSS id selector when searching for a style. See table_options for a number of
options that control formatting, including the default style sheet.

Value

If file = "" (the default), the toHTML() function creates an HTML object using the htmltools::HTML
function and returns it. If file is a character value or a connection, the results are written there and
the HTML object is returned invisibly.
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See Also

print.tabular, toLatex.tabular, html, htmloptions

Examples

X <- rnorm(125, sd=100)
Group <- factor(sample(letters[1:5], 125, replace = TRUE))

tab <- tabular( Group ~ (N=1)+Format(digits=2)*X*((Mean=mean) + Heading("Std Dev")*sd) )

save <- table_options()
table_options(rowlabeljustification="c")

f <- tempfile(fileext=".html")
con <- file(f, "wt")

if (interactive())
toHTML(tab, con, options=htmloptions(head=TRUE, table=FALSE))

writeLines("<p>This table has pad = FALSE. The centered numbers look
sloppy.<br>", con)

if (interactive())
toHTML(tab, con, options=htmloptions(head=FALSE, table=TRUE, pad=FALSE))

writeLines("<p>This table has pad = FALSE and justification=\"r\".
The justification makes the columns of numbers look all right (except
for the hyphens used as minus signs), but they are placed poorly
relative to the labels.<br>", con)

if (interactive())
toHTML(tab, con, options=htmloptions(head=FALSE, table=TRUE, pad=FALSE, justification="r"))

writeLines("<p>This one has pad = TRUE. It looks best, but if you cut
and paste, the spacing characters may cause problems.<br>", con)

if (interactive())
toHTML(tab, con, options=htmloptions(head=FALSE, table=TRUE, pad=TRUE))

table_options(save)
close(con)
if (interactive())

browseURL(f)

HTMLfootnotes Construct footnotes

Description

This function constructs HTML code for footnotes to insert at the bottom of the table.
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Usage

HTMLfootnotes(tab, ...)

Arguments

tab A tabular object, used only so that the column width of the footnotes matches.

... The footnotes. If named, will be preceded with the name as a superscript.

Value

A character string containing HTML code for the footnotes. Use this in table_options(HTMLfooter
= ...)

Examples

tab <- tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

footnote <- HTMLfootnotes(tab,
"This is a footnote with no marker.",
"*" = "This is a footnote with an asterisk.")

if (interactive())
toHTML(tab, options = list(doFooter = TRUE,

HTMLfooter = footnote))

Justify Justify pseudo-function

Description

The Justify pseudo-function sets the justification of the following items in the table.

Usage

Justify(labels, data=labels)

Arguments

labels Justification to use for labels

data Justification to use for data.

Details

The justification can be an R name if that is syntactically valid, or a quoted string.

Pseudo-functions

This is a “pseudo-function”: it takes the form of a function call, but is never actually called: it is
handled specially by tabular.
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Examples

tabular( Justify(c,l)*Heading(Var)*(Sepal.Length+Sepal.Width) ~
Justify(c)*(mean + sd), data=iris )

knit_print.tabular Custom printing of tabular objects.

Description

Automatically print tabular objects with formatting when in a knitr document.

Usage

## S3 method for class 'tabular'
knit_print(x, format = getKnitrFormat(), ...)

Arguments

x A tabular object.

format Which output format? "latex" and "html" are supported.

... Other parameters, currently ignored.

Details

This function is not normally called by a user. It is designed to be called by knitr while processing
a ‘.Rmd’ or ‘.Rnw’ document.

If table_options()$knit_print is TRUE and the output format is supported, this method will
prepare output suitable for formatted printing in a knitr document using asis_output. Otherwise,
the usual unformatted print display will be done by normal_print.

Value

An object marked for printing in a knitr document.

Examples

tab <- tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

knitr::knit_print(tab)
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labels Retrieve or modify the row or column labels.

Description

These functions allow the row or column labels of a tabular object to be retrieved or modified.

Usage

rowLabels(x)
rowLabels(x) <- value
colLabels(x)
colLabels(x) <- value
## S3 method for class 'tabularRowLabels'
x[i, j, ..., drop = FALSE]
## S3 method for class 'tabularColLabels'
x[i, j, ..., drop = FALSE]

Arguments

x A "tabular", "tabularRowLabels" or "tabularColLabels" object.

value A replacement

i, j, ..., drop Arguments used for subsetting the labels. See Details below.

Details

Subsetting the row labels does not allow the number of rows to be changed; likewise, subsetting
the column labels does not allow the number of columns to be changed. To change both, subset the
original "tabular" object.

