expkv

an expandable (key)=(value) implementation

Jonathan P. Spratte®

2021-09-20 V1.9a

Abstract

expkv provides a small interface for (key)=(value) parsing. The parsing macro
is fully expandable, the (code) of your keys might be not. expiv is swift, close
to the fastest (key)=(value) implementation. However it is the fastest which
copes with active commas and equal signs and doesn’t strip braces accidentally.

Contents

1 Documentation
1.1 SettingupKeys
1.2 ParsingKeys
1.3 Other Macros e
1.4 BExamples.
1.4.1 Standard Use-Case
1.4.2 A MacrotoDrawRules,
1.4.3 An Expandable (key)=(value) Macro Using \ekvsneak
1.5 ErrorMessages o e
1.5.1 Load Time
1.5.2 DefiningKeys oo o oL
1.5.3 UsingKeys o
1.6 Bugs e
1.7 CompariSOnsottt e
1.8 License e

2 Implementation
2.1 TheXTgX Package
2.2 TheConTpgXtmodule
2.3 TheGenericCode

Index

*jspratte@yahoo.de

19
19
19
19

41

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

1 Documentation

expkv provides an expandable (key)=(value) parser. The (key)=(value) pairs should
be given as a comma separated list and the separator between a (key) and the associated
(value) should be an equal sign. Both, the commas and the equal signs, might be of
category 12 (other) or 13 (active). To support this is necessary as for example babel turns
characters active for some languages, for instance the equal sign is turned active for
Turkish.

expyv is usable as generic code, as a XTEX package or as a ConTgXt module. To use it,
just use one of:

\input expkv % plainTeX
\usepackage{expkv} % LaTeX
\usemodule[expkv] % ConTeXt

Both the IXTEX package and the ConTgXt module don’t do more than expkv.tex, ex-
cept calling \ProvidesPackage and setting things up such that expkv.tex will use
\ProvidesFile, or printing some status information. The ConTgXt support is not thor-
oughly tested, though (since I don’t use ConTgXt myself I don’t know if there are addi-
tional pitfalls I wasn’t aware of).

In the expkv family are other packages contained which provide additional function-
ality. Those packages currently are:

expvIiDEF a key-defining frontend for expiv using a (key)=(value) syntax
expkvics define expandable (key)=(value) macros using expkv
expikvioPT parse package and class options with expyv

Note that while the package names are stylised with a vertical rule, their names are all
lower case with a hyphen (e.g., expkv-def).

A list of concise comparisons to other (key)=(value) packages is contained in
subsection 1.7.

1.1 Setting up Keys

expkv provides a rather simple approach to setting up keys, similar to keyval. However
there is an auxiliary package named expyvipEr which provides a more sophisticated
interface, similar to well established packages like pgfkeys or l3keys.

Keys in expyv (as in almost all other (key)=(value) implementations) belong to
a set such that different sets can contain keys of the same name. Unlike many other
implementations expkv doesn’t provide means to set a default value, instead we have
keys that take values and keys that don’t (the latter are called NoVal keys by expkv), but
both can have the same name (on the user level).

The following macros are available to define new keys. Those macros containing
“def” in their name can be prefixed by anything allowed to prefix \def (but don’t use
\outer, keys defined with it won’t ever be usable), prefixes allowed for \1et can prefix
those with “let” in their name, accordingly. Neither (set) nor (key) are allowed to
be empty for new keys. (set) will be used as is inside of \csname ...\endcsname and
(key) will get \detokenized. Also (set) should not contain an explicit \par token.

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-opt
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

\ekvdef

\ekvdefNoVal

\ekvlet

\ekvletNoVal

\ekvletkv

\ekvletkvNoVal

\ekvdefunknown

\ekvdef{(set)}{(key)}{(code)}

Defines a (key) taking a value in a (set) to expand to (code). In (code) you can use #1
to refer to the given value.

Example: Define text in foo to store the value inside \foo@text:
\protected\long\ekvdef{foo}{text}{\def\foo@text{#1}}

\ekvdefNoVal{(set)}{(key)}{({code)}

Defines a no value taking (key) in a (set) to expand to (code).

Example: Define bool in foo to set \iffoo@bool to true:
\protected\ekvdefNoVal{foo}{bool}{\foo@booltrue}

\ekvlet{(set)}{(key)}{cs)

Let the value taking (key) in (set) to (cs), there are no checks on (cs) enforced, but the
code should expect the value as a single braced argument directly following it.

Example: Let cmd in foo do the same as \foo@cmd:
\ekvlet{foo}{cmd}\foo@cmd

\ekvletNoVal{(set)}{(key)}(cs)

Let the no value taking (key) in (set) to (cs), it is not checked whether (cs) exists or
that it takes no parameter.

Example: See above.

\ekvletkv{(set)}{(key)H(set2)}{(key2)}

Let the (key) in (set) to (key2) in (set2), it is not checked whether that second key
exists (but take a look at \ekvifdefined).

Example: Let B in bar be an alias for A in foo:
\ekvletkv{bar}{B}{foo}{A}

\ekvletkvNoVal{(set)}{(key)}{(set2)}{(key2)}

Let the (key) in (set) to (key2) in (set2), it is not checked whether that second key
exists (but take a look at \ekvifdefinedNoVal).

Example: See above.

\ekvdefunknown{(set)}{(code)}

By default an error will be thrown if an unknown (key) is encountered. With this macro
you can define (code) that will be executed for a given (set) when an unknown (key)
with a (value) was encountered instead of throwing an error. You can refer to the given
(value) with #1 and to the unknown (key)’s name with #2 in {code).' \ekvdefunknown
and \ekvredirectunknown are mutually exclusive, you can’t use both.

Example: Also search bar for undefined keys of set foo:
\long\ekvdefunknown{foo}{\ekvset{bar}{#2={#1}}}

1That order is correct, this way the code is faster.

\ekvdefunknownNoVal

\ekvredirectunknown

\ekvredirectunknownNoVal

This example differs from using \ekvredirectunknown{foo}{bar} (see below) in that
also the unknown-key handler of the bar set will be triggered, error messages for unde-
fined keys will look different, and this is slower than using \ekvredirectunknown.

\ekvdefunknownNoVal{(set)}{(code)}

As already explained for \ekvdefunknown, expgv would throw an error when encoun-
tering an unknown (key). With this you can instead let it execute (code) if an un-
known NoVal (key) was encountered. You can refer to the given (key) with #1 in
(code). \ekvdefunknownNoVal and \ekvredirectunknownNoVal are mutually exclusive,
you can’t use both.

Example: Also search bar for undefined keys of set foo:
\ekvdefunknownNoVal{foo}{\ekvset{bar}{#1}}

\ekvredirectunknown{(set)}{(set-1list)}

This is a short cut to set up a special \ekvdefunknown for (set) that will check each
set in the comma separated (set-1ist) for the unknown (key). You can’t use prefixes
(so no \long or \protected) with this macro, the resulting unknown-key handler will
always be \long. The first set in the (set-1ist) has highest priority. Once the (key)
is found the remaining sets are discarded, if the (key) isn’t found in any set an error
will be thrown eventually. Note that the error messages are affected by the use of this
macro, in particular, it isn’t checked whether a NoVal key of the same name is defined in
order to throw an unwanted value error. \ekvdefunknown and \ekvredirectunknown
are mutually exclusive, you can’t use both.

Example: For every key not defined in the set foo also search the sets bar and baz:
\ekvredirectunknown{foo}{bar, baz}

\ekvredirectunknownNoVal{(set)}{(set-1ist)}

This behaves just like \ekvredirectunknown and does the same but for the NoVal keys.
Again no prefixes are supported. Note that the error messages are affected by the
use of this macro, in particular, it isn’t checked whether a normal key of the same
name is defined in order to throw a missing value error. \ekvdefunknownNoVal and
\ekvredirectunknownNoVal are mutually exclusive, you can’t use both.

Example: See above.

https://github.com/Skillmon/tex_expkv

\ekvset

\ekvsetSneaked

\ekvsetdef

\ekvsetSneakeddef

1.2 Parsing Keys

\ekvset{(set)}{(key)=(value),...}

Splits (key)=(value) pairs on commas. From both (key) and (value) up to one space
is stripped from both ends, if then only a braced group remains the braces are stripped
as well. So \ekvset{foo}{bar=baz} and \ekvset{foo}{ {bar}= {baz} } will both do
\(foobarcode){baz}, so you can hide commas, equal signs and spaces at the ends of
either (key) or (value) by putting braces around them. If you omit the equal sign
the code of the key created with the NoVal variants described in subsection 1.1 will be
executed. If (key)=(value) contains more than a single unhidden equal sign, it will be
split at the first one and the others are considered part of the value. \ekvset should be
nestable.

\ekvset is currently not alignment safe.> As a result, key names and values that
contain an & must be wrapped in braces when \ekvset is used inside an alignment
(like IATEX 2¢’s tabular environment) or you have to create a wrapper that ensures an
alignment safe context.

Example: Parse key=arg, key in the set foo:
\ekvset{foo}{key=arg, key}

\ekvsetSneaked{(set)}{(sneak)}{(key)=(value), ...}

Just like \ekvset, this macro parses the (key)=(value) pairs within the given (set).
But \ekvsetSneaked will behave as if \ekvsneak has been called with (sneak) as its
argument as the first action.

Example: Parse key=arg, key in the set foo with \afterwards sneaked out:
\ekvsetSneaked{foo}{\afterwards}{key=arg, key}

\ekvsetdef(cs){(set)}

With this function you can define a shorthand macro (cs) to parse keys of a specified

(set). It is always defined \long, but if you need to you can also prefix it with \global.

The resulting macro is faster than but else equivalent to the idiomatic definition:
\long\def(cs)#1{\ekvset{(set){#1}}

Example: Define the macro \foosetup to parse keys in the set foo and use it to parse
key=arg, key:

\ekvsetdef\foosetup {foo}

\foosetup {key=arg, key}

\ekvsetSneakeddef(cs){(set)}

Just like \ekvsetdef this defines a shorthand macro (cs), but this macro will make it
a shorthand for \ekvsetSneaked, meaning that (cs) will take two arguments, the first
being stuff that should be given to \ekvsneak and the second the (key)=(value) list.
The resulting macro is faster than but else equivalent to the idiomatic definition:
\long\def(cs)#1#2{\ekvsetSneaked{(set) }{#1}{#2}}

Example: Define the macro \foothings to parse keys in the set foo and accept a sneaked
argument, then use it to parse key=arg, key and sneak \afterwards:

2This might change in the future, I've not decided yet.

\ekvsetdefSneaked

\ekvparse

\ekvsetSneakeddef\foothings{foo}
\foothings{\afterwards}{key=arg, key}

\ekvsetdefSneaked(cs){(set)}{(sneaked)}

And this one behaves like \ekvsetSneakeddef but with a fixed (sneaked) argument. So
the resulting macro is faster than but else equivalent to the idiomatic definition:
\long\def(cs)#1{\ekvsetSneaked{(set)}{(sneaked)}{#1}}

Example: Define the macro \barthing to parse keys in the set bar and always execute
\afterwards afterwards, then use it to parse key=arg, key:
\ekvsetdefSneaked\barthing{bar}{\afterwards}

\barthing {key=arg, key}

\ekvparse{(codel)}{(code2)}{(key)=(value), ...}

This macro parses the (key)=(value) pairs and provides those list elements which are
only keys as an argument to (codel), and those which are a (key)=(value) pair to
(code2) as two arguments. It is fully expandable as well and returns each element of
the parsed list in \unexpanded, which has no effect outside of an \expanded or \edef
context. Also \ekvparse expands in exactly two steps of expansion. You can use multiple
tokens in (codel) and (code2) or just a single control sequence name. In both cases the
found (key) and (value) are provided as a brace group following them.

