Introduction to tirt: Testlet Item Response Theory

1. Overview

The tirt package provides a light-version user-friendly comprehensive toolkit for Item Response Theory (IRT) and Testlet Response Theory (TRT) analysis. It supports:

  1. Data Simulation: Generating data for simple IRT and Testlet models.

  2. Estimation: Marginal Maximum Likelihood (MML) and Joint Maximum Likelihood (JML) estimation.

  3. Fixed Calibration: Estimating item parameters with fixed persons, or person parameters with fixed items.

  4. Equating: Linking scales using Mean-Mean, Mean-Sigma, and Stocking-Lord methods.

This vignette walks through the primary workflows.

library(tirt)

2. Data Simulation

Before estimating models, let’s generate some synthetic data using sim_irt (standard IRT) and sim_trt (testlet structure).

2.1 Standard IRT Simulation

We generate responses for 500 examinees on 15 items using the 2-Parameter Logistic (2PL) model.

set.seed(123)
# Define item structure: 1 block of 15 items using 2PL
sim_data <- sim_irt(
  n_people = 500, 
  item_structure = list(
    list(model = "2PL", n_items = 15)
  ),
  theta_mean = 0,
  theta_sd = 1
)
#> ----------------------------------------------------------------
#> Starting Simulation for N = 500 examinees...
#> >> Ability (Theta): Generated from N(mean=0.00, sd=1.00).
#> >> Block 1: 15 items using 2PL
#>    - Discrimination (a): Default values used (Fixed at 1).
#>    - Difficulty (b): Default values used (Fixed at 0).
#> ----------------------------------------------------------------
#> Constructing final data frames...
#> Simulation Complete.
#> Summary: 15 items, 500 examinees.
#> ----------------------------------------------------------------

# Access responses and true parameters
head(sim_data$resp)
#>   item_1 item_2 item_3 item_4 item_5 item_6 item_7 item_8 item_9 item_10
#> 1      1      0      1      0      1      1      1      1      1       1
#> 2      0      0      1      0      0      1      0      1      0       0
#> 3      1      1      1      1      1      1      1      1      1       1
#> 4      0      1      1      1      0      1      0      0      0       1
#> 5      0      0      1      0      1      1      1      1      1       0
#> 6      1      1      1      1      1      1      1      1      1       1
#>   item_11 item_12 item_13 item_14 item_15
#> 1       0       0       0       1       0
#> 2       1       0       0       0       0
#> 3       1       1       1       0       1
#> 4       0       1       0       0       1
#> 5       1       0       1       0       0
#> 6       1       1       1       1       1
head(sim_data$true_params)
#>   item_id block model categories discrimination guessing difficulty
#> 1  item_1     1   2PL          2              1        0          0
#> 2  item_2     1   2PL          2              1        0          0
#> 3  item_3     1   2PL          2              1        0          0
#> 4  item_4     1   2PL          2              1        0          0
#> 5  item_5     1   2PL          2              1        0          0
#> 6  item_6     1   2PL          2              1        0          0

2.2 Testlet Simulation

For Testlet Response Theory, we define blocks that share a common local dependency (Gamma).

# Define 2 testlets with 5 items each
trt_data <- sim_trt(
  n_people = 500,
  item_structure = list(
    list(model = "2PLT", n_items = 5, testlet_id = "T1"),
    list(model = "2PLT", n_items = 5, testlet_id = "T2")
  )
)
#> ================================================================
#>    STARTING TRT SIMULATION (N = 500)
#> ================================================================
#> >> Ability (Theta): Generated from N(mean=0.00, sd=1.00).
#> >> Testlet Effects (Gamma):
#>    - Testlet 'T1': Generated Gamma ~ N(0, 0.50) [Default].
#>    - Testlet 'T2': Generated Gamma ~ N(0, 0.50) [Default].
#> >> Block 1: 5 items (Model: 2PLT, Testlet: T1)
#>       - Discrimination a: Default used (1.00).
#>       - Difficulty/Loc b: Default used (0.00).
#> >> Block 2: 5 items (Model: 2PLT, Testlet: T2)
#>       - Discrimination a: Default used (1.00).
#>       - Difficulty/Loc b: Default used (0.00).
#> ================================================================
#> Constructing final dataframes...
#> Simulation Complete.
#> Summary: 10 items, 500 examinees.
#> ================================================================

head(trt_data$resp)
#>   item_1 item_2 item_3 item_4 item_5 item_6 item_7 item_8 item_9 item_10
#> 1      0      1      1      0      0      1      0      0      0       0
#> 2      1      1      1      1      1      1      0      1      0       1
#> 3      1      0      1      1      1      0      0      0      0       0
#> 4      1      0      0      0      1      1      0      0      0       0
#> 5      0      1      1      0      0      0      0      1      0       1
#> 6      0      0      1      0      1      0      1      1      1       1

3. IRT Estimation

We can estimate parameters using binary_irt (for dichotomous data), polytomous_irt (for graded data), or mixed_irt (for both).