Value

rowLabels and the corresponding subsetting method return an object of class "tabularRowLabels".

colLabels and the corresponding subsetting method return an object of class "tabularColLabels".

The assignment functions return "tabular" objects.

See Also

[.tabular

Examples

tab <- tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

colLabels(tab)
colLabels(tab) <- colLabels(tab)[1,]
tab
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labelSubset Add a label to a logical vector.

Description

This function is mainly for internal use. It adds a label to a logical vector, so that the Percent
pseudo-function can ignore it when forming a denominator.

Usage

labelSubset(subset, label)

Arguments

subset A logical vector describing a subset of the dataset.

label A character label to use to describe this subset in a call to Equal or Unequal
within Percent.

Value

A vector of class "labelledSubset" with the label recorded as an attribute.

Author(s)

Duncan Murdoch

See Also

Percent

latex.tabular Display a tabular object using LaTeX.

Description

This is similar to print.tabular, but it inserts the code to display the table in a LaTeX tabular
environment. The toLatex.tabular method works with the toLatex generic from utils.

Usage

toLatex(object, ...)
## S3 method for class 'tabular'
toLatex(object, file = "", options = NULL, append = FALSE, ...)
latex.tabular(object, ...)
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Arguments

object The tabular object.

file A filename or connection to which to write the LaTeX code, or "" to write to
the standard output.

options A list of options to set for the duration of the call.

append If TRUE, opens file for appending (if it is a filename rather than a connection).

... Settings for default formatting. See Details below.

Details

The toLatex() method produces LaTeX output suitable for inclusion in a Sweave document.

The latex.tabular function is set up to work as a method for the latex generic in Hmisc, but is
not registered as a method, so that tables can work when Hmisc is not installed.

Value

The toLatex() method returns x invisibly, and prints the LaTeX script to the console.

table_options() and booktabs() return the previous settings.

Note

For historical reasons, the toLatex() function with a non-empty file argument doesn’t write to
the file until the returned value is printed.

See Also

print.tabular, table_options, toLatex, latex

Examples

tab <- tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

toLatex(tab)
save <- booktabs()
toLatex(tab)
table_options(save)

latexNumeric Process numeric LaTeX or HTML values.

Description

This takes formatted strings as produced by format from numeric values, and modifies them to
LaTeX or HTML code that retains the spacing, and renders minus signs properly. The default
formatting in tabular uses this to maintain proper alignment.
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Usage

latexNumeric(chars, minus = TRUE, leftpad = TRUE, rightpad = TRUE, mathmode = TRUE)
htmlNumeric(chars, minus = TRUE, leftpad = TRUE, rightpad = TRUE)

Arguments

chars A character vector of numeric values.

minus Whether to pad cases with no minus sign with spacing of the same width.

leftpad, rightpad
Whether to pad cases that have leading or trailing blanks with spacing matching
a digit width per space.

mathmode Whether to wrap the result in dollar signs, so LaTeX renders minus signs prop-
erly.

Value

A character vector of the same length as chars, with modifications to render properly in LaTeX.

Examples

latexNumeric(format(c(1.1,-1,10,-10)))
htmlNumeric(format(c(1.1,-1,10,-10)))

latexTable Create table in full table environment

Description

The tabular function creates a table which usually renders as a tabular environment when dis-
played in LaTeX, not as a "float" with caption, label, etc. This function wraps the tabular result in
the result of a call to the knitr::kable function.

Usage

latexTable(table, format = "latex", longtable = FALSE, ...)

Arguments

table Either a formula to be passed to tabular, or the result of a call to that function.

format Currently only "latex" format output is supported.

longtable, ... Additional arguments to be passed to the knitr::kable function. See details
below.
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Details

Rather than redoing all the work of generating LaTeX code to wrap the tabular result, this function
works by generating a dummy kable table, and replaces the tabular part with the tabular result.

Many of the arguments to kable deal with the content of the table, not the wrapper. These will be
ignored with a warning. Currently the arguments that will not be ignored, with their defaults, are:

caption = NULL The caption to use on the table.

label = NULL Part of the LaTeX label to use on the table. The full label will have "tab:" prepended
by kable.

escape = TRUE Whether to escape special characters in the caption.

booktabs = FALSE, longtable = FALSE Logical values to indicate that style of table. These must
also be specified to tabular; see the main vignette for details.

position = "" The instruction to LaTeX about how to position the float in the document.

centering = TRUE Whether to center the table in the float.

caption.short = "" Abbreviated caption to use in TOC.

table.envir = if (!is.null(caption)) "table" Name of outer environment.