\ekvparse is alignment safe, meaning that you don’t have to take any precautions if
it is used inside an alignment context (like IXTEX 2¢’s tabular environment) and any key
or value can contain an &.

\ekvbreak, \ekvsneak, and \ekvchangeset and their relatives don’'t work in
\ekvparse. It is analogue to expl3’s \keyval_parse:NNn, but not with the same parsing
rules — \keyval_parse:NNn throws an error on multiple equal signs per (key)=(value)
pair and on empty (key) names in a (key)=(value) pair, both of which \ekvparse
doesn’t deal with.

Example:

\ekvparse{\handlekey{S}}{\handlekeyval{S}}{foo = bar, key, baz={zzz}}
would be equivalent to
\handlekeyval{S}{foo}{bar}\handlekey{S}{key}\handlekeyval{S}{baz}{zzz}

and afterwards \handlekey and \handlekeyval would have to further handle the (key).
There are no macros like these two contained in expkv, you have to set them up yourself
if you want to use \ekvparse (of course the names might differ). If you need the results
of \ekvparse as the argument for another macro, you should use \expanded, or expand
\ekvparse twice, as only then the input stream will contain the output above:

\expandafter\parse\expanded{\ekvparse\k\kv{foo = bar, key, baz={zzz}}}
or

\expandafter\expandafter\expandafter
\parse\ekvparse\k\kv{foo = bar, key, baz={zzz}}

would both expand to
\parse\kv{foo}{bar}\k{key}\kv{baz}{zzz}

https://github.com/Skillmon/tex_expkv

\ekvVersion
\ekvDate

\ekvifdefined
\ekvifdefinedNoVal

\ekvifdefinedset

\ekvbreak
\ekvbreakPreSneak
\ekvbreakPostSneak

\ekvsneak

\ekvsneakPre

1.3 Other Macros

expkv provides some other macros which might be of interest.

These two macros store the version and date of the package.

\ekvifdefined{(set)} (key)}{{true)}{(false)}

\ekvifdefinedNoVal{(set)}{(key)}{(true)}{(false)}

These two macros test whether there is a (key) in (set). It is false if either a hash table
entry doesn’t exist for that key or its meaning is \relax.

Example: Check whether the key special is already defined in set foo, if it isn’t input a
file that contains more key definitions:
\ekvifdefined{foo}{special }{}{\input{foo.morekeys.tex}}

\ekvifdefinedset{(set)}{(true)}{(false)}

This macro tests whether (set) is defined (which it is if at least one key was defined for
it). If it is (true) will be run, else (false).

Example: Check whether the set VeRyUnLiKeLy is already defined, if so throw an error,
else do nothing:
\ekvifdefinedset{VeRyUnLiKeLy}

{\errmessage{VeRyUnLiKeLy already defined}}{}

\ekvbreak{(after)}

Gobbles the remainder of the current \ekvset macro and its argument list and rein-
serts (after). So this can be used to break out of \ekvset. The first variant will
also gobble anything that has been sneaked out using \ekvsneak or \ekvsneakPre,
while \ekvbreakPreSneak will put (after) before anything that has been smuggled and
\ekvbreakPostSneak will put (after) after the stuff that has been sneaked out.

Example: Define a key abort that will stop key parsing inside the set foo and execute
\foo@aborted, or if it got a value \foo@aborted@with:
\ekvdefNoVal{foo}{abort}{\ekvbreak{\foo@aborted}}
\ekvdef{foo}{abort}{\ekvbreak{\foo@aborted@with{#1}}}

\ekvsneak{(after)}

Puts (after) after the effects of \ekvset. The first variant will put (after) after any other
tokens which might have been sneaked before, while \ekvsneakPre will put (after)
before other smuggled stuff. This reads and reinserts the remainder of the current
\ekvset macro and its argument list to do its job. After \ekvset has parsed the entire
(key)=(value) list everything that has been \ekvsneaked will be left in the input stream.
A small usage example is shown in subsubsection 1.4.3.

Example: Define a key secret in the set foo that will sneak out \foo@secretly@sneaked:
\ekvdefNoVal{foo}{secret}{\ekvsneak{\foo@secretly@sneaked}}

https://github.com/Skillmon/tex_expkv

\ekvchangeset

\ekvoptarg

\ekvoptargTF

\ekvcsvloop

\ekvchangeset{(new-set)}

Replaces the current set with (new-set), so for the rest of the current \ekvset call, that

call behaves as if it was called with \ekvset{(new-set)}. It is comparable to using

(key)/ .cd in pgfkeys.

Example: Define a key cd in set foo that will change to another set as specified in the

value, if the set is undefined it’ll stop the parsing and throw an error as defined in the

macro \foo@cdQ@error:

\ekvdef{foo}{cd}
{\ekvifdefinedset{#1}{\ekvchangeset{#1}}{\ekvbreak{\foo@cd@error}}}

\ekvoptarg{(next)}{(default)}

This macro will check for a following optional argument in brackets ([]1) expandably.
After the optional argument there has to be a mandatory one. The code in (next) should
expect two arguments (the processed optional argument and the mandatory one). If there
was an optional argument the result will be (next){(optional)}{mandatory) (so the op-
tional argument will be wrapped in braces, the mandatory argument will be untouched).
If there was no optional argument the result will be (next){(default)}{(mandatory)}
(so the default will be used and the mandatory argument will be wrapped in braces after
being read once - if it was already wrapped it is effectively unchanged).

\ekvoptarg expands in exactly two steps, grabs all the arguments only at the second
expansion step, and is alignment safe. It has its limitations however. It can’t tell the
difference between [and { [}, so it doesn’t work if the mandatory argument is a single
bracket. Also if the optional argument should contain a nested closing bracket, the
optional argument has to use nested braces like so: [{arg]ument}].

Example: Say we have a macro that should take an optional argument defaulting to 1:
\newcommand\ foo { \ekvoptarg\@foo{1}}
\newcommand\@foo [2] { Mandatory: #2\par Optional: #I}

\ekvoptargTF{(true)}{(false)}

This macro is similar to \ekvoptarg, but will result in (true){(optional)}{mandatory)
or (false){(mandatory)} instead of placing a default value.

\ekvoptargTF expands in exactly two steps, grabs all the arguments only at the
second expansion step, and is alignment safe. It has the same limitations as \ekvoptarg.

Example: Say we have a macro that should behave differently depending on whether
there was an optional argument or not. This could be done with:

\newcommand\ foo {\ekvoptargTF\foo@a\foo@b}

\newcommand\foo@a [2] {Mandatory: #2\par Optional: #1}
\newcommand\foo@b [1]{Mandatory: #I1\par No optional.}

\ekvcsvloop{({code)}{({csv-1ist)}

This loops over the comma separated items in (csv-1list) and, after stripping spaces
from either end of (item) and removing at most one set of outer braces, leaves
\unexpanded{(code){(item)}} for each list item in the input stream. Blank elements
are ignored (if you need a blank element it should be given as {}). It supports both active
commas and commas of category other. You could consider it as a watered down version
of \ekvparse. However it is not alignment safe, which you could achieve by nesting it in
\expanded (since the braces around the argument of \expanded will hide &s from TgX’s
alignment parsing).

\ekverr

Example: The following splits a comma separated list and prints it in a typewriter font
with parentheses around each element.

\newcommand+\myprocessor[1]{ \texttt{(#1)}}
\ekvcsvloop \myprocessor{abc,def, ghi}\par (abc) (def) (ghi)
\ekvcsvloop \myprocessor{1,,2,,3,,4}\par L@ G @

\ekverr{(package)}{(message)}

This macro will throw an error fully expandably.3 The error length is limited to a
total length of 69 characters, and since ten characters will be added for the formatting
(!u and (Error:,) that leaves us with a total length for (package) plus (message) of
59 characters. If the message gets longer TgX will only display the first 69 characters and
append \ETC. to the end.

Neither (package) nor (message) expand any further. Also (package) must not
contain an explicit \par token or the token \thanks@jfbu. No such restriction applies to
(message).

If =~ J is set up as the \newlinechar (which is the case in IXTEX 2¢ but not in plain
TEX by default) you can use that to introduce line breaks in your error message. However
that doesn’t change the message length limit.

After your own error message some further text will be placed. The formatting of
that text will look good if ~~J is the \newlinechar, else not so much. That text will read:

! Paragraph ended before \<an-expandable-macro>
completed due to above exception. If the error
summary is not comprehensible see the package
documentation.

I will try to recover now. If you’re in inter-
active mode hit <return> at the ? prompt and I
continue hoping recovery was complete.

Any clean up has to be done by you, \ekverr will expand to nothing after throwing the
error message.

In ConTgXt this macro works differently. While still being fully expandable, it
doesn’t have the character count limitation and doesn’t impose restrictions on (package).
It will not display the additional text and adding line breaks is not possible.

Example: Say we set up a small calculation which works with user input. In our calcula-
tion we need a division, so have to watch out for division by zero. If we detect such a
case we throw an error and do the recovery by using the biggest integer allowed in TgX
as the result.

\newcommand+\mydivision [2]
{%
\the\numexpr

\ifnum\numexpr#2=0 % space here on purpose
\ekverr{my}{division by 0. Setting result to 2147483647.}%
2147483647%

\else
(#1)/(#2)%

\fi

3The used mechanism was to the best of my knowledge first implemented by Jean-Frangois Burnol.

\ekv@name
\ekv@name@set

\ekv@name@key

\relax

}
$(1045)/(3-3) \approx\mydivision {10+5} {3-3}$

If that code gets executed the following will be the terminal output

Runaway argument?

! my Error: division by 0. Setting result to 2147483647.

! Paragraph ended before \<an-expandable-macro>

completed due to above exception. If the error

summary is not comprehensible see the package

documentation.

I will try to recover now. If you’re in inter-

active mode hit <return> at the ? prompt and I

continue hoping recovery was complete.

<to be read again>

\par

1.15 $(10+5)/(3-3)\approx\mydivision{10+5}{3-3}

$

?

and the output would contain [(10+5)/(3—3)~ 2147483647] if we continued the TgX run
at the prompt.

\ekv@name{(set)}{(key)}

\ekv@name@set{(set)}

\ekv@name@key{(key)}

The names of the macros that correspond to a key in a set are build with these macros. The

name is built from two blocks, one that is formatting the (set) name (\ekv@name@set)

and one for formatting the (key) name (\ekv@name@key). To get the actual name the

argument to \ekv@name@key must be \detokenized. Both blocks are put together (with

the necessary \detokenize) by \ekv@name. For NoVal keys an additional N gets appended

irrespective of these macros’ definition, so their name is \ekv@name{(set)}{(key)}N.
You can use these macros to implement additional functionality or access key macros

outside of expiv, but don’t change them! expyv relies on their exact definitions internally.