Here, we estimate the parameters for the data we just simulated.

# Estimate 2PL model
# Note: max_iter set low for vignette speed; use default (100) in practice
fit_2pl <- binary_irt(
  data = sim_data$resp, 
  model = "2PL", 
  method = "EM",
  control = list(max_iter = 20, verbose = FALSE) 
)

# View estimated item parameters
print(head(fit_2pl$item_params))
#>     item discrimination discrimination_se difficulty difficulty_se number
#> 1 item_1          0.926             0.114     -0.063         0.105    500
#> 2 item_2          0.986             0.117      0.018         0.100    500
#> 3 item_3          0.840             0.110     -0.101         0.115    500
#> 4 item_4          0.983             0.117     -0.061         0.100    500
#> 5 item_5          1.036             0.119      0.111         0.096    500
#> 6 item_6          0.914             0.113      0.029         0.106    500
#>   pvalue
#> 1  0.512
#> 2  0.496
#> 3  0.518
#> 4  0.512
#> 5  0.476
#> 6  0.494

# View model fit indices
print(fit_2pl$model_fit)
#>           Index     Value
#> 1 LogLikelihood -4219.624
#> 2           AIC  8499.247
#> 3           BIC  8625.685
#> 4    Iterations    13.000

4. Testlet (TRT) Estimation

When items are grouped into testlets (e.g., reading passages), standard IRT assumptions are violated. tirt allows you to model this dependency using Bi-factor or Testlet models. This package allows estimations for binary and polytomous testlet models

We use trt_binary for this example. We must define the group structure.

# Items 1-5 are Testlet 1, Items 6-10 are Testlet 2
testlet_structure <- list(
  c(1, 2, 3, 4, 5),   # Indices for Testlet 1
  c(6, 7, 8, 9, 10)   # Indices for Testlet 2
)

fit_trt <- trt_binary(
  data = trt_data$resp,
  group = testlet_structure,
  model = "2PLT",
  method = "EM",
  control = list(max_iter = 15, verbose = FALSE)
)

# The output includes item parameters
head(fit_trt$item_params)
#>     item discrimination discrimination_se  difficulty difficulty_se guessing
#> 1 item_1       1.887640         0.1768678  0.18400878    0.06118852        0
#> 2 item_2       1.030662         0.1142394 -0.06652782    0.09738936        0
#> 3 item_3       1.824778         0.1713166  0.02173113    0.06217262        0
#> 4 item_4       1.775003         0.1675142 -0.12431961    0.06403315        0
#> 5 item_5       1.823515         0.1713748  0.10875628    0.06233405        0
#> 6 item_6       1.636682         0.1541821  0.03051786    0.06822841        0
#>   guessing_se
#> 1           0
#> 2           0
#> 3           0
#> 4           0
#> 5           0
#> 6           0

# And person parameters including the testlet specific effects (Gamma)
head(fit_trt$person_params)
#>   person    ability ability_se    testlet_1 testlet_1_se  testlet_2
#> 1      1 -0.4179722  0.6295140  0.001012444    0.6714548 -0.3640896
#> 2      2  0.5696989  0.6508913  0.894816372    0.7296370 -0.4251104
#> 3      3 -0.1633864  0.6509442  0.951443765    0.6901421 -1.1210697
#> 4      4 -0.3173443  0.6253186  0.146364703    0.6644582 -0.4262548
#> 5      5 -0.3581111  0.6258050 -0.040190281    0.6693177 -0.2694689
#> 6      6  0.2154850  0.6239477 -0.249288095    0.6626316  0.4437022
#>   testlet_2_se
#> 1    0.6957473
#> 2    0.6885031
#> 3    0.7306446
#> 4    0.6925863
#> 5    0.6879875
#> 6    0.6911133

5. Universal Estimation (Mixed standaline & testlet items)

Real-world exams often contain a mix of independent items (i.e., using standard IRT) and item bundles/testlets (i.e., using TRT). The irt_trt function is a universal estimator that handles both simultaneously. It can also handle mixed data types (binary and polytomous) in the same run.

To use irt_trt, you must provide an item_spec data frame that maps each item to its model and testlet ID (if any).