These arguments are all defined in the knitr package, and may change in the future.

Value

An object of class "knitr_kable" suitable to include in a Sweave or knitr ‘.Rnw’ document.

Examples

cat(latexTable(tabular((Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris ),

caption = "Iris sepal data", label = "sepals"))

Literal Insert a literal entry into a table margin.

Description

This allows insertion of arbitrary LaTeX text into a table.

Usage

Literal(x, nearData = TRUE)

Arguments

x A character string to insert.

nearData See the Details section of Heading.

../doc/index.html
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Details

In LaTeX the literal string should usually end with a % comment character to avoid having a
blank line inserted.

Value

Produces an expression to insert a label containing the literal text.

See Also

Hline, which uses this to insert lines.

Examples

tabular( (Literal("Some text") + Species) ~
All(iris)*mean, data=iris )

matrix_form.tabular Transform tabular object to matrices printable by formatters package

Description

The formatters package provides methods for displaying and breaking up tables into smaller pieces.

Usage

matrix_form.tabular(df)

Arguments

df A tabular object.

Details

The formatters package provides a matrix_form generic function for S4 objects. "tabular"
objects are S3 objects, so it won’t dispatch to this function, which must be fully specified when
called.

Author(s)

Duncan Murdoch with help from Gabe Becker.
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Examples

if (requireNamespace("formatters")) {
Sex <- factor(sample(c("Male", "Female"), 100, replace = TRUE))
Status <- factor(sample(c("low", "medium", "high"), 100, replace = TRUE))
z <- rnorm(100) + 5
fmt <- function(x) {
s <- format(x, digits=2)
even <- ((1:length(s)) %% 2) == 0
s[even] <- sprintf("(%s)", s[even])
s

}
tab <- tabular( Justify(c)*Heading()*z*Sex*Heading(Statistic)*Format(fmt())*(mean+sd)

~ Status )
mform <- matrix_form.tabular(tab)
page <- 1
cat("Page ", page, " Full table\n\n")
cat(formatters::toString(mform))

# This shows automatic pagination, breaking up the
# table by rows
byrow <- formatters::pag_indices_inner(formatters::mf_rinfo(mform),

rlpp = 2,
min_siblings = 1)

for (i in seq_along(byrow)) {
mform2 <- matrix_form.tabular(tab[byrow[[i]], ])
page <- page + 1
cat("\nPage ", page, " Rows", byrow[[i]], "\n\n")
cat(formatters::toString(mform2))

}

# This gives the breaks by columns, counting the
# row label columns.
# The formatters::vert_pag_indices function had an incompatible
# change in v0.5.8
if ("fontspec" %in% names(formals(formatters::vert_pag_indices)))

bycol <- formatters::vert_pag_indices(mform, cpp = 30, rep_cols = 2,
fontspec = NULL)

else
bycol <- formatters::vert_pag_indices(mform, cpp = 30, rep_cols = 2)

# Display the table with both kinds of breaks
for (i in seq_along(byrow)) {

rows <- byrow[[i]]
for (j in seq_along(bycol)) {

cols <- bycol[[j]]
cols <- cols[cols > 2] - 2 # cols includes the row labels
mform3 <- matrix_form.tabular(tab[rows, cols, drop = FALSE])
page <- page + 1
cat("\nPage ", page, "Rows", rows, "column", cols, "\n\n")
cat(formatters::toString(mform3))

}
}

}
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Paste Generate terms to paste values together in table.

Description

This function generates a component of a table formula to output multiple columns with punctuation
between. It is designed only for LaTeX output.

Usage

Paste(..., head, digits=2, justify="c", prefix="", sep="", postfix="",
character.only = FALSE)

Arguments

... Expressions to be displayed in the columns of the table. If they are named, they
will get those names as headings, otherwise they will not be labelled.

head If not missing, this will be used as a column heading for the combined columns.

digits Will be passed to the format function. If digits is length one, all expressions
use a common format; otherwise they are formatted separately.

justify One or more justifications to use on the individual columns.

sep One or more separators to use between columns.

prefix, postfix Additional text to insert before and after the group of columns.

character.only If TRUE, the head argument will be interpreted as an expression evaluating to a
character value.

Value

An expression which will produce the requested output in LaTeX.