Example: Execute the callback of the NoVal key key in set foo:
\csname\ekv@name{ foo } { key }N\endcsname

1.4 Examples
1.4.1 Standard Use-Case

Say we have a macro for which we want to create a (key)=(value) interface. The macro
has a parameter, which is stored in the dimension \ourdim having a default value from
its initialisation. Now we want to be able to change that dimension with the width key
to some specified value. For that we'd do

\newdimen\ourdim
\ourdim=150pt
\protected\ekvdef{our}{width}{\ourdim=#1\relax}

10

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

as you can see, we use the set our here. We want the key to behave different if no value is
specified. In that case the key should not use its initial value, but be smart and determine
the available space from \hsize, so we also define

\protected\ekvdefNoVal{our}{width}{\ourdim=.9\hsize}
Now we set up our macro to use this (key)=(value) interface

\protected\def\ourmacro#1%
{\begingroup\ekvset{our}{#1}\the\ourdim\endgroup}

Finally we can use our macro like in the following

\ourmacro{}\par 150.0pt
\ourmacro{width}\par 145.08086pt
\ourmacro{width=5pt}\par 5.0pt

The same keys using expiviper Using expivIDEF we can set up the equivalent key using
a (key)=(value) interface, after the following we could use \ourmacro in the same
way as above. expkviper will allocate and initialise \ourdim and define the width key
\protected for us, so the result will be exactly the same — with the exception that the
default will use \ourdim=.9\hsize\relax instead.

\input expkv—def % or \usepackage{expkv—def}
\ekvdefinekeys{our}
{
dimen width = \ourdim,
qdefault width = .9\hsize,
initial width = 150pt
}

1.4.2 A Macro to Draw Rules

Another small example could be a (key)=(value) driven \rule alternative, because I
keep forgetting the correct order of its arguments. First we define the keys (and initialize
the macros used to store the keys):

\makeatletter

\newcommand+\myrule@ht{1lex}

\newcommand+\myrule@wd{0. lem}

\newcommand+ \myrule@raise {\z@}
\protected\ekvdef{myrule}{ht}{\def\myrule@ht{#1}}
\protected\ekvdef{myrule}{wd}{\def\myrule@wd{#1}}
\protected\ekvdef{myrule}{raise}{\def\myrule@raise{#1}}
\protected\ekvdef{myrule}{lower}{\def\myrule@raise{—#1}}

Then we define a macro to change the defaults outside of \myrule and \myrule itself:

\ekvsetdef\myruleset {myrule}
\newcommand+\myrule[1]]
{\begingroup\myruleset {#1 }\myrule@out\endgroup}

And finally the output:

11

https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-def

\newcommand+\myrule@out {\rule [\myrule@raise | \myrule@wd\myrule@ht}
\makeatother

And we can use it:

a\myrule\par

a\myrule[ht=2ex ,lower=.5ex | \par 2!

\myruleset {wd=5pt} 4

a\myrule am

1.4.3 An Expandable (key)=(value) Macro Using \ekvsneak

Let’s set up an expandable macro, that uses a (key)=(value) interface. The problems
we’ll face for this are:

1. ignoring duplicate keys
2. default values for keys which weren’t used
3. providing the values as the correct argument to a macro (ordered)

First we need to decide which (key)=(value) parsing macro we want to do this with,
\ekvset or \ekvparse. For this example we also want to show the usage of \ekvsneak,
hence we’ll choose \ekvset. And we’ll have to use \ekvset such that it builds a parsable
list for our macro internals. To gain back control after \ekvset is done we have to put
an internal of our macro at the start of that list, so we use an internal key that uses
\ekvsneakPre after any user input.

To ignore duplicates will be easy if the value of the key used last will be put first
in the list, so the following will use \ekvsneakPre for the user-level keys. If we wanted
some key for which the first usage should be the binding one we would use \ekvsneak
instead for that key.

Providing default values can be done in different ways, we’ll use a simple approach
in which we’ll just put the outcome of our keys if they were used with default values
before the parsing list terminator.

Ordering the keys can be done simply by searching for a specific token for each
argument which acts like a flag, so our sneaked out values will include specific tokens
acting as markers.

Now that we have answers for our technical problems, we have to decide what our
example macro should do. How about we define a macro that calculates the sine of a
number and rounds that to a specified precision? As a small extra this macro should
understand input in radian and degree and the used trigonometric function should be
selectable as well. For the hard part of this task (expandably evaluating trigonometric
functions) we’ll use the xfp package.

First we set up our keys according to our earlier considerations and set up the user
facing macro \sine. The end marker of the parsing list will be a \sine@stop token,
which we don’t need to define and we put our defaults right before it. The user macro
\sine uses \ekvoptargTF to check for the optional argument short cutting to the final
step if no optional argument was found. This way we safe some time in this case, though
we have to specify the default values twice.

\RequirePackage{xfp}
\makeatletter
\ekvdef{expex}{f}{\ekvsneakPre{\f{#1}}}

12

\ekvdef{expex}{round}{\ekvsneakPre{\rnd{#1}}}
\ekvdefNoVal{expex}{degree}{\ekvsneakPre{\deg{d}}}
\ekvdefNoVal{expex}{radian}{\ekvsneakPre{\deg{}}}
\ekvdefNoVal{expex}{internal}{\ekvsneakPre{\sine@rnd}}
\newcommands+\sine {\ekvoptargTF\sine@args{\sine@final{sin}{d}{3}}}
\newcommand=\sine@args|2]
{\ekvset{expex}{#1,internal}\rnd{3}\deg{d}\f{sin}\sine@stop{#2}}

Now we need to define some internal macros to extract the value of each key’s last
usage (remember that this will be the group after the first special flag-token). For that
we use one delimited macro per key.

\def\sine@rnd#1\rnd#2#3\sine@stop { \sine@deg#1#3\sine@stop {#2}}
\def\sine@deg#1\deg#2#3\sine@stop{ \sine@f#1#3\sine@stop {#2}}
\def\sine@f#1 \f#2#3\sine@stop{\sine@final {#2}}

After the macros \sine@rnd, \sine@deg, and \sine®f the macro \sine@final will see
\sine@final{(f)}{(degree/radian)}{(round)}{(num)}. Now \sine@final has to ex-
pandably deal with those arguments such that the \fpeval macro of xfp gets the correct
input. Luckily this is pretty straight forward in this example. In \fpeval the trigonomet-
ric functions have names such as sin or cos and the degree taking variants sind or cosd.
And since the degree key puts a d in #2 and the radian key leaves #2 empty all we have
to do to get the correct function name is stick the two together.

\newcommands+\sine@final [4]{\fpeval{round (#1#2(#4),#3)}}
\makeatother

Let’s test our macro:

\sine{60}\par 0.866
\sine[round=10]{60}\par 0:8660254038
\sine|[f=cos,radian]{pi}\par -
\edef\myval{\sine [f=tan |{1}}\texttt{\meaning\myval} macro:->0.017

The same macro using expivics Using expikvics we can set up something equivalent
with a bit less code. The implementation chosen in expgvics is more efficient than the
example above and way easier to code for the user.

\makeatletter
\newcommandx=\sine {\ekvoptargTF\sine@a{\sine@b{sin}{d}{3}}}
\ekvcSplitAndForward\sine@a\sine@b
{
f=sin,
unit=d,
round=3,

}

\ekvcSecondaryKeys\sine@a

{
nmeta degree={unit=d},
nmeta radian={unit={}},

}
\newcommand=\sine@b [4]{\fpeval {round (#1#2(#4) ,#3)}}

\makeatother

13

https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv-cs

The resulting macro will behave just like the one previously defined, but will have an
additional unit key, since in expkvics every argument must have a value taking key
which defines it.

1.5 Error Messages

expkv should only send messages in case of errors, there are no warnings and no info
messages. In this subsection those errors are listed.

1.5.1 Load Time

expkv.tex checks whether ¢-TEX and the \expanded primitive are available. If it isn’t,
an error will be thrown using \errmessage:

I expkv Error: e-TeX and \expanded required.

1.5.2 Defining Keys

If you get any error from expiv while you're trying to define a key, the definition will be
aborted and gobbled.
If you try to define a key with an empty set name you’ll get:

I expkv Error: empty set name not allowed.
Similarly, if you try to define a key with an empty key name:
I expkv Error: empty key name not allowed.

Both of these messages are done in a way that doesn’t throw additional errors due to
\global, \long, etc., not being used correctly if you prefixed one of the defining macros.

1.5.3 Using Keys

This subsubsection contains the errors thrown during \ekvset. The errors are thrown in

an expandable manner using \ekverr. In the following messages (key) gets replaced

with the problematic key’s name, and (set) with the corresponding set. If any errors

during (key)=(value) handling are encountered, the entry in the comma separated list

will be omitted after the error is thrown and the next (key)=(value) pair will be parsed.
If you’re using an undefined key you’ll get:

Runaway argument?
I expkv Error: unknown key ‘(key)’ in set ‘(set)’

If you’re using a key for which only a normal version and no NoVal version is defined,
but don’t provide a value, you'll get:

Runaway argument?
I expkv Error: missing value for ‘(key)’ in set ‘(set)’

If you’re using a key for which only a NoVal version and no normal version is defined,
but provide a value, you'll get:

Runaway argument?
I expkv Error: unwanted value for ‘(key)’ in set ‘(set)’

14

https://github.com/Skillmon/tex_expkv-cs
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

If you're using an undefined key in a set for which \ekvredirectunknown was used,
and the key isn’t found in any of the other sets as well, you'll get:

Runaway argument?
I expkv Error: no key ‘(key)’ in sets {(set1)}{(set2)}...

If you're using an undefined NoVal key in a set for which \ekvredirectunknownNoVal
was used, and the key isn’t found in any of the other sets as well, you’ll get:

Runaway argument?
I expkv Error: no NoVal key ‘(key)’ in sets {(setl)}{(set2)}...

If you’re using a set for which you never executed one of the defining macros from
subsection 1.1 you'll get a low level TgX error, as that isn’t actively tested by the parser
(and hence will lead to undefined behaviour and not be gracefully ignored). The error
will look like

I Missing \endcsname inserted .
<to be read again>
\! expkv Error: Set ‘(set)’ undefined.

1.6 Bugs

Just like keyval, expkv is bug free. But if you find bugshidden features* you can tell
me about them either via mail (see the first page) or directly on GitHub if you have an
account there: https://github.com/Skillmon/tex_expkv

1.7 Comparisons

This subsection makes some basic comparison between expyv and other (key)=(value)
packages. The comparisons are really concise, regarding speed, feature range (without
listing the features of each package), and bugs and misfeatures.

Comparisons of speed are done with a very simple test key and the help of the
I3benchmark package. The key and its usage should be equivalent to

\protected\ekvdef{test}{height}{\def\myheight{#1}}
\ekvsetdef\expkvtest{test}
\expkvtest{ height = 6 }

and only the usage of the key, not its definition, is benchmarked. For the impatient,
the essence of these comparisons regarding speed and buggy behaviour is contained in
Table 1.

As far as I know expyv is the only fully expandable (key)=(value) parser. I tried
to compare expkv to every (key)=(value) package listed on CTAN, however, one might
notice that some of those are missing from this list. That’s because I didn’t get the others
to work due to bugs, or because they just provide wrappers around other packages in
this list.

In this subsection is no benchmark of \ekvparse and \keyval_parse:NNn contained,
as most other packages don’t provide equivalent features to my knowledge. \ekvparse
is slightly faster than \ekvset, but keep in mind that it does less. The same is true for
\keyval_parse:NNn compared to \keys_set :nn of expl3 (where the difference is much

4Thanks, David!