5.1. Step 1: Simulate Mixed Structure Data

We will generate data for 1000 examinees with:

  1. 10 Independent Binary Items (2PL Model)

  2. 5 Independent Polytomous Items (GRM Model)

  3. 2 Testlet Items belonging to Testlet “T1” (2PLT Model)

  4. 3 Testlet Items belonging to Testlet “T2” (GPCMT Model)

cat("\n\n--- Generating Simulated Data ---\n")
#> 
#> 
#> --- Generating Simulated Data ---
set.seed(2025)

N <- 1000
# 20 Items Total:
# 1-10: Binary (2PL) - Independent
# 11-15: Polytomous (GRM, 3 cats) - Independent
# 16-17: Binary (2PLT) - Testlet 1
# 18-20: Polytomous (GPCT, 3 cats) - Testlet 2

theta <- rnorm(N, 0, 1)
gamma_1 <- rnorm(N, 0, 0.5) # Testlet 1 effect
gamma_2 <- rnorm(N, 0, 0.6) # Testlet 2 effect

resp_matrix <- matrix(NA, N, 20)
item_names <- paste0("Item_", 1:20)
colnames(resp_matrix) <- item_names

# Define Item Parameters (True Values)
a_true <- runif(20, 0.8, 1.5)
b_true <- seq(-1.5, 1.5, length.out = 20)

# 1. Simulate Binary Independent (1-10)
for(j in 1:10) {
  p <- 1 / (1 + exp(-a_true[j] * (theta - b_true[j])))
  resp_matrix[,j] <- rbinom(N, 1, p)
}

# 2. Simulate Poly Independent (11-15) - GR
for(j in 11:15) {
  b_k <- sort(c(b_true[j] - 0.7, b_true[j] + 0.7))
  p1 <- 1 / (1 + exp(-a_true[j] * (theta - b_k[1])))
  p2 <- 1 / (1 + exp(-a_true[j] * (theta - b_k[2])))
  # GRM Probabilities
  prob_0 <- 1 - p1
  prob_1 <- p1 - p2
  prob_2 <- p2
  # Sample
  r <- runif(N)
  resp_matrix[,j] <- ifelse(r < prob_0, 0, ifelse(r < prob_0 + prob_1, 1, 2))
}

# 3. Simulate Binary Testlet 1 (16-17)
for(j in 16:17) {
  eff_theta <- theta + gamma_1
  p <- 1 / (1 + exp(-a_true[j] * (eff_theta - b_true[j])))
  resp_matrix[,j] <- rbinom(N, 1, p)
}

# 4. Simulate Poly Testlet 2 (18-20) - GPCMT
for(j in 18:20) {
  eff_theta <- theta + gamma_2
  # GPCM steps (centered at b_true)
  b_vec <- c(b_true[j] - 0.5, b_true[j] + 0.5) 
  
  numer <- matrix(0, N, 3)
  numer[,1] <- 0
  numer[,2] <- a_true[j] * (eff_theta - b_vec[1])
  numer[,3] <- a_true[j] * (eff_theta - b_vec[1]) + a_true[j] * (eff_theta - b_vec[2])
  
  max_n <- apply(numer, 1, max)
  exps <- exp(numer - max_n)
  probs <- exps / rowSums(exps)
  
  r <- runif(N)
  resp_matrix[,j] <- apply(cbind(r, probs), 1, function(x) {
    if(x[1] < x[2]) return(0)
    if(x[1] < x[2]+x[3]) return(1)
    return(2)
  })
}

sim_data <- as.data.frame(resp_matrix)
#view the data
print(head(sim_data))
#>   Item_1 Item_2 Item_3 Item_4 Item_5 Item_6 Item_7 Item_8 Item_9 Item_10
#> 1      1      1      1      1      1      1      1      1      1       0
#> 2      1      1      1      1      0      0      1      1      0       1
#> 3      1      1      1      1      1      1      1      1      0       1
#> 4      1      1      1      1      1      1      1      1      1       1
#> 5      1      1      1      1      1      0      0      1      0       0
#> 6      1      1      1      1      1      0      0      0      1       0
#>   Item_11 Item_12 Item_13 Item_14 Item_15 Item_16 Item_17 Item_18 Item_19
#> 1       1       2       1       2       1       0       1       1       0
#> 2       1       2       2       0       2       0       0       2       1
#> 3       1       1       0       0       0       1       0       1       0
#> 4       1       2       2       2       1       0       0       2       2
#> 5       0       1       0       2       0       0       0       1       1
#> 6       2       1       1       0       0       0       0       0       0
#>   Item_20
#> 1       1
#> 2       1
#> 3       1
#> 4       2
#> 5       1
#> 6       0

5.2. Step 2: Create the Item Specification

The item_spec data frame tells the function how to treat each item.