Examples

stderr <- function(x) sd(x)/sqrt(length(x))
lcl <- function(x) mean(x) - qt(0.975, df=length(x)-1)*stderr(x)
ucl <- function(x) mean(x) + qt(0.975, df=length(x)-1)*stderr(x)
toLatex( tabular( (Species+1) ~ All(iris)*

Paste(lcl, ucl, digits = 2,
head="95\% CI",
prefix = "[", sep = ",", postfix = "]"),

data=iris ) )
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Percent Pseudo-function to compute a statistic relative to a reference set.

Description

The Percent pseudo-function is used to specify a statistic that depends on other values in the table.

Usage

Percent(denom = "all", fn = percent)

Arguments

denom How the reference set (the denominator in case of a percentage calculation)
should be calculated. See below.

fn The two argument function to calculate the statistic.

Details

The function fn will be called with two arguments. The first argument is the usual “value vector” of
values corresponding to this cell in the table, and the second is another vector of reference values,
determined by denom.

The default value of fn is the percent function, defined as function(x, y) 100*length(x)/length(y).
This gives the ratio of the number of values in the current cell relative to the reference values, ex-
pressed as a percentage. Using fn = function(x, y) 100*sum(x)/sum(y) would give the percent-
age of the sum of the values in the current cell to the sum in the reference set.

With the default denom = "all", all values of the analysis variable in the dataset are used as the
reference. Other possibilities are denom = "row" or denom = "col", for which the values of the
variable corresponding to the current row or column subset are used.

The special syntax denom = Equal(...) will record each expression in .... The reference set will
be the cases with equal values of all expressions in ... to those of the current cell. The similar
form denom = Unequal(...) sets the reference values to be those that differ in any of the ...
expressions from the current cell. (In fact, these can be used somewhat more generally; see the
vignette for details.)

Finally, other possible denom values are a logical vector, in which case the values marked TRUE are
used, or anything else, which will be passed to fn as y without any subsetting. (To pass a variable
with subsetting, use the Arguments pseudo-function instead.)

Pseudo-functions

Percent is a “pseudo-function”: it takes the form of a function call, but is never actually called: it is
handled specially by tabular. Equal and Unequal are also pseudo-functions, but are only special
when used in the denom argument to Percent.

See Also

Arguments for a different way to specify a multiple argument analysis function.
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Examples

x <- factor(sample(LETTERS[1:2], 1000, replace = TRUE))
y <- factor(sample(letters[3:4], 1000, replace = TRUE))
z <- factor(sample(LETTERS[5:6], 1000, replace = TRUE))

# These both do the same thing:
tabular( (x + 1)*(y + 1) ~ (z + 1)*(1+(RowPct=Percent("row"))))
tabular( (x + 1)*(y + 1) ~ (z + 1)*(1+(xyPct=Percent(Equal(x, y)))))

PlusMinus Generate x +/- y terms in table.

Description

This function generates a component of a table formula to output two columns separated by a +/-
sign. It is designed only for LaTeX output.

Usage

PlusMinus(x, y, head, xhead, yhead, digits = 2,
character.only = FALSE, ...)

Arguments

x, y Expressions to be displayed in the columns on the left and right of the +/- sign,
respectively.

head If not missing, this will be used as a column heading for the two columns.

xhead, yhead If not missing, these will be used as individual column headings.

digits, ... Parameters to pass to the format function.

character.only If TRUE, the head, xhead and yhead arguments will be interpreted as expressions
evaluating to character values.

Value

An expression which will produce the requested output in LaTeX.

Examples

stderr <- function(x) sd(x)/sqrt(length(x))
toLatex( tabular( (Species+1) ~ Sepal.Length*

PlusMinus(mean, stderr, digits=1), data=iris ) )
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RowFactor Use a variable as a factor to give rows in a table.

Description

The functions take a variable and treat it as a factor in a table. RowFactor is designed for LaTeX
output, adding extra spacing to make the table more readable. Multicolumn also works only in
LaTeX, and displays the label in a style with the level on a line by itself, spanning multiple columns.