15

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://ctan.org/topic/keyval

bigger). Comparing just the two, \ekvparse is a tad faster than \keyval_parse:NNn
because of the two tests (for empty key names and only a single equal sign) which are
omitted.

keyval is about 30% to 40 % faster and has a comparable feature set (actually a bit
smaller since expiv supports unknown-key handlers and redirection to other sets) just a
slightly different way how it handles keys without values. That might be considered a
drawback, as it limits the versatility, but also as an advantage, as it might reduce doubled
code. Keep in mind that as soon as someone loads xkeyval the performance of keyval gets
replaced by xkeyval’s.

Also keyval has a bug, which unfortunately can’t really be resolved without breaking
backwards compatibility for many documents, namely it strips braces from the argument
before stripping spaces if the argument isn’t surrounded by spaces, also it might strip
more than one set of braces. Hence all of the following are equivalent in their outcome,
though the last two lines should result in something different than the first two:

\setkeys{foo}{bar=baz}

\setkeys{foo}{bar= {baz}}

\setkeys{foo}{bar={ baz}} % should be * baz’
\setkeys{foo}{bar={{baz}}} % should be “{baz}’

————

xkeyval is roughly twenty times slower, but it provides more functionality, e.g., it has
choice keys, boolean keys, and so on. It contains the same bug as keyval as it has to be
compatible with it by design (it replaces keyval’s frontend), but also adds even more
cases in which braces are stripped that shouldn’t be stripped, worsening the situation.

ltxkeys is no longer compatible with the IXTEX kernel starting with the release 2020-
10-01. It is over 380 times slower — which is funny, because it aims to be “[...] faster
[...] than these earlier packages [referring to keyval and xkeyval].” It needs more
time to parse zero keys than five of the packages in this comparison need to parse
100 keys. Since it aims to have a bigger feature set than xkeyval, it most definitely
also has a bigger feature set than expiv. Also, it can’t parse \long input, so as soon as
your values contain a \par, it'll throw errors. Furthermore, ltxkeys doesn’t strip outer
braces at all by design, which, imho, is a weird design choice. In addition ltxkeys loads
catoptions which is known to introduce bugs (e.g., see https://tex.stackexchange.
com/questions/461783). Because it is no longer compatible with the kernel, I stop
benchmarking it (so the numbers listed here and in Table 1 regarding ltxkeys were last
updated on 2020-10-05).

I3keys is around four and a half times slower, but has an, imho, great interface to
define keys. It strips all outer spaces, even if somehow multiple spaces ended up on
either end. It offers more features, but is pretty much bound to expl3 code. Whether
that’s a drawback is up to you.

pgfkeys isaround 2.7 times slower for one key if one uses the /{(path)/.cd syntax and
almost 20 % slower if one uses \pgfgkeys, but has an enormous feature set. To get the
best performance \pgfqkeys was used in the benchmark. This reduces the overhead
for setting the base directory of the benchmark keys by about 43 ops (so both py and Tj
would be about 43 ops bigger if \pgfkeys{(path)/.cd,(keys)} was used instead). It has

16

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv
https://tex.stackexchange.com/questions/461783
https://tex.stackexchange.com/questions/461783

the same or a very similar bug keyval has. The brace bug (and also the category fragility)
can be fixed by pgfkeyx, but this package was last updated in 2012 and it slows down
\pgfkeys by factor 8. Also pgfkeyx is no longer compatible with versions of pgfkeys
newer than 2020-05-25.

kvsetkeys with kvdefinekeys is about 4.4 times slower, but it works even if commas
and equals have category codes different from 12 (just as some other packages in this list).
Else the features of the keys are equal to those of keyval, the parser has more features,
though.

options is 1.7 times slower for only a single value. It has a much bigger feature set.
Unfortunately it also suffers from the premature unbracing bug keyval has.

simplekv is hard to compare because I don’t speak French (so I don’t understand the
documentation). There was an update released on 2020-04-27 which greatly improved
the package’s performance and adds functionality so that it can be used more like most of
the other (key)=(value) packages. It has problems with stripping braces and spaces in a
hard to predict manner just like keyval. Also, while it tries to be robust against category
code changes of commas and equal signs, the used mechanism fails if the (key)=(value)
list already got tokenised. Regarding unknown keys it got a very interesting behaviour.
It doesn’t throw an error, but stores the (value) in a new entry accessible with \useKV.
Also if you omit (value) it stores true for that (key). For up to three keys, expyv is a bit
faster, for more keys simplekv takes the lead.

YAX is over twenty times slower. It has a pretty strange syntax for the TgX-world, imho,
and again a direct equivalent is hard to define (don’t understand me wrong, I don’t say I
don’t like the syntax, it’s just atypical). It has the premature unbracing bug, too. Also
somehow loading YAX broke options for me. The tested definition was:

\usepackage{yax}
\defactiveparameter yax {\storevalue\myheight yax:height } % setup
\setparameterlist{yax}{ height = 6 } % benchmark

1.8 License
Copyright © 2020-2021 Jonathan P. Spratte

This work may be distributed and/or modified under the conditions of the IXTEX Project
Public License (LPPL), either version 1.3c of this license or (at your option) any later
version. The latest version of this license is in the file:
http://www.latex-project.org/lppl.txt
This work is “maintained” (as per LPPL maintenance status) by
Jonathan P. Spratte.

17

https://github.com/Skillmon/tex_expkv
http://www.latex-project.org/lppl.txt

Table 1: Comparison of (key)=(value) packages. The packages are ordered from fastest
to slowest for one (key)=(value) pair. Benchmarking was done using |3benchmark
and the scripts in the Benchmarks folder of the git repository. The columns p; are
the polynomial coefficients of a linear fit to the run-time, py can be interpreted as the
overhead for initialisation and p; the cost per key. The T column is the actual mean
ops needed for an empty list argument, as the linear fit doesn’t match that point well in
general. The column “BB” lists whether the parsing is affected by some sort of brace bug,
“CF” stands for category code fragile and lists whether the parsing breaks with active
commas or equal signs.

Package P1 Po Ty BB CF Date

keyval 13.7 1.5 7.3 yes yes 2014-10-28
exXpKv 19.7 2.2 6.6 no no 2020-10-10
simplekv 18.3 7.0 17.7 yes yes 2020-04-27
pgfkeys 24.3 1.7 10.7 yes yes 2020-09-05
options 23.6 15.6 20.8 yes yes 2015-03-01
kvsetkeys * * 40.3 no no 2019-12-1§5
l3keys 71.3 33.1 3.6 no no 2020-09-24
xkeyval 253.6 202.2 168.3 yes yes 2014-12-03
Yax 421.9 157.0 114.7 yes yes 2010-01-22

ltxkeys 3400.1 4738.0 5368.0 no no 2012-11-17

*For kvsetkeys the linear model used for the other packages is a poor fit, kvsetkeys
seems to have approximately quadratic run-time, the coefficients of the second degree
polynomial fit are p, = 8.2, p; = 44.9, and p(= 60.8. Of course the other packages might
not really have linear run-time, but at least from 1 to 20 keys the fits don’t seem too
bad. If one extrapolates the fits for 100 (key)=(value) pairs one finds that most of them
match pretty well, the exception being ltxkeys, which behaves quadratic as well with
P2 =23.5, p; = 2906.6, and py = 6547.5.

18

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv

2 Implementation

2.1 The BTEX Package

First we set up the BTEX package. That one doesn’t really do much except \inputting the
generic code and identifying itself as a package.

. \def\ekv@tmp

{h

\ProvidesFile{expkv.texl}/

4 [\ekvDate\space v\ekvVersion\space an expandable key=val implementation]%
,F
s \input{expkv.tex}
; \ProvidesPackage{expkv}/,

[\ekvDate\space v\ekvVersion\space an expandable key=val implementation]

2.2 The ConTgXt module

This is pretty straight forward, we just have to change the error throwing mechanism for
ConTgXt (the approach taken for plain and ITEX breaks in ConTgXt, effectively breaking
ConTgXt, dropping you in an interactive TEX session with almost no means of escape).

s \writestatus{loading}{ConTeXt User Module / expkv}
o \unprotect
.+ \input expkv.tex
- \long\def\ekv@err@collect#1\par#2/,
- {\directlua{tex.error[[\detokenize{#2} Error: #1]11}}
. \writestatus{loading}
{ConTeXt User Module / expkv / Version \ekvVersion\space loaded}
6 \protect\endinput

2.3 The Generic Code

The rest of this implementation will be the generic code.
We make sure that it’s only input once:

> \expandafter\ifx\csname ekvVersion\endcsname\relax
s \else
v \expandafter\endinput
o \fi
Check whether e-TEX and \expanded are available — expkv requires e-TgX.
> \begingroup
-> \edef\ekvtmpa{\string\expanded}
\edef\ekvtmpb{\meaning\expanded}
24 \expandafter
s \endgroup
s \ifx\ekvtmpa\ekvtmpb
>, \expandafter\let\csname ekv@expanded\endcsname\expanded
-z \expandafter\let\csname ekv@unexpanded\endcsname\unexpanded
o \else
\begingroup
;1 \edef\ekvtmpa{\string\expanded}
\edef\ekvtmpb{\meaning\normalexpanded}
\expandafter
. \endgroup

19

https://github.com/Skillmon/tex_expkv

\ifx\ekvtmpa\ekvtmpb
56 \expandafter\let\csname ekv@expanded\endcsname\normalexpanded
\expandafter\let\csname ekv@unexpanded\endcsname\normalunexpanded

\else
\errmessage
40 {expkv Error: e-TeX and the \noexpand\expanded primitive required},
41 \expandafter\endinput
»o \fi
45 \fi

\ekvVersion We're on our first input, so lets store the version and date in a macro.

\ekvDate 4+ \def\ekvVersion{1.9a}
s \def\ekvDate{2021-09-20}

(End definition for \ekvVersion and \ekvDate. These functions are documented on page 7.)

If the IXTEX format is loaded we want to be a good file and report back who we are,
for this the package will have defined \ekv@tmp to use \ProvidesFile, else this will
expand to a \relax and do no harm.

.6 \csname ekv@tmp\endcsname
Store the category code of @ to later be able to reset it and change it to 11 for now.

;7 \expandafter\chardef\csname ekv@tmp\endcsname=\catcode‘\@

& \catcode‘\@=11

\ekv@tmp might later be reused to gobble any prefixes which might be provided to
\ekvdef and similar in case the names are invalid, we just temporarily use it here as
means to store the current category code of @ to restore it at the end of the file, we never
care for the actual definition of it.

\ekv@if@lastnamedcs If the primitive \lastnamedcs is available, we can be a bit faster than without it. So we
test for this and save the test’s result in this macro.
2 \begingroup
o \edef\ekv@tmpa{\string \lastnamedcs}
\edef\ekv@tmpb{\meaning\lastnamedcs}
\ifx\ekv@tmpa\ekv@tmpb
\def\ekv@if@lastnamedcs{\long\def\ekv@if@lastnamedcs##1##2{##1}}
\else
o5 \def\ekv@if@lastnamedcs{\long\def\ekvO@if@lastnamedcs##1##2{##2}}
56 \fi
., \expandafter
s \endgroup
5o \ekv@if@lastnamedcs

(End definition for \ekv@if@lastnamedcs.)