  1. item: Must match column names in data.

  2. model: The model to use (e.g., “2PL”, “2PLT”, “GPCMT”, “RaschT”, etc.).

  3. testlet: The ID of the testlet. Use NA for independent items.

# Create Item Specification
spec <- data.frame(
  item = item_names,
  model = c(rep("2PL", 10), rep("GRM", 5), rep("2PLT", 2), rep("GPCMT", 3)),
  testlet = c(rep(NA, 15), rep("testlet1", 2), rep("testlet2", 3)),
  stringsAsFactors = FALSE
)
#view the spec
print(spec)
#>       item model  testlet
#> 1   Item_1   2PL     <NA>
#> 2   Item_2   2PL     <NA>
#> 3   Item_3   2PL     <NA>
#> 4   Item_4   2PL     <NA>
#> 5   Item_5   2PL     <NA>
#> 6   Item_6   2PL     <NA>
#> 7   Item_7   2PL     <NA>
#> 8   Item_8   2PL     <NA>
#> 9   Item_9   2PL     <NA>
#> 10 Item_10   2PL     <NA>
#> 11 Item_11   GRM     <NA>
#> 12 Item_12   GRM     <NA>
#> 13 Item_13   GRM     <NA>
#> 14 Item_14   GRM     <NA>
#> 15 Item_15   GRM     <NA>
#> 16 Item_16  2PLT testlet1
#> 17 Item_17  2PLT testlet1
#> 18 Item_18 GPCMT testlet2
#> 19 Item_19 GPCMT testlet2
#> 20 Item_20 GPCMT testlet2

5.3. Step 3: Run Estimation

We run the estimation. The function automatically detects that “T1” items share a nuisance dimension (Gamma) while the others depend only on Theta.

# Run the Universal Function
results <- irt_trt(sim_data, spec, method = "EM", control = list(max_iter=50, verbose=TRUE))
#> 
#> ================================================
#>         UNIVERSAL IRT/TRT ESTIMATION            
#> ================================================
#> Data Summary:
#>   - Total Items: 20
#>   - Binary Items: 12
#>   - Polytomous Items: 8
#> 
#> Structure:
#>   - Independent Items: 15
#>   - Testlet Items: 5 (grouped into 2 testlets)
#> 
#> NOTE on Testlets:
#>   Any item with a value in the 'testlet' string within the item_spec statement will be estimated
#>   as a Testlet item (Theta + Gamma), regardless of the model string.
#>   (e.g., model='GPCM' + testlet='T1' -> Testlet GPCT).
#> ------------------------------------------------
#> Data: 1000 Persons, 20 Items, 2 Testlets
#> ------------------------------------------------
#> Starting Estimation Loop...
#> Iter   1 | LogLik:  -14918.96 | Max Change: 1.25812    Iter   2 | LogLik:  -14004.14 | Max Change: 0.14006    Iter   3 | LogLik:  -13988.50 | Max Change: 0.05962    Iter   4 | LogLik:  -13979.68 | Max Change: 0.03897    Iter   5 | LogLik:  -13973.19 | Max Change: 0.02922    Iter   6 | LogLik:  -13968.36 | Max Change: 0.02305    Iter   7 | LogLik:  -13964.75 | Max Change: 0.01837    Iter   8 | LogLik:  -13962.04 | Max Change: 0.01476    Iter   9 | LogLik:  -13959.98 | Max Change: 0.01190    Iter  10 | LogLik:  -13958.41 | Max Change: 0.00966    Iter  11 | LogLik:  -13957.20 | Max Change: 0.00791    Iter  12 | LogLik:  -13956.26 | Max Change: 0.00648    Iter  13 | LogLik:  -13955.53 | Max Change: 0.00534    Iter  14 | LogLik:  -13954.95 | Max Change: 0.00440    Iter  15 | LogLik:  -13954.50 | Max Change: 0.00361    Iter  16 | LogLik:  -13954.13 | Max Change: 0.00298    Iter  17 | LogLik:  -13953.84 | Max Change: 0.00245    Iter  18 | LogLik:  -13953.61 | Max Change: 0.00202    Iter  19 | LogLik:  -13953.42 | Max Change: 0.00168    Iter  20 | LogLik:  -13953.27 | Max Change: 0.00139    Iter  21 | LogLik:  -13953.15 | Max Change: 0.00114    Iter  22 | LogLik:  -13953.04 | Max Change: 0.00095    Iter  23 | LogLik:  -13952.96 | Max Change: 0.00076    Iter  24 | LogLik:  -13952.90 | Max Change: 0.00065    Iter  25 | LogLik:  -13952.84 | Max Change: 0.00054    Iter  26 | LogLik:  -13952.80 | Max Change: 0.00045    Iter  27 | LogLik:  -13952.76 | Max Change: 0.00038    Iter  28 | LogLik:  -13952.73 | Max Change: 0.00030    Iter  29 | LogLik:  -13952.71 | Max Change: 0.00025    Iter  30 | LogLik:  -13952.69 | Max Change: 0.00021    Iter  31 | LogLik:  -13952.67 | Max Change: 0.00018    Iter  32 | LogLik:  -13952.66 | Max Change: 0.00018    Iter  33 | LogLik:  -13952.64 | Max Change: 0.00015    Iter  34 | LogLik:  -13952.64 | Max Change: 0.00013    Iter  35 | LogLik:  -13952.63 | Max Change: 0.00010    
#> 
#> >>> Convergence Confirmation: Model Converged!
#> ------------------------------------------------
#> Estimating Final Person Parameters (Theta)...
#> Using Theta range: [-4.0, 4.0]. Adjust via control=list(theta_range=c(...)).
#> Estimating Testlet Effects (Gamma) per person...
#> All parameters estimated. Formatting results...
#> All completed. You can view the results now.
#> ================================================