Usage

Factor(x, name = deparse(expr), levelnames = levels(x),
texify = getOption("tables.texify", FALSE),
expr = substitute(x), override = TRUE)

RowFactor(x, name = deparse(expr),
levelnames = levels(x),

spacing = 3, space = 1, suppressfirst = TRUE,
nopagebreak = "\\nopagebreak ",
texify = getOption("tables.texify", FALSE),
expr = substitute(x),
override = TRUE)

Multicolumn(x, name = deparse(expr), levelnames = levels(x),
width=2, first=1, justify="l",
texify = getOption("tables.texify", FALSE),
expr = substitute(x),
override = TRUE)

Arguments

x A variable to be treated as a factor.
name The display name for the factor.
levelnames The strings to use as levels of x.
texify If TRUE, characters that would be interpreted specially by LaTeX are escaped

(using latexTranslate) so they will print properly.
expr The expression to use in evaluating the factor. Generally the same as the expres-

sion passed as x, but internal uses may differ.
override Should the name for the factor override any previously specified Heading()

setting?
spacing Extra spacing will be added before every spacing lines.
space How much extra space to add, in ex units.
suppressfirst Whether to suppress the spacing in the first group.
nopagebreak LaTeX macro to insert to suppress page breaks except between groups.
width How many columns should the label span?
first Which is the first column in which this label appears?
justify How should the label be justified in the columns?
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Value

Language to insert into the table formula to achieve the desired table.

Examples

tabular( Factor(1:10, "row") ~
All(iris[1:10,])*Heading()*identity )

toLatex( tabular( RowFactor(1:10, "", 5) ~
All(iris[1:10,])*Heading()*identity ))

table_options Set or query options for the table formatting.

Description

These functions set or query options for table formatting in LaTeX or HTML output.

Usage

table_options(...)
booktabs(...)
htmloptions(head=TRUE, table=TRUE, pad=FALSE,

...)

Arguments

head logical; enables all of the HTML header options

table logical; enables output of all parts of the table itself

pad logical; enables all of the HTML padding options

... Any of the options listed in the Details below.

Details

The table_options() function sets a number of options that control formatting. Currently the
options that affect both LaTeX and HTML output are:

justification = "c" Default justification for the data columns in the table.

rowlabeljustification = "l" Default justification for row labels.

doBegin, doHeader, doBody, doFooter, doEnd These logical values (all defaults are TRUE) con-
trol the inclusion of specific parts of the output table.

knit_print = TRUE Do auto formatting when printing in a knitr document.

These options are only used for LaTeX output:

tabular = "tabular" The LaTeX environment to use for the table. Other choices such as "longtable"
might make sense.
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toprule, midrule, bottomrule The LaTeX macros to use for the lines in the table. By default
they are all "\hline".

titlerule = NULL The LaTeX macro to use to underline multicolumn titles. If NULL, no underlin-
ing is done.

latexleftpad, latexrightpad, latexminus, mathmode These control formatting of numbers
in the table. If TRUE (the default), blanks in R’s formatting are converted to hard spaces in
the LaTeX output, and negative signs are rendered properly. Generally this makes output look
better, but the ‘.tex’ input may be harder to read.

These options are only used for HTML output:

doHTMLheader, doCSS, doHTMLbody These control output of the material at the top of an HTML
page.

HTMLhead, CSS, HTMLbody These are the default strings to output when the corresponding element
is selected. If present, the string "CHARSET" will be replaced with the result of localeToCharset()
in the HTMLhead. The string "#ID" will be replaced with "#" followed by the id argument to
html.tabular (or removed if that is blank).

HTMLcaption This is an optional HTML caption for the table. If NULL, no caption is emitted.

HTMLleftpad, HTMLrightpad, HTMLminus These control formatting of numbers in the table. If
TRUE, blanks in R’s formatting are converted to hard spaces in the HTML output, and negative
signs are rendered properly. Generally this makes output look better, but cut and paste from
the table may include these special characters and not be recognized by other software. The
default is FALSE.

HTMLattributes This is a string to add to the "<table>" declaration at the top of the table. By
default, the attributes are 'frame="hsides" rules="groups"'. These set horizontal rules on
the top and bottom of the table and between the header, body, and footer (if present).

HTMLfooter This is NULL for no footer, or HTML code to insert in the table. Note that in HTML
the footer should be specified before the body of the table; html.tabular will do this if both
are written in the same call.

These may be set persistently by calling table_options(), or just for the duration of the call by
passing them in a list via latex(options=list( ... )). Additional ... arguments to latex are
passed to format.

The booktabs() function sets the table_options() values to different defaults, suitable for use
with the booktabs LaTeX package.

The htmloptions() function constructs a list suitable for the options argument to html.tabular,
with grouping of options that rarely differ from each other.

Note that any LaTeX code can be used in the rule options; for example, see the longtable example
in the vignette. Material to go above the headers goes into toprule, material between the headers
and the body goes into midrule, and material at the bottom of the table goes into bottomrule.