\ekv@empty Sometimes we have to introduce a token to prevent accidental brace stripping. This token
would then need to be removed by \@gobble or similar. Instead we can use \ekvQempty
which will just expand to nothing, that is faster than gobbling an argument.

s \def\ekv@empty{}

(End definition for \ekv@empty.)

20

\@gobble
\@firstofone
\@firstoftwo

\@secondoftwo
\ekv@fi@gobble
\ekv@fi@firstofone
\ekv@fi@firstoftwo
\ekv@fi@secondoftwo
\ekv@gobble@mark
\ekv@gobbleto@stop
\ekv@gobble@fronfmark@to@stop

\ekv@ifempty

\ekv@ifempty@
\ekvQ@ifemptyQtrue
\ekv@ifempty@false
\ekv@ifemptyQ@true@F
\ekv@ifempty@true@FQ@gobble
\ekv0ifempty0true@Fogobbletwo

\ekv@ifblank
\ekv@ifblank@

Since branching tests are often more versatile than \if...\else...\fi constructs, we
define helpers that are branching pretty fast. Also here are some other utility functions
that just grab some tokens. The ones that are also contained in IXTEX don’t use the ekv
prefix. Not all of the ones defined here are really needed by expiv but are provided
because packages like expkvIDEF or expiviorT need them (and I don’t want to define them
in each package which might need them).

& \long\def\@gobble#1{}

o> \long\def\@firstofone#1{#1}

ss \long\def\@firstoftwo#1#2{#1}

6. \long\def\@secondoftwo#1#2{#2}

es \long\def\ekv@fi@gobble\fi\@firstofone#1{\fi}

es \long\def\ekv@fi@firstofone\fi\@gobble#1{\fi#1}

s, \long\def\ekv@fi@firstoftwo\fi\@secondoftwo#l#2{\fi#1}
e \long\def\ekv@fi@secondoftwo\fi\@firstoftwo#1#2{\fi#2}
s \def\ekv@gobble@mark\ekv@mark{}

o \long\def\ekv@gobbleto@stop#1l\ekv@stop{}

7 \long\def\ekv@gobble@f rom@mark@to@stop\ekv@mark#1\ekv@stop{}

(End definition for \@gobble and others.)

As you can see \ekv@gobbleto@stop uses a special marker \ekv@stop. The package
will use three such markers, the one you've seen already, \ekv@mark and \ekv@nil.
Contrarily to how for instance expl3 does things, we don’t define them, as we don’t
need them to have an actual meaning. This has the advantage that if they somehow
get expanded — which should never happen if things work out — they’ll throw an error
directly.

We can test for a lot of things building on an if-empty test, so lets define a really fast one.
Since some tests might have reversed logic (true if something is not empty) we also set
up macros for the reversed branches.
- \long\def\ekv@ifempty#1/
o th
74 \ekv@ifempty@\ekv@ifempty@A#1\ekv@ifempty@B\ekvQ@ifempty@true
75 \ekv@ifempty@A\ekv@ifempty@B\@secondoftwo
76 }
77 \long\def\ekv@ifempty@#1\ekv@ifempty©@A\ekv@ifempty@B{}
s \long\def\ekv@ifempty@true\ekv@ifempty@A\ekv@ifempty@B\@secondoftwo#l1#2{#1}
79 \long\def\ekv@ifempty@false\ekvQ@ifemptyQA\ekv@ifempty@B\Qfirstoftwo#l1#2{#2}
so \long\def\ekv@ifempty@true@F\ekv@ifempty@A\ekv@ifempty@B\@firstofone#1{}
51 \long\def\ekv@ifempty@true@FQ@gobble\ekv@ifempty@A\ekv@ifempty@B\@firstofone#1#2
: {3
s; \long\def\ekv@ifempty@true@F@gobbletwo
84 \ekvQ@ifempty@A\ekv@ifempty@B\@firstofone#1#2#3,
s {}

(End definition for \ekv@ifempty and others.)

The obvious test that can be based on an if-empty is if-blank, meaning a test checking
whether the argument is empty or consists only of spaces. Our version here will be
tweaked a bit, as we want to check this, but with one leading \ekv@mark token that is to
be ignored. The wrapper \ekv@ifblank will not be used by expyv for speed reasons but
eXPKVIOPT uses it.

se \long\def\ekv@ifblank#1

Y

21

https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-def
https://github.com/Skillmon/tex_expkv-opt
https://github.com/Skillmon/tex_expkv
https://github.com/Skillmon/tex_expkv-opt

\ekv@ifdefined

\ekv@strip
\ekv@stripQa
\ekv@strip@b
\ekv@strip@c

\ekvQ@ifblank@#1\ekvOnil\ekv@ifempty@B\ekv@ifemptyQtrue
89 \ekv@ifempty@A\ekv@ifempty@B\@secondoftwo
90 }
o \long\def\ekv@ifblank@\ekv@mark#1{\ekv@ifempty@\ekv@ifemptyQ@A}

(End definition for \ekv@ifblank and \ekv@ifblank@.)

We’ll need to check whether something is defined quite frequently, so why not define
a macro that does this. The following test is expandable and pretty fast. The version
with \lastnamedcs is the fastest version to test for an undefined macro I know of (that
considers both undefined macros and those with the meaning \relax).

.- \ekv@if@lastnamedcs

{%
\long\def\ekv@ifdefined#1{\ifcsname#1\endcsname\ekv@ifdef@\fi\@secondoftwol}

. \def\ekv@ifdef@\fi\@secondoftwo

96 {%

9 \fi

98 \expandafter\ifx\lastnamedcs\relax

. \ekv@fi@secondoftwo

100 \fi

101 \@firstoftwo

Lo }

03}

104 {%

105 \long\def\ekv@ifdefined#1,

106 {4

107 \ifcsname#1\endcsname\ekv@ifdef@\fi\ekv@ifdef@false#1\endcsname\relax

108 \ekv@fi@secondoftwo

109 \fi

110 \@firstoftwo

111 }

112 \def\ekv@ifdef@\fi\ekv@ifdef@false{\fi\expandafter\ifx\csname}

13 \long\def\ekv@ifdef@false

114 #1\endcsname\relax\ekv@fi@secondoftwo\fi\@firstoftwo#2#3}

s {#3}

6}

(End definition for \ekv@ifdefined.)

We borrow some ideas of expl3’s L3tl to strip spaces from keys and values. This
\ekv@strip also strips one level of outer braces after stripping spaces, so an input of

{abc} becomes abc after stripping. It should be used with #1 prefixed by \ekv@mark.
Also this implementation at most strips one space from both sides (which should be fine
most of the time, since TEX reads consecutive spaces as a single one during tokenisation).

.1, \def\ekvO@strip#1%
118 {%
119 \long\def\ekv@strip##17
Tk
121 \ekv@strip@a
122 ##1\ekvlnil
2 \ekvO@mark#1%
124 #1\ekvOnil
125 Yk
126 \long\def\ekv@strip@a##1\ekvlmark#1{\ekv@strip@b##1\ekvOmark}/

22

7}

-8 \ekv@strip{ }

125 \long\def\ekv@strip@b#1 \ekv@nil{\ekv@strip@c#1\ekv@nil}

150 \long\def\ekv@strip@c\ekv@mark#1\ekv@nil\ekvOmark#2\ekvOnil#3{#3{#1}}

(End definition for \ekv@strip and others.)

\ekv@exparg To reduce some code doublets while gaining some speed (and also as convenience for
\ekv@exparg@ other packages in the family), it is often useful to expand the first token in a definition
\ekv@expargtwice once. Let’s define a wrapper for this.
\ekv@expargtwice@ Also, to end a \romannumeral expansion, we want to use \z@, which is contained in
\ekvOzero both plain TEX and IATEX, but we use a private name for it to make it easier to spot and
hence easier to manage.
5 \let\ekv@zero\z@
15> \long\def\ekv@exparg#1#2{\expandafter\ekv@exparg@\expandafter{#2}{#1}}
155 \long\def\ekv@exparg@#1#2{#2{#1}1}/,
52 \long\def\ekv@expargtwice#1#2{\expandafter\ekv@expargtwice@\expandafter{#2}{#1}}
155 \def\ekv@expargtwice@{\expandafter\ekv@exparg@\expandafter}

(End definition for \ekv@exparg and others.)

\ekvcsvloop An \ekvcsvloop will just loop over a csv list in a simple manner. First we split at active
\ekv@csv@looplactive commas (gives better performance this way), next we have to check whether we’re at the
\ekvOcsv@loopOactiveCend end of the list (checking for \ekv@stop). If not we go on splitting at commas of category
other.
156 \begingroup
157 \def\ekvcsvloop#1{Y
ss \endgroup
155 \long\def\ekvcsvloop#i#1#i#2/,
o {\ekv@csv@loopQactive{##1}\ekvOmark##2#1\ekv@stop#1}
This does the same as \ekv@csv@loop but for active commas.
1 \long\def\ekv@csv@loopQactive##1##2#1,
PR ¥
143 \ekv@gobble@f rom@mark@to@stop##2\ekv@csv@loop@active@end\ekv@stop
144 \ekv@csv@loop{##1}##2,\ekv@stop, %
s Y
.16 \long\def\ekv@csv@loop@active@end
147 \ekv@stop
148 \ekv@csv@loop##1\ekvOmark\ekv@stop, \ekv@stop, %
o {3
150 }
Do the definitions with the weird catcode.
.51 \catcode‘\,=13
152 \ekvcsvloop,

(End definition for \ekvcsvloop, \ekv@csv@loop@active, and \ekv@csv@loop@active@end. These functions are
documented on page 8.)

\ekv@csv@loop We use temporary macros and an \expandafter chain to preexpand \ekv@strip here.

\ekv@csv@loop@do After splitting at other commas we check again for end the end of the sublist, check for

\ekv@csv@loopCend blank elements which should be ignored, and else strip spaces and execute the user code
(protecting it from further expanding with \unexpanded).

155 \def\ekv@csv@loop#1/

23

\ekv@name
\ekv@name@set
\ekv@name@key

\ekv@undefined@set

\ekv@checkvalid

e A

155 \long\def\ekv@csv@loop##1##2,%

156 {h

157 \ekv@gobble@f rom@mark@to@stop##2\ekv@csv@loop@end\ekv@stop

158 \ekv@ifblank@##2\ekvOnil\ekv@ifempty@B\ekv@csv@loop@blank

159 \ekv@ifempty@A\ekv@ifempty@B

160 #1\ekv@csv@loop@do{##11}

161 Y

62}

165 \expandafter\ekv@csv@loop\expandafter{\ekv@strip{#2}}

6, \long\def\ekv@csv@loop@do#1#2{\ekv@unexpanded{#2{#1}}\ekv@csv@loop{#2}\ekv@mark}

165 \def\ekv@csv@loop@end#1,

e {h

167 \long\def\ekv@csv@loop@end

168 \ekv@stop

169 \ekv@ifblank@\ekv@mark\ekv@stop\ekv@nil\ekv@ifempty@B\ekv@csv@loop@blank

170 \ekv@ifempty@A\ekv@ifempty@B

171 #1\ekv@csvO@loop@do##17,

172 {\ekv@csv@loopQactive{##1}\ekv@mark}y,

73}

-2 \expandafter\ekv@csv@loop@end\expandafter{\ekv@strip{\ekv@mark\ekv@stop}}

75 \long\expandafter\def\expandafter\ekv@csv@loop@blank

176 \expandafter\ekv@ifempty@A\expandafter\ekv@ifempty©B

177 \ekv@strip{\ekv@mark#1}\ekv@csv@loop@do#2/,
{\ekv@csv@loop{#2}\ekv@mark}

(End definition for \ekv@csv@loop, \ekv@csv@loop@do, and \ekv@csv@loop@end.)