# Save Results
item_par=results$item_params
fit=results$model_fit
person_par=results$person_params

6. Fixed Parameter Calibration

In equating scenarios or computer-adaptive testing, we often need to estimate one set of parameters while holding the other fixed.

6.1 Fixed Item Calibration (Estimating Person Ability)

If we know the item parameters (e.g., from an item bank), we can estimate person ability. Below we first simulate items, including some items have “known parameters” and some items are “new items”.

# --- 1. Simulation Helper Functions ---

# Function to simulate Binary 2PL
sim_2pl <- function(theta, a, b) {
  D <- 1.7
  prob <- 1 / (1 + exp(-D * a * (theta - b)))
  resp <- ifelse(runif(length(theta)) < prob, 1, 0)
  return(resp)
}

# Function to simulate Polytomous (GPCM structure to match fixed_item logic)
sim_poly <- function(theta, a, steps) {
  n_cat <- length(steps) + 1
  n_stud <- length(theta)
  
  # Calculate numerators for categories 0, 1, 2...
  # P(k) proportional to exp( sum(a*(theta - step_j)) )
  
  probs <- matrix(0, nrow = n_stud, ncol = n_cat)
  probs[, 1] <- 1 # Reference category (unnormalized exp is 1 or e^0)
  
  current_sum <- 0
  for (k in 2:n_cat) {
    # Step parameters correspond to boundaries
    current_sum <- current_sum + a * (theta - steps[k-1])
    probs[, k] <- exp(current_sum)
  }
  
  # Normalize
  prob_sum <- rowSums(probs)
  probs_final <- probs / prob_sum
  
  # Random draw
  resp <- numeric(n_stud)
  for (i in 1:n_stud) {
    resp[i] <- sample(0:(n_cat-1), 1, prob = probs_final[i, ])
  }
  return(resp)
}

# --- 2. Generate Parameters for 50 Items ---

n_students <- 5497
true_theta <- rnorm(n_students, mean = 0.4, sd = 1.7)

all_items_meta <- list()
response_matrix <- matrix(NA, nrow = n_students, ncol = 50)
colnames(response_matrix) <- paste0("Item_", 1:50)

# --- Set 1: Known Dichotomous (Items 1-10) ---
# Model: 2PL
for (i in 1:10) {
  a <- runif(1, 0.8, 1.4)
  b <- rnorm(1, 0, 1)
  resp <- sim_2pl(true_theta, a, b)
  response_matrix[, i] <- resp
  all_items_meta[[i]] <- list(item = colnames(response_matrix)[i], type = "Known", model = "2PL", a = a, b = b)
}

# --- Set 2: Known Polytomous (Items 11-18) ---
# Model: Poly (3 categories: 0, 1, 2). Requires 2 steps (d1, d2).
for (i in 11:18) {
  a <- runif(1, 0.7, 1.2)
  d1 <- rnorm(1, -0.5, 0.3)
  d2 <- rnorm(1, 0.5, 0.3) # Steps usually ordered
  resp <- sim_poly(true_theta, a, c(d1, d2))
  response_matrix[, i] <- resp
  all_items_meta[[i]] <- list(item = colnames(response_matrix)[i], type = "Known", model = "Poly", a = a, d1 = d1, d2 = d2)
}