Value

table_options() and booktabs() return the previous settings.

htmloptions() returns a list of settings without changing the defaults.
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See Also

latex.tabular, html.tabular

Examples

tab <- tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

toLatex(tab)
save <- booktabs()
toLatex(tab)
table_options(save)

f <- tempfile(fileext = ".html")
if (interactive())

toHTML(tab, f,
options=htmloptions(HTMLcaption="Table of Iris Data",

pad = TRUE))

tabular Compute complex table

Description

Computes a table of summary statistics, cross-classified by various variables.

Usage

tabular(table, ...)
## Default S3 method:
tabular(table, ...)
## S3 method for class 'formula'
tabular(table, data = NULL, n, suppressLabels = 0, ...)
## S3 method for class 'tabular'
print(x, justification="n", ...)
## S3 method for class 'tabular'
format(x, digits=4, justification="n", latex=FALSE, html=FALSE,

leftpad = TRUE, rightpad = TRUE, minus = TRUE,
mathmode = TRUE, ...)

## S3 method for class 'tabular'
x[i, j, ..., drop=FALSE]
## S3 method for class 'tabular'
cbind(..., deparse.level = 1)
## S3 method for class 'tabular'
rbind(..., deparse.level = 1)
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Arguments

table A table expression. See the Details below.

data An optional dataframe, list or environment in which to look for variables in the
table.

n An optional value giving the length of the data. See the Details below.

suppressLabels How many initial labels to suppress?

x The object to print, format, or subset.

digits, ... In the print and format methods, how many significant digits or other parameters
to show by default? See Formatting below.

justification The default justification to use in the table.

latex If TRUE, the latexNumeric function will be applied when formatting numeric
columns after format, to maintain spacing and handle signs properly.

html If TRUE, the htmlNumeric function will be applied when formatting numeric
columns after format, to maintain spacing and handle signs properly.

leftpad, rightpad, minus, mathmode
Options to pass to latexNumeric or htmlNumeric to control details of format-
ting. See those pages for details.

i, j, drop The usual arguments for matrix indexing, but see the Details below.

deparse.level Ignored. (Present because the generic requires it.)

Details

For the purposes of this function, a "table" is a rectangular array of values, computed using a formula
expression. The left hand side of the formula describes the rows of the table, the right hand side
describes the columns.

Within the expression for the rows or columns, the operators +, * and = have special meanings.

The + operator represents concatenation, so that x + y ~ z says to show the rows corresponding to x
above the rows corresponding to y.

The * operator represents nesting, so that x*y ~ z says to show the rows of y within each row
corresponding to x.

The = operator sets a new name for a term; it is an abbreviation for the Heading() pseudo-function.
(“Pseudo-functions” are described in the tables vignette.) Note that = has low operator precedence
and may be confused by the parser with setting function arguments, so parentheses are usually
needed.

Parentheses may be used to group terms in the usual arithmetic way, so (x + y)*(u + v) is equiva-
lent to x*u + x*v + y*u + y*v.

The names Format, .Format and Heading have special meaning; see the section on Formatting
below.

The interpretation of other terms in the formulas depends on how they evaluate.

If the term evaluates to a function, it should be a summary function that produces a scalar value when
applied to a vector of values, and that scalar will be displayed in the table. For example, (mean +
var) ~ x will display the mean of x above the variance of x. If no function is specified, length is
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assumed, so the table will display counts. (At most one summary function may be specified in any
one term, so mean*var would be an error.)

If the term evaluates to a logical vector, it is assumed to specify a subset. For example, ~ (x > 3) +
(x > 5) will tabulate the counts of those two subsets.

If the term evaluates to a factor, it generates multiple rows or columns, corresponding to the different
levels of the factor. For example if A has three levels, then A ~ mean*x will calculate the mean of x
within each level of A.

If the term evaluates to a language object, it is treated as a macro, and expanded in place in the
formula.

Other terms are assumed to be R expressions producing a vector of values to be summarized in
the table. Only one vector of values can be specified in any given term, but different terms can
summarize different values. is.atomic must evaluate to TRUE for these values for them to be
recognized.

All logical, factor or other values in the table should be the same length, as if they were columns
in a dataframe (but they can be computed values). If n is missing but data is a dataframe, n is set
from that. Otherwise, if terms such as 1 appear in a table, the length is assumed to be the same as
for previous terms. As a last resort, set the n argument in the call to tabular() explicitly.