The keys will all follow the same naming scheme, so we define it here.
170 \def\ekv@name@set#1{ekv#1 (}

150 \long\def\ekv@name@key#1{#1)}

5 \edef\ekv@name

oo Lh

183 \ekv@unexpanded\expandafter{\ekvOname@set{#1}}%

184 \ekv@unexpanded\expandafter{\ekv@name@key{\detokenize{#2}}}/
185 }

:s6 \long\ekv@exparg{\def\ekv@name#1#2}{\ekvOname}

(End definition for \ekv@name, \ekv@name@set, and \ekv@name@key. These functions are documented on page 10.)

We can misuse the macro name we use to expandably store the set-name in a single
token — since this increases performance drastically, especially for long set-names —
to throw a more meaningful error message in case a set isn’t defined. The name of
\ekv@undefined@set is a little bit misleading, as it is called in either case inside of
\csname, but the result will be a control sequence with meaning \relax if the set is
undefined, hence will break the \csname building the key-macro which will throw the
error message.

15, \def\ekv@undefined@set#1{! expkv Error: Set ‘#1’ undefined.}

(End definition for \ekv@undefined@set.)

We place some restrictions on the allowed names, though, namely sets and keys are not
allowed to be empty — blanks are fine (meaning set- or key-names consisting of spaces).
The \def\ekv@tmp gobbles any TgX prefixes which would otherwise throw errors. This

24

will, however, break the package if an \outer has been gobbled this way. I consider that
good, because keys shouldn’t be defined \outer anyways.

53 \edef\ekv@checkvalid

o {%

190 \ekv@unexpanded\expandafter{\ekv@ifempty{#1}}%

191 \ekvQunexpanded

192 {{%

193 \def\ekv@tmp{}%

194 \errmessage{expkv Error: empty set name not allowed}’
195 Y4

196 {%

197 \ekvQ@unexpanded\expandafter{\ekvQifempty{#2}1}

198 \ekv@unexpanded

199 iV

200 {h

201 \def\ekv@tmp{}%

202 \errmessage{expkv Error: empty key name not allowedl}’
203 Yh

os \@secondoftwo

205 Yh

206 Y

207 \ekv@unexpanded{\@gobble}/,

08}

209 \ekv@exparg{\protected\def\ekv@checkvalid#1#2}{\ekv@checkvalidl}y

(End definition for \ekv@checkvalid.)

\ekvifdefined And provide user-level macros to test whether a key is defined.

\ekvifdefinedNoVal ., \ekv@expargtwice{\long\def\ekvifdefined#1#2}%
2o {\expandafter\ekv@ifdefined\expandafter{\ekv@name{#1}{#2}}}
1> \ekv@expargtwice{\long\def\ekvifdefinedNoVal#1#2},
{\expandafter\ekv@ifdefined\expandafter{\ekv@name{#1}{#2}N}}

(End definition for \ekvifdefined and \ekvifdefinedNoVal. These functions are documented on page 7.)

\ekvdef Set up the key defining macros \ekvdef etc. We use temporary macros to set these up
\ekvdefNoVal with a few expansions already done.

\ekvlet . \def\ekvdef#1#2#3#4Y,
\ekvletNoVal .., {%
\ekvletkv -6 \protected\long\def\ekvdef##1##2##37,
\ekvletkvNoVal -7 {#1{\expandafter\def\csname#2\endcsname####1{##3}#3}1}/,
\ekvdefunknown =8 \protected\long\def\ekvdefNoVal##1##2##3,
\ekvdefunknownNoVal ' {#1{\expandafter\def\csname#2N\endcsname{##3}#3}}/

220 \protected\long\def\ekvlet##1##2##3,

221 {#1{\expandafter\let\csname#2\endcsname##3#3}}/,

. \protected\long\def\ekvletNoVal##1##2##3,
{#1{\expandafter\let\csname#2N\endcsname##3#3}}%

224 \ekv@expargtwice{\protected\long\def\ekvdefunknown##1##23}J,
Tk
226 \romannumeral
257 \expandafter\ekv@exparg@\expandafter
{h

229 \expandafter\expandafter\expandafter
230 \def\expandafter\csname\ekv@name{##1}{}u\endcsname####1####2{##2}7

25

- #3%
232 i
233 {\ekv@zero\ekv@checkvalid{##1}.}J

234 Yk

235 \ekv@expargtwice{\protected\long\def\ekvdefunknownNoVal##1##2}},
236 Lk

237 \romannumeral

\expandafter\ekv@exparg@\expandafter

239 {%

240 \expandafter\expandafter\expandafter

241 \def\expandafter\csname\ekv@name{##1}{}uN\endcsname#t###1{##2}/
242 #3%

243 Yh

244 {\ekv@zero\ekv@checkvalid{##1}.}%

245 Y

246 \protected\long\def\ekvletkv##1##2##3##4,

247 {h

248 #1%

249 AV

250 \expandafter\let\csname#2\expandafter\endcsname
251 \csname#4\endcsname

252 #3%,

253 Y

254 Y

255 \protected\long\def\ekvletkvNoVal##1##2##3##4,

256 {h

257 #1%

258 %

. \expandafter\let\csname#2N\expandafter\endcsname
260 \csname#4N\endcsname

261 #3%

262 Y

263 Y

s}

.65 \edef\ekvdefNoVal

o6 A%

267 {\ekv@unexpanded\expandafter{\ekv@checkvalid{#1}{#2}}}%
268 {\ekv@unexpanded\expandafter{\ekvOname{#1}{#2}}1}/,

269 {%
\ekvQunexpanded{\expandafter\ekv@defsetmacro\csnamel}’,
271 \ekv@unexpanded\expandafter{\ekvOQundefined@set{#1}\endcsname{#1}1}/,
272 Yh

2 {\ekv@unexpanded\expandafter{\ekv@name{#3}{#4}}}/

274 }

-5 \expandafter\ekvdef\ekvdefNoVal

(End definition for \ekvdef and others. These functions are documented on page 3.)

\ekvredirectunknown The redirection macros prepare the unknown function by looping over the provided list
\ekvredirectunknownNoVal of sets and leaving a \ekv@redirect@kv or \ekv@redirect@k for each set. Only the first
\ekv@defredirectunknown of these internals will receive the (key) and (value) as arguments.
\ekv@redirectunknown@aux . \protected\def\ekvredirectunknown
\ekv@redirectunknownloValGaux ., {%
278 \ekv@defredirectunknown

26

\ekv@redirect@k
\ekv@redirect@k@a
\ekv@redirect@k@a®
\ekv@redirect@k@b
\ekv@redirect@k@c
\ekv@redirect@k@d
\ekv@redirect@kv
\ekv@redirect@kv@a
\ekv@redirect@kv@a@
\ekv@redirect@kv@b
\ekv@redirect@kv@c
\ekv@redirect@kved

279 \ekv@redirect@kv

280 \ekv@err@redirect@kvOnotfound
281 {\long\ekvdefunknown}y,
\ekv@redirectunknown®@aux

283 }

-s. \protected\def\ekvredirectunknownNoVal
s {h

286 \ekv@defredirectunknown

287 \ekv@redirect@k

288 \ekv@err@redirect@k@notfound

289 \ekvdefunknownNoVal

290 \ekv@redirectunknownNoVal@aux
201}

:o- \protected\def\ekv@defredirectunknown#1#2#3#4#5#67,
25 Lh

294 \begingroup

o5 \edef \ekv@tmp

206 {h

297 \ekvcsvloop#1{#6}7

298 \ekv@unexpanded{#21}/,

299 {\ekvcsvloop{}{#5,#6}}%

300 Y

301 \ekv@expargtwice

joo {\endgroup#3{#5}1}/

303 {\expandafter#4\ekv@tmp\ekv@stopl}/,
304 }

.05 \def\ekv@redirectunknown@aux#1{#1{##1}{##2}}
06 \def\ekv@redirectunknownNoVal@aux#1{#1{##1}}

(End definition for \ekvredirectunknown and others. These functions are documented on page 4.)

The redirect code works by some simple loop over all the sets, which we already prepro-
cessed in \ekv@defredirectunknown. For some optimisation we blow this up a bit code
wise, essentially, all this does is \ekvifdefined or \ekvifdefinedNoVal in each set, if
there is a match gobble the remainder of the specified sets and execute the key macro,
else go on with the next set (to which the (key) and (value) are forwarded).

First we set up some code which is different depending on \lastnamedcs being
available or not. All this is stored in a temporary macro to have pre-expanded \ekv@name
constellations ready.

507 \def\ekv@redirect@k#1#2#3#4Y

308 {%

309 \ekv@if@lastnamedcs

310 {

311 \def\ekv@redirect@k##1##2##3Y

312 {

. \ifcsname#1\endcsname\ekv@redirect@k@a\fi
" ##3{##1}Y,

315 Y

316 \def\ekv@redirect@k@a\fi{\fi\expandafter\ekv@redirect@k@b\lastnamedcs}’%
317 \long\def\ekvOredirect@kv##1##2##3##47,
318 Y
110 \ifcsname#2\endcsname\ekv@redirect@kv@a\fi\@gobble{##1}/,
o0 ##a{##1{##2},
Y

27

\def\ekv@redirect@kv@a\fi\@gobble
223 {\fi\expandafter\ekv@redirect@kv@b\lastnamedcs}%
324 }
325 Tk
326 \def\ekvO@redirect@k##1##2##3%
327 {h
. \ifcsname#1\endcsname\ekv@redirect@k@a\fi\ekv@redirect@k@a@
129 #1\endcsname
330 ##3{##11},
Yh
\def\ekv@redirect@k@a@#3\endcsname{}%
\def\ekv@redirect@k@a\fi\ekv@redirect@k@a®
{\fi\expandafter\ekv@redirect@k@b\csnamel}y,
\long\def\ekv@redirect@kv##1##2##3##4),
336 {%
337 \ifcsname#2\endcsname\ekv@redirect@kv@a\fi\ekv@redirect@kv@a@
;38 #2\endcsname{##1}/,
0 ##a{## 11 {##2}7,
340 Yh
\long\def\ekv@redirect@kv@a@#4\endcsname##3{}/
\def\ekvO@redirect@kv@a\fi\ekv@redirect@kv@a@
{\fi\expandafter\ekv@redirect@kv@b\csname},
344 Y
345 }
The key name given to this loop will already be \detokenized by \ekvset, so we can
safely remove the \detokenize here for some performance gain.
.6 \def\ekv@redirect@kv#i\detokenize#2#3\ekv@stop{\ekvQunexpanded{#1#2#3}}
.7 \edef\ekv@redirect@kv
AV
49 {\expandafter\ekv@redirect@kv\ekv@name{#2}{#1}N\ekv@stop}’
350 {\expandafter\ekv@redirect@kv\ekv@name{#3}{#2}\ekv@stop}’
{\expandafter\ekv@redirect@kv\ekv@name{#1}{#2}N\ekv@stopl}/
{\expandafter\ekv@redirect@kv\ekv@name{#1}{#2}\ekv@stopl}’

Y
Everything is ready to make the real definitions.
52 \expandafter\ekv@redirect@k\ekv@redirect@kv

The remaining macros here are independent on \lastnamedcs, starting from the @b we
know that there is a hash table entry, and get the macro as a parameter. We still have to
test whether the macro is \relax, depending on the result of that test we have to either
remove the remainder of the current test, or the remainder of the set list and invoke the
macro.