# --- Set 3: Unknown Dichotomous (Items 19-40) ---
# 22 Items
for (i in 19:40) {
  a <- runif(1, 0.8, 1.4)
  b <- rnorm(1, 0, 1)
  resp <- sim_2pl(true_theta, a, b)
  response_matrix[, i] <- resp
  all_items_meta[[i]] <- list(item = colnames(response_matrix)[i], type = "Unknown", model = "2PL", a = a, b = b)
}

# --- Set 4: Unknown Polytomous (Items 41-50) ---
# 10 Items (Varying categories: some 3 cat, some 4 cat)
for (i in 41:50) {
  a <- runif(1, 0.7, 1.2)
  # Mix of 3 categories (2 steps) and 4 categories (3 steps)
  if (i %% 2 == 0) {
    steps <- c(-0.8, 0, 0.8) # 4 cats
  } else {
    steps <- c(-0.5, 0.5)    # 3 cats
  }
  resp <- sim_poly(true_theta, a, steps)
  response_matrix[, i] <- resp
  all_items_meta[[i]] <- list(item = colnames(response_matrix)[i], type = "Unknown", model = "Poly", a = a, steps = steps)
}
#check
response_df <- as.data.frame(response_matrix)
head(response_df[, c(1:3, 11:13, 41:43)]) # Peak at data
#>   Item_1 Item_2 Item_3 Item_11 Item_12 Item_13 Item_41 Item_42 Item_43
#> 1      1      0      1       0       2       1       0       0       0
#> 2      0      0      0       0       0       0       1       0       1
#> 3      1      0      1       1       1       1       2       1       2
#> 4      0      0      0       0       0       0       1       0       0
#> 5      1      0      0       1       2       2       1       1       1
#> 6      1      0      0       0       1       2       1       1       0

Then we create a necessary data structure for the next calibration step. In this step, we need to specify known item with corresponding parameters.

# Create empty dataframe structure
known_params_df <- data.frame(
  item = character(),
  model = character(),
  a = numeric(),
  b = numeric(),
  d1 = numeric(),
  d2 = numeric(),
  stringsAsFactors = FALSE
)

# Populate with Known Items (1-18)
for (i in 1:18) {
  meta <- all_items_meta[[i]]
  
  if (meta$model == "2PL") {
    # Add row for Binary
    known_params_df <- rbind(known_params_df, data.frame(
      item = meta$item,
      model = "2PL",
      a = meta$a,
      b = meta$b,
      d1 = NA, d2 = NA
    ))
  } else {
    # Add row for Poly
    # Note: Using "GPCM" model string as our function uses GPCM math
    known_params_df <- rbind(known_params_df, data.frame(
      item = meta$item,
      model = "GPCM", 
      a = meta$a,
      b = NA,
      d1 = meta$d1,
      d2 = meta$d2
    ))
  }
}

# Display input to verify
print("Known Item Parameters Input:")
#> [1] "Known Item Parameters Input:"
print(known_params_df)
#>       item model         a          b          d1         d2
#> 1   Item_1   2PL 1.0287464 -0.9197240          NA         NA
#> 2   Item_2   2PL 1.0048075  1.2354626          NA         NA
#> 3   Item_3   2PL 0.9183354  0.6649479          NA         NA
#> 4   Item_4   2PL 1.2716232 -1.1443195          NA         NA
#> 5   Item_5   2PL 0.9924154  0.7640520          NA         NA
#> 6   Item_6   2PL 1.1279951  0.9675910          NA         NA
#> 7   Item_7   2PL 1.2603260  0.2995644          NA         NA
#> 8   Item_8   2PL 1.2943065  1.2325874          NA         NA
#> 9   Item_9   2PL 1.3738451 -1.7190245          NA         NA
#> 10 Item_10   2PL 1.0130638 -1.1422731          NA         NA
#> 11 Item_11  GPCM 1.1950806         NA  0.07845972 0.74138298
#> 12 Item_12  GPCM 1.1169482         NA -0.50576871 0.32892965
#> 13 Item_13  GPCM 1.1917066         NA -0.27650908 0.51124636
#> 14 Item_14  GPCM 0.9595820         NA -0.37947396 0.22564038
#> 15 Item_15  GPCM 0.9219541         NA -0.14945831 0.44633887
#> 16 Item_16  GPCM 0.9264782         NA -0.59867093 0.03966326
#> 17 Item_17  GPCM 0.9225556         NA -0.70413230 0.71069682
#> 18 Item_18  GPCM 1.0801744         NA -0.09153471 1.07061113

Finally, we can conduct a fiex-item calibration and check the final results.