The "[" method extracts a subset of the table. For indexing, consider the table to consist of a matrix
containing the values. If drop=TRUE, the labels and attributes are dropped. If drop=FALSE, the
default, the i and j indices must select a rectangular block of the table; matrix indexing (using a
two column matrix or a full matrix of logical values) is not supported.

Value

An object of S3 class "tabular". This is a matrix of mode list, whose entries are computed sum-
mary values, with the following attributes:

rowLabels A matrix of labels for the rows. This will have the same number of rows as the
main matrix, but may have multiple columns for different nested levels of labels.
If a label covers multiple rows, it is entered in the first row, and NA is used to fill
following rows.

colLabels Like rowLabels, but labelling the columns.

table The original table expression being displayed. A list of the original format spec-
ifications are attached as a "fmtlist" attribute.

formats A matrix of the same shape as the main result, containing NA for default format-
ting, or an index into the format list.

Formatting

The tabular() function does no formatting of computed values, but it records requests for format-
ting. The format.tabular(), print.tabular() and latex.tabular() functions make use of
these requests.

By default, columns are formatted using the format function, with arguments digits and any other
arguments passed in .... Each column is formatted separately, similarly to how a matrix is printed
by default.
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To request special formatting, four pseudo-functions are provided. The first is Format. Normally
it includes arguments to pass to the format() function, e.g. Format(digits=2). It may instead
include a call to a function, e.g. Format(sprintf("%.2f"). In either case the summary val-
ues from cells in the table that are nested below the Format specification will be passed to that
function in an argument named x, i.e. in the first example, the values would be formatted using
format(digits=2, x=values), and in the second, using sprintf("%.2f", x=values). Users
can supply their own function to be used for formatting; it should take values in a named argument
x and return a character vector of the same length.

This can be used to control formatting in multiple columns at once. For example, Format(digits=2)*(mean
+ sd) will print both the mean and standard deviation in a single call to format, guaranteeing that
the same number of decimal places is used in both. (The iris example below demonstrates this.)

If the latex argument to latex.tabular is TRUE, then an effort is made to retain spacing, and to
convert minus signs to the appropriate type of dash using the latexNumeric function.

The second pseudo-function .Format is mainly intended for internal use. It takes a single integer
argument, saying that data governed by this call uses the same formatting as another format spec-
ification. In this way entries can be commonly formatted even when they are not contiguous. The
integers are assigned sequentially as the format specification is parsed; users will likely need trial
and error to find the right value in a complicated table with multiple formats.

A third pseudo-function is Justify. It takes character values or names as arguments; how they are
treated depends on the output format. In format.tabular, coarse justification is done to left, right
or center, using l, r or c respectively. For LaTeX formatting, any string acceptable as a justification
string to LaTeX will be passed on.

A final pseudo-function is Heading. Use this function in the row definitions to set a heading
on the following column of row labels. (Internally this is how the headings on factor columns
are implemented.) If it is called with no argument, it suppresses the following heading. The
suppressLabels=n argument to tabular() is equivalent to repeating Heading() n times at the
start of the table formula. The = operator is an abbreviation for Heading(); see above.

tabular methods

The default tabular method just applies as.formula to table, and then calls tabular.formula.

The tabular.formula method is the main workhorse of the package. Other authors who wish to
produce tables directly from their own structures should normally create a formula whose environ-
ment contains all mentioned variables and call tabular.formula with appropriate arguments.

Author(s)

Duncan Murdoch

References

This function was inspired by my 20 year old memories of the SAS TABULATE procedure.

See Also

table and ftable are base R functions which produce tables of counts. The tables vignette has
many more examples and displays the formatted output.
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Examples

tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

# This example shows some of the less common options
Sex <- factor(sample(c("Male", "Female"), 100, replace = TRUE))
Status <- factor(sample(c("low", "medium", "high"), 100, replace = TRUE))
z <- rnorm(100)+5
fmt <- function(x) {

s <- format(x, digits=2)
even <- ((1:length(s)) %% 2) == 0
s[even] <- sprintf("(%s)", s[even])
s

}
tab <- tabular( Justify(c)*Heading()*z*Sex*Heading(Statistic)*Format(fmt())*(mean+sd)

~ Status )
tab
tab[1:2, c(2,3,1)]

toKable Convert tabular object to knitr_kable format.

Description

Converts the output of the tabular and related functions to a format consistent with the output of
the kable function, so that it can be customized using the kableExtra package.