55 \def\ekv@redirect@k@b#17

556 {\ifx\relax#1\ekv@redirect@k@c\fi\ekv@redirect@k@d#1}

s> \def\ekvOredirect@k@c\fi\ekvOredirect@k@d#1{\fi}

¢ \def\ekv@redirect@k@d#1#2\ekv@stop{#1}

.50 \def\ekv@redirect@kv@b#1Y%

6o {\ifx\relax#1\ekv@redirect@kv@c\fi\ekv@redirect@kv@d#1}

6. \long\def\ekv@redirect@kv@c\fi\ekvOredirect@kved#1#2{\fi}

.- \long\def\ekv@redirect@kv@d#1#2#3\ekv@stop{#1{#2}}

(End definition for \ekv@redirect@k and others.)

28

\ekv@defsetmacro

\ekvifdefinedset

\ekvset

\ekv@set

In order to enhance the speed the set name given to \ekvset will be turned into a control
sequence pretty early, so we have to define that control sequence.

65 \edef\ekv@defsetmacro

364 {o/n
365 \ekv@unexpanded{\ifx#1\relax\edef#1##1}/,

166 {%
\ekv@unexpanded\expandafter{\ekv@name@set{#2}}/
\ekv@unexpanded\expandafter{\ekv@nameC@key{##1}}/
369 }%

70 \ekv@unexpanded{\fi}%

572}
> \ekv@exparg{\protected\def\ekv@defsetmacro#1#2}{\ekv@defsetmacro}

(End definition for \ekv@defsetmacro.)

2 \ekv@expargtwice{\def\ekvifdefinedset#11}/,
{\expandafter\ekv@ifdefined\expandafter{\ekvOundefined@set{#1}}}

374

(End definition for \ekvifdefinedset. This function is documented on page 7.)

Set up \ekvset, which should not be affected by active commas and equal signs. The
equal signs are a bit harder to cope with and we’ll do that later, but the active commas
can be handled by just doing two comma-splitting loops one at actives one at others.
That’s why we define \ekvset here with a temporary meaning just to set up the things
with two different category codes. #1 will be a , 13 and #2 will be a =43.

s \begingroup

76 \def\ekvset#1#2{}

;77 \endgroup

e \ekv@exparg{\long\def\ekvset##1##2}/,

379 {o/n

;80 \expandafter\expandafter\expandafter
\ekv@set\expandafter\csname\ekv@undefined@set{##1}\endcsname

82 \ekv@mark##2#1\ekv@stop#1{}/
383 }

(End definition for \ekvset. This function is documented on page 5.)

\ekv@set will split the (key)=(value) list at active commas. Then it has to check whether
there were unprotected other commas and resplit there.
21 \long\def\ekv@set##1##2#17,
Tk
Test whether we’re at the end, if so invoke \ekv@endset,
;86 \ekv@gobble@from@mark@to@stop##2\ekv@endset\ekv@stop
else go on with other commas.
;87 \ekv@set@other##1##2,\ekvl@stop,%
88 T

(End definition for \ekv@set.)

29

\ekv@endset

\ekv@eq@other
\ekv@eqQ@active

\ekv@set@other

\ekv@set@eq@othera
\ekv@set@eq@other@b

\ekv@endset is a hungry little macro. It will eat everything that remains of \ekv@set
and unbrace the sneaked stuff.

55 \long\def\ekv@endset
590 \ekv@stop\ekv@set@other##1\ekvOmark\ekv@stop, \ekv@stop, ##2,
o {##2}

(End definition for \ekv@endset.)

Splitting at equal signs will be done in a way that checks whether there is an equal sign
and splits at the same time. This gets quite messy and the code might look complicated,
but this is pretty fast (faster than first checking for an equal sign and splitting if one
is found). The splitting code will be adapted for \ekvset and \ekvparse to get the
most speed, but some of these macros don’t require such adaptions. \ekv@eq@other
and \ekv@eqg@active will split the argument at the first equal sign and insert the macro
which comes after the first following \ekv@mark. This allows for fast branching based on
TEX’s argument grabbing rules and we don’t have to split after the branching if the equal
sign was there.

0o \long\def\ekv@eqQ@other##1=##2\ekvOmark##3{##3##1\ekvOstop\ekvOmark##2}

505 \long\def\ekv@eq@active##1#2##2\ekvOmark##3{##3##1\ekv@stop\ekvOmark##2}

(End definition for \ekv@eq@other and \ekv@egQ@active.)

The macro \ekv@set@other is guaranteed to get only single (key)=(value) pairs.
0+ \long\def\ekv@setQ@other##1##2,

s {h

First we test whether we’re done.

96 \ekvO@gobble@f rom@mark@to@stop##2\ekv@endset@other\ekv@stop

If not we split at the equal sign of category other.

97 \ekvQ@eq@other##2\ekvOnil\ekvOmark\ekv@set@eq@otherQa

398 =\ekv@mark\ekv@set@eqQactive

And insert the set name for the next recursion step of \ekv@set@other.
399 ##1%,

e \ekvOmark

401 }

(End definition for \ekv@set@other.)

The first of these two macros runs the split-test for equal signs of category active. It will
only be inserted if the (key)=(value) pair contained at least one equal sign of category
other and ##1 will contain everything up to that equal sign.

40> \long\def\ekv@set@eq@otherQa##1\ekvO@stop

w3 {h

404 \ekvQeq@active##1\ekv@nil\ekv@mark\ekv@set@eq@otherQactive

405 #2\ekv@mark\ekv@set@eq@other@b

406 }

The second macro will have been called by \ekv@eq@active if no active equal sign was
found. All it does is remove the excess tokens of that test and forward the (key)=(value)
pair to \ekv@set@pair. Normally we would have to also gobble an additional \ekv@mark
after \ekv@stop, but this mark is needed to delimit \ekv@set@pair’s argument anyway,
so we just leave it there.

107 \ekv@exparg

30

408 {%

409 \long\def\ekv@set@eq@other@b

410 ##1\ekv@nil\ekv@mark\ekv@set@eq@other@active\ekv@stop\ekv@mark

411 ##2\ekv@nil=\ekvOmark\ekv@set@eqQactive

FIEE

25 {\ekv@strip{##1}{\expandafter\ekv@set@pair\detokenize}\ekvOmark##2\ekvOnil}

(End definition for \ekv@set@eq@other®@a and \ekv@set@eq@other@b.)

\ekvOsetOeq@otherOactive \ekv@set@eqg@other@active will be called if the (key)=(value) pair was wrongly split
on an equal sign of category other but has an earlier equal sign of category active. ##1
will be the contents up to the active equal sign and ##2 everything that remains until
the first found other equal sign. It has to reinsert the equal sign and forward things to

\ekv@setO@pair.
42 \ekv@exparg
s A%

416 \long\def\ekv@set@eq@other@active

47 ##1\ekvO@stop##2\ekvOnil#2\ekvOmark

18 \ekv@set@eq@other@b\ekvOmark##3=\ekvOmark\ekv@set@eqlactive

no h

a0 {\ekv@strip{##1}{\expandafter\ekv@set@pair\detokenize}\ekvOmark##2=##3}

(End definition for \ekv@set@eq@other@active.)

\ekv@setOeq@active \ekv@set@eq@active will be called when there was no equal sign of category other in
\ekvOset@eq@active@ the (key)=(value) pair. It removes the excess tokens of the prior test and split-checks
for an active equal sign.
422 \long\def\ekv@set@eqg@active
422 ##1\ekvOnil\ekv@mark\ekv@set@eq@other@a\ekv@stop\ekv@mark
PECEI ¥
424 \ekv@eq@active##1\ekvlnil\ekv@mark\ekv@set@eqlactive®
425 #2\ekv@mark\ekv@set@noeq
426
If an active equal sign was found in \ekv@set@eq@active we’ll have to pass the now
split (key)=(value) pair on to \ekv@set@pair.
127 \ekv@exparg
8 {\long\def\ekv@set@eqg@active@##1\ekv@stop##2\ekvOnil#2\ekv@mark\ekv@set@noeql}’
20 {\ekv@strip{##1}{\expandafter\ekv@set@pair\detokenize}\ekvOmark##2\ekvOnil}

(End definition for \ekv@set@eq@active and \ekv@set@eq@active@.)

\ekvOset@noeq If no active equal sign was found by \ekv@set@eq@active there is no equal sign con-
tained in the parsed list entry. In that case we have to check whether the entry is blank
in order to ignore it (in which case we’ll have to gobble the set-name which was put after
these tests by \ekv@set@other). Else this is a NoVal key and the entry is passed on to
\ekv@set@key.

450 \edef\ekv@set@noeq

ERR ¥/

432 \ekvQunexpanded

433 {4

434 \ekv@ifblank@##1\ekv@nil\ekv@ifempty@B\ekv@set@was@blank
435 \ekv@ifempty@A\ekv@ifempty@B

436 Y

31

\ekv@endset@other

\ekvbreak
\ekvbreakPreSneak
\ekvbreakPostSneak

\ekvsneak
\ekvsneakPre

\ekvparse

437 \ekvQunexpanded\expandafter
438 {\ekv@strip{##1}{\expandafter\ekv@set@key\detokenize}\ekv@mark}’

439 }

110 \ekv@exparg

o A%

442 \long\def\ekv@set@noeq

443 ##1\ekv@nil\ekv@mark\ekv@set@eq@active@\ekv@stop\ekv@mark
444 }%

445 {\ekv@set@noeq}

.6 \expandafter\def\expandafter\ekv@set@was@blank

447 \expandafter\ekv@ifempty@A\expandafter\ekv@ifempty@B
148 \ekv@strip{\ekvOmark##1}##2\ekv@mark

29 {\ekv@set@other}

(End definition for \ekv@set@noeq.)

All that’s left for \ekv@set@other is the macro which breaks the recursion loop at the
end. This is done by gobbling all the remaining tokens.

50 \long\def\ekv@endset@other

ER \ekv@stop

452 \ekv@eq@other\ekv@mark\ekv@stop\ekv@nil\ekv@mark\ekv@set@eq@other@a

453 =\ekv@mark\ekv@set@eqQactive

sss {\ekv@set}

(End definition for \ekv@endset@other.)

Provide macros that can completely stop the parsing of \ekvset, who knows what it’ll
be useful for.
255 \long\def\ekvbreak##1##2\ekv@stop#1##3{##1}

456 \long\def\ekvbreakPreSneak ##1##2\ekvOstop#1##3{##1##3}
;57 \long\def\ekvbreakPostSneak##1##2\ekv@stop#1##3{##3##1}

(End definition for \ekvbreak, \ekvbreakPreSneak, and \ekvbreakPostSneak. These functions are documented
on page 7.)

One last thing we want to do for \ekvset is to provide macros that just smuggle stuff
after \ekvset’s effects.

ss¢ \long\def\ekvsneak##1##2\ekv@stop#1##3{##2\ekv@stop#1 {##3##1}}
150 \long\def\ekvsneakPre##1##2\ekvOstop#1##3{##2\ekvOstop#1{##1##3}}

(End definition for \ekvsneak and \ekvsneakPre. These functions are documented on page 7.)

Additionally to the \ekvset macro we also want to provide an \ekvparse macro, that has
the same scope as \keyval_parse:NNn from expl3. This is pretty analogue to the \ekvset
implementation, we just put an \unexpanded here and there instead of other macros to
stop the \expanded on our output. The \unexpanded\expanded{{...}} ensures that the
material is in an alignment safe group at all time, and that it doesn’t expand any further
in an \edef or \expanded context.

460 \long\def\ekvparse##1##2##3/,

461 {%

462 \ekvQunexpanded\ekv@expanded

463 {{\ekv@parse{##1}{##2}\ekvOmark##3#1\ekv@stop#1}1}/

64 T

(End definition for \ekvparse. This function is documented on page 6.)

32

\ekv@parse

\ekv@endparse

\ekv@parse@other

\ekv@parse@eg@other@a
\ekv@parse@eq@other@b

\ekv@parse@eq@other@active

65 \long\def\ekv@parse##1##2##3#1,

466 {%

467 \ekvO@gobble@f rom@mark@to@stop##3\ekv@endparse\ekv@stop
468 \ekv@parseQother{##1}{##2}##3, \ekv@stop, %

469 }

(End definition for \ekv@parse.)

270 \long\def\ekv@endparse
a7 \ekv@stop\ekv@parse@other##1\ekvl@mark\ekv@stop, \ekv@stop,
o {3

(End definition for \ekv@endparse.)

473 \long\def\ekv@parseQother##1##2##3,

wa L%

475 \ekv@gobble@from@mark@to@stop##3\ekv@endparse@other\ekv@stop
476 \ekv@eq@other##3\ekvOnil\ekvOmark\ekv@parse@eq@other@a

477 =\ekv@mark\ekv@parseQeq@active

78 {##1}H{##2}),

479 \ekv@mark

480 }

(End definition for \ekv@parse@other.)

.52 \long\def\ekv@parse@eq@otherQa##1\ekv@stop

e h

483 \ekv@eqQactive##1\ekv@nil\ekv@mark\ekv@parse@eq@otherQactive

484 #2\ekvOmark\ekv@parse@eq@other@b

485 }

456 \ekv@exparg

i Ak

488 \long\def\ekv@parse@eq@other@b

489 ##1\ekv@nil\ekv@Omark\ekv@parse@eq@other@active\ekv@stop\ekv@mark
490 ##2\ekvOnil=\ekvOmark\ekv@parseQeqQactive

PR '

402 {\ekv@strip{##1}\ekv@parse@pair##2\ekvOnil}

(End definition for \ekv@parse@eq@other@a and \ekv@parse@eq@other@b.)

405 \ekvQ@exparg

494 {70

495 \long\def\ekv@parse@eq@otherQactive

496 ##1\ekvO@stop##2\ekvOnil#2\ekvOmark

497 \ekv@parse@eq@other@b\ekv@mark##3=\ekvOmark\ekv@parseQeq@active
498 }%

w00 {\ekv@strip{##1}\ekv@parse@pair##2=##3}

(End definition for \ekv@parse@eq@other@active.)

33

\ekv@parse@eq@active
\ekv@parse@eq@active@ _ , \long\def\ekv@parse@eq@active

501 ##1\ekvOnil\ekv@mark\ekv@parse@eq@other@a\ekv@stop\ekv@mark
oo {h

503 \ekv@eq@active##1\ekv@nil\ekv@mark\ekv@parse@eqQactive@

504 #2\ekv@mark\ekv@parse@noeq

o5}

06 \ekv@exparg

507 {\long\def\ekv@parse@eq@active@#i1\ekv@stop##2#2\ekvOmark\ekv@parse@noeql’
o8 {\ekv@strip{##1}\ekv@parse@pair##2}

(End definition for \ekv@parse@eq@active and \ekv@parse@eq@active®.)

\ekv@parse@noeq

0o \edef\ekv@parse@noeq

o %

. \ekv@unexpanded

12 Tk

13 \ekv@ifblank@##1\ekv@nil\ekv@ifempty0B\ekv@parseQ@was@blank
514 \ekv@ifempty@A\ekv@ifempty@B

15 Yk

16 \ekv@unexpanded\expandafter{\ekv@strip{##1}\ekv@parse@key}’
517 }

iz \ekv@exparg

o {h

520 \long\def\ekv@parse@noeq

521 ##1\ekv@nil\ekvOmark\ekv@parse@eq@active@\ekv@stop\ekv@mark
22 Yh

23 {\ekv@parse@noeq}

s-; \expandafter\def\expandafter\ekv@parseQ@was@blank

25 \expandafter\ekv@ifempty@A\expandafter\ekv@ifempty@B

526 \ekv@strip{\ekvOmark##1}\ekv@parse@key

5oy {\ekv@parse@other}

(End definition for \ekv@parse@noeq.)

\ekv@endparse@other

;-2 \long\def\ekv@endparse@other
529 \ekv@stop
530 \ekv@eq@other\ekv@mark\ekv@stop\ekv@nil\ekv@mark\ekv@parse@eq@other@a
531 =\ekv@mark\ekv@parse@eq@active
{\ekv@parse}

(End definition for \ekv@endparse@other.)

\ekv@parse@pair

\ekv@parse@pair@ .. \ekv@exparg{\long\def\ekv@parse@pair##1##2\ekvonil}¥
50 {\ekv@strip{##2}\ekv@parse@pair@{##1}}
55 \long\def\ekvOparseQ@pairQ##1##2##3##47,
6 {h
\ekv@unexpanded{##4{##2}{##1}}
38 \ekv@parseQother{##3}{##4}/,
539 }

(End definition for \ekv@parse@pair and \ekv@parse@pair@.)

34

\ekv@parse@key

\ekvsetSneaked

\ekvchangeset

\ekv@changeset

\ekv@set@pair
\ekv@set@pair@a
\ekv@set@pair@b
\ekv@set@pair@c
\ekv@set@pair@d
\ekv@set@pairQe

20 \long\def\ekv@parseQkey##1##27,
o Lk

542 \ekv@unexpanded {##2{##1}}7,
543 \ekv@parseQother{##2}/,

544 }

(End definition for \ekv@parse@key.)
Finally really setting things up with \ekvset’s temporary meaning:
545 }
46 \catcode‘\,=13
.7 \catcode ‘\==13
.8 \ekvset,=

This macro can be defined just by expanding \ekvsneak once after expanding \ekvset.

To expand everything as much as possible early on we use a temporary definition.

52 \edef\ekvsetSneaked

o L%

- \ekvQunexpanded{\ekvsneak{#2}1}
\ekv@unexpanded\expandafter{\ekvset{#1}{#3}}/

52
5. \ekv@expargtwice{\long\def\ekvsetSneaked#1#2#3}{\ekvsetSneaked}

(End definition for \ekvsetSneaked. This function is documented on page 5.)

Provide a macro that is able to switch out the current (set) in \ekvset. This operation
allows something similar to pgfkeys’s (key)/.cd mechanism. However this operation
can be more expensive than /.cd as we can't just redefine some token to reflect this, but
have to switch out the set expandably, so this works similar to the \ekvsneak macros
reading and reinserting things, but it only has to read and reinsert the remainder of the
current key’s replacement code.

555 \ekv@exparg{\def\ekvchangeset#1}J,

e {h

557 \expandafter\expandafter\expandafter

558 \ekv@changeset\expandafter\csname\ekvQundefined@set{#1}\endcsname\ekv@empty

S

(End definition for \ekvchangeset. This function is documented on page 8.)

This macro does the real change-out of \ekvchangeset. #2 will have a leading
\ekv@empty so that braces aren’t stripped accidentally, but that will not hurt and just
expand to nothing in one step.

s60 \long\def\ekv@changeset#1#2\ekv@set@other#3{#2\ekv@setQ@other#1}

(End definition for \ekv@changeset.)

\ekv@set@pair gets invoked with the space and brace stripped and \detokenized key-
name as its first, the value as the second, and the set name as the third argument. It
provides tests for the key-macros and everything to be able to throw meaningful error
messages if it isn’t defined. We have two routes here, one if \1lastnamedcs is defined and
one if it isn’t. The big difference is that if it is we can omit a \csname and instead just
expand \lastnamedcs once to get the control sequence. If the macro is defined the value

35

will be space and brace stripped and the key-macro called. Else branch into the error
handling provided by \ekv@set@pair.

6. \ekv@if@lastnamedcs

e {h

63 \long\def\ekv@set@pair#l\ekv@mark#2\ekvOnil#3Y%

564 {%

565 \ifcsname #3{#1}\endcsname\ekv@set@pair@a\fi\@secondoftwo
;66 {#2}%

567 {4

568 \ifcsname #3{}u\endcsname\ekv@set@pair@a\fi\@secondoftwo

569 {#2}%

570 {4

\ekv@ifdefined{#3{#1}N}/
\ekv@err@noarg

573 \ekv@err@unknown

574 #3%

75 Y

76 {#1}7%

577 Y

78 \ekv@setQother#3,

79 }

580 \def\ekv@set@pair@a\fi\@secondoftwo

81 {\fi\expandafter\ekv@set@pair@b\lastnamedcs}

82}

583 {%

84 \long\def\ekv@set@pair#1\ekvOmark#2\ekv@nil#3Y

85 ¥

586 \ifcsname #3{#1}\endcsname

87 \ekv@set@pair@a\fi\ekvO@set@pair@c#3{#1}\endcsname

;88 {#2}Y%

589 %

590 \ifcsname #3{}u\endcsname

01 \ekv@set@pair@a\fi\ekv@set@pair@c#3{}u\endcsname

592 {#2}%

593 {4

94 \ekv@ifdefined{#3{#1}N}/

S5 \ekv@err@noarg

596 \ekv@err@unknown

597 #3%

598 i

599 {#1}%

600 Yh

601 \ekv@set@other#3,

602 }

603 \def\ekv@set@pair@a\fi\ekv@set@pair@c{\fi\expandafter\ekv@set@pair@b\csname}

604 \long\def\ekv@set@pair@c#1\endcsname#2#3{#3}

6os }

s \long\def\ekv@set@pair@b#17

607 {%

608 \ifx#1\relax

609 \ekv@set@pair@e

610 \fi

611 \ekv@set@pair@d#17

6=}

36

\ekv@set@key
\ekv@set@keyQa
\ekv@set@key@b
\ekv@set@keyQc

615 \ekv@exparg{\long\def\ekv@setOpair@d#1#2#3}{\ekv@strip{#2}#1}
62 \long\def\ekv@set@pair@e\fi\ekvOset@pair@d#1#2#3{\fi#3}

(End definition for \ekv@set@pair and others.)

Analogous to \ekv@set@pair, \ekv@set@key builds the NoVal key-macro and provides
an error-branch. \ekv@set@key@ will test whether the key-macro is defined and if so call
it, else the errors are thrown.

5.5 \ekv@if@lastnamedcs
s L%
617 \long\def\ekv@set@key#1\ekvOmark#2Y,
618 Lk
619 \ifcsname #2{#1}N\endcsname\ekv@set@key@a\fi\@firstofone
iV
621 \ifcsname #2{}uN\endcsname\ekv@