# Run the calibration
# We set model_default = "2PL" (this applies to unknown binary items).
# The function automatically detects poly items in the unknown set based on response categories.
results <- fixed_item(
  response_df = response_df, 
  item_params_df = known_params_df,
  control = list(max_iter = 100)
)
#> ---------------------------------------------------------
#> Starting Fixed Item Calibration...
#> ---------------------------------------------------------
#> Inferred Unknown Binary: 2PL
#> Inferred Unknown Poly:   GPCM
#> Cycle 1: LogLik = -144716.33, Change = Inf
#> Cycle 2: LogLik = -142757.17, Change = 1959.1556
#> Cycle 3: LogLik = -142546.08, Change = 211.0919
#> Cycle 4: LogLik = -142456.85, Change = 89.2311
#> Cycle 5: LogLik = -142416.96, Change = 39.8897
#> Cycle 6: LogLik = -142398.92, Change = 18.0392
#> Cycle 7: LogLik = -142390.71, Change = 8.2095
#> Cycle 8: LogLik = -142386.96, Change = 3.7538
#> Cycle 9: LogLik = -142385.24, Change = 1.7196
#> Cycle 10: LogLik = -142384.45, Change = 0.7895
#> Cycle 11: LogLik = -142384.08, Change = 0.3636
#> Cycle 12: LogLik = -142383.92, Change = 0.1672
#> Cycle 13: LogLik = -142383.84, Change = 0.0768
#> Cycle 14: LogLik = -142383.80, Change = 0.0357
#> Cycle 15: LogLik = -142383.79, Change = 0.0165
#> Cycle 16: LogLik = -142383.78, Change = 0.0075
#> Cycle 17: LogLik = -142383.78, Change = 0.0035
#> Estimating Person Parameters...
#> ---------------------------------------------------------
#> Process Complete. You can view results now.

# Check that Items 1-18 are "Fixed" and match inputs.
# Check that Items 19-50 are "Estimated".
# Note how Poly items have step_1, step_2, etc.
item=results$item_params
person=results$person_params
fit=results$model_fit

6.2 Fixed Person Calibration (Estimating Item Difficulty)

Conversely, if we have known person abilities, we can calibrate new items. In this estimation, you can also choose to model a covariate if you believe that is releated to your latent variables. If not specified, then there will be no covariate in the modeling process.

The final output also contains some classic item statistics such as p-values and mean of item scores.

# --- Example: With Package Data ---
data("ela1", package = "tirt")

# Select Item Responses (Cols 1-30)
df_real <- ela1[, 1:30]
fixed_theta <- ela1$THETA
fixed_cov <- ela1$COVARIATE
real_res <- fix_person(df = df_real,
                            theta = fixed_theta,
                            model = "2PL",
                            covariate = fixed_cov)
head(real_res)
#>    item discrimination discrimination_se discrimination_zvalue
#> 1 ITEM1     0.08298835       0.004848405              17.11663
#> 2 ITEM2     0.08620777       0.005016701              17.18416
#> 3 ITEM3     0.09418605       0.004894558              19.24301
#> 4 ITEM4     0.18985935       0.009693893              19.58546
#> 5 ITEM5     0.21869224       0.011528756              18.96928
#> 6 ITEM6     0.03696713       0.006730610               5.49239
#>   discrimination_Pr_z  difficulty difficulty_se difficulty_zvalue
#> 1        1.115533e-65  -0.8287487     0.1058117         -7.832297
#> 2        3.489877e-66  -7.4745653     0.3911856        -19.107464
#> 3        1.615391e-82  -3.9376999     0.1807591        -21.784239
#> 4        2.057399e-85 -13.2792707     0.6164795        -21.540489
#> 5        3.060479e-80 -13.1473999     0.6265239        -20.984675
#> 6        3.965314e-08 -25.0506752     4.4253213         -5.660759
#>   difficulty_Pr_z    covariate covariate_se covariate_zvalue covariate_Pr_z
#> 1    4.884981e-15 -0.001330397 0.0003265024        -4.074693    4.60751e-05
#> 2    0.000000e+00 -0.001330397 0.0003265024        -4.074693    4.60751e-05
#> 3    0.000000e+00 -0.001330397 0.0003265024        -4.074693    4.60751e-05
#> 4    0.000000e+00 -0.001330397 0.0003265024        -4.074693    4.60751e-05
#> 5    0.000000e+00 -0.001330397 0.0003265024        -4.074693    4.60751e-05
#> 6    1.507053e-08 -0.001330397 0.0003265024        -4.074693    4.60751e-05
#>      pvalue number correlation mean_theta mean_covariate
#> 1 0.4983116  52417  0.07441120 -0.9305780      -1.196020
#> 2 0.6370262  52417  0.07473806 -0.9305780      -1.196020
#> 3 0.5702539  52417  0.08380568 -0.9305780      -1.196020
#> 4 0.9100940  39063  0.09939991 -0.8452539      -1.197829
#> 5 0.9331212  36454  0.09975399 -0.8022383      -1.185759
#> 6 0.7106403  34642  0.02892981 -0.7638062      -1.167999

7. Equating / Linking

equate_irt links two scales (Form X and Form Y) using common anchor items.

# Create dummy parameters for Form X (Base)
base_params <- data.frame(
  item = c("Item1", "Item2", "Item3", "Item4", "Item5"),
  model = "2PL",
  a = c(1.0, 1.2, 0.9, 1.1, 1.0),
  b = c(-1.0, -0.5, 0.0, 0.5, 1.0),
  stringsAsFactors = FALSE
)

# Create dummy parameters for Form Y (New)
# Suppose Form Y is harder and has different discrimination scaling
new_params <- data.frame(
  item = c("Item1", "Item2", "Item3", "Item6", "Item7"), # Items 1-3 are anchors
  model = "2PL",
  a = c(1.0, 1.2, 0.9, 1.1, 1.0) / 0.9,  # Scale shift
  b = (c(-1.0, -0.5, 0.0, 0.8, 1.2) * 0.9) + 0.2, # Location shift
  stringsAsFactors = FALSE
)

# Perform Equating
linked <- equate_irt(
  base_params = base_params,
  new_params = new_params,
  methods = c("Stocking-Lord", "Mean-Mean")
)
#> ---------------------------------------------------------
#> Starting IRT Equating / Linking
#> ---------------------------------------------------------
#> Methods selected: Stocking-Lord, Mean-Mean
#> Models detected: 2PL
#> Items detected: Base = 5 | New = 5
#> Anchor items detected: 3
#> Anchor IDs: Item1, Item2, Item3
#> Estimating constants: Mean-Mean...
#> Estimating constants: Stocking-Lord (TCC Optimization)...
#> Transforming parameters...
#> Equating completed.
#> ---------------------------------------------------------

# View Linking Constants (A and B)
print(linked$linking_constants)
#>          Method        A          B
#> 1     Mean-Mean 0.900000 -0.2750000
#> 2 Stocking-Lord 1.111111 -0.2222221

# View Transformed Parameters for Form Y (put on Form X scale)
print(linked$transformed_item_params)
#>     item anchor_status        method model discrimination discrimination_se
#> 1  Item1        Anchor     Mean-Mean   2PL      1.2345679                NA
#> 2  Item2        Anchor     Mean-Mean   2PL      1.4814815                NA
#> 3  Item3        Anchor     Mean-Mean   2PL      1.1111111                NA
#> 4  Item6           New     Mean-Mean   2PL      1.3580247                NA
#> 5  Item7           New     Mean-Mean   2PL      1.2345679                NA
#> 6  Item1        Anchor Stocking-Lord   2PL      0.9999997                NA
#> 7  Item2        Anchor Stocking-Lord   2PL      1.1999997                NA
#> 8  Item3        Anchor Stocking-Lord   2PL      0.8999998                NA
#> 9  Item6           New Stocking-Lord   2PL      1.0999997                NA
#> 10 Item7           New Stocking-Lord   2PL      0.9999997                NA
#>       difficulty difficulty_se guessing guessing_se
#> 1  -9.050000e-01            NA        0          NA
#> 2  -5.000000e-01            NA        0          NA
#> 3  -9.500000e-02            NA        0          NA
#> 4   5.530000e-01            NA        0          NA
#> 5   8.770000e-01            NA        0          NA
#> 6  -1.000000e+00            NA        0          NA
#> 7  -5.000000e-01            NA        0          NA
#> 8   1.380493e-07            NA        0          NA
#> 9   8.000003e-01            NA        0          NA
#> 10  1.200000e+00            NA        0          NA

8. Final Comment

The tirt package streamlines complex psychometric analyses. For detailed documentation on specific functions, please use the help command, e.g., ?binary_irt.

mirror server hosted at Truenetwork, Russian Federation.