Usage

toKable(table, format = getKnitrFormat(), booktabs = TRUE, ...)
getKnitrFormat(default = "latex")

Arguments

table An object of class tabular.

format The type of knitr_kable object desired; currently only "latex" and "html"
are supported.

booktabs Should the table be rendered in booktabs style? This only affects LaTeX output.

... Additional arguments to pass to html.tabular or latex.tabular.

default The default type of output if not running in a knitr document.

Value

An object of class knitr_kable, suitable for passing to functions in the kableExtra package.

See Also

kableExtra-package
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Examples

if (requireNamespace("kableExtra") &&
(!requireNamespace("pkgdown") || !pkgdown::in_pkgdown())) {

tab <- tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

print(kableExtra::kable_styling(toKable(tab), latex_options = "striped"))
cat("\n")
toKable(tab, format = "html", options = list(HTMLcaption = "Fisher's iris data"))

}

toTinytable Convert tabular object to tinytable format.

Description

Converts the output of the tabular and related functions to a format consistent with the output of
the tt function, so that it can be customized using the tinytable package.

Usage

toTinytable(table, ...)

Arguments

table An object of class tabular.
... Additional arguments to pass to tt.

Value

An object of class tinytable, suitable for passing to functions in the tinytable package. These
tables can be exported to several formats, including LaTeX, HTML, Markdown, Word, Typst, PDF,
and PNG.

See Also

tinytable-package

Examples

if (requireNamespace("tinytable")) {

tab <- tabular( (Species + 1) ~ (n=1) + Format(digits=2)*
(Sepal.Length + Sepal.Width)*(mean + sd), data=iris )

tab <- toTinytable(tab, theme = "striped")
tab <- tinytable::style_tt(tab, i = 1:2, background = "teal", color = "white")
tab

}
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useGroupLabels Format table with groups of lines

Description

When a factor level applies to multiple lines in a table, normally an extra column of row labels is
added to show the levels. This function merges that column into another column in the labels.

Usage

useGroupLabels(tab, col = 1,
indent = " ",
newcolumn = 1,
singleRow = TRUE,
extraLines = 0)

Arguments

tab A tabular object.

col Which column defines the groups?

indent A prefix to add to existing entries in the new column.

newcolumn Which column gets the group headings?

singleRow If a group has a single row and there is no entry in newcolumn in that row, put
the group label in the same row rather than in a separate row.

extraLines Add this many blank lines to separate the groups in addition to the line contain-
ing the group label.

Details

If newcolumn is less than 1 or greater than the number of row label columns (after removing column
col), extra columns will be added.

Value

A tabular object, modified to include header rows as specified.

Examples

set.seed(123)
n <- 10
df <- data.frame(a = factor(sample(1:3, n, replace=TRUE)),

b = factor(sample(1:3, n, replace=TRUE)),
x = rnorm(n))

levels(df$a) <- c("Long name 1", "Long name 2", "Long name 3")
levels(df$b) <- c("a", "abc", "abcdef")
library(tables)
tab <- tabular(a*Heading()*b ~ mean*x, data = df)
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tab <- tab[!is.na(tab[,1])]
useGroupLabels(tab)

write.csv.tabular Write table to file in CSV or other format.

Description

This writes the formatted table into a CSV or other delimeted file, for import into a spreadsheet or
other report writer.

Usage

write.csv.tabular(x, file="",
justification = "n", row.names=FALSE, ...)

write.table.tabular(x, file="",
justification = "n", row.names=FALSE, col.names=FALSE, ...)

Arguments

x An object from tabular.

file A filename or connection to which to write.

justification Parameter to pass to format.tabular.
row.names, col.names

Parameters to pass to write.csv or write.table

... Parameters to pass to format.tabular or write.table; see Details below.

Details

write.csv.tabular writes a simple version of the table (similar to what is produced by print.tabular)
to the given connection in CSV format, using write.csv. write.table.tabular does similarly
using the more general write.table.

The optional arguments in ... are sent to write.csv/write.table if their names exactly match
parameters to write.table; otherwise, they are sent to format.tabular.

Value

The return value from write.csv or write.table.

Examples

## Not run:
# This writes a table to the clipboard on Windows using tab delimiters, for
# easy import into a spreadsheet.

write.table.tabular(
tabular( (Species + 1) ~ (n=1) + Format(digits=2)*



36 write.csv.tabular

(Sepal.Length + Sepal.Width)*(mean + sd), data=iris ),
"clipboard", sep="\t")

## End(Not run)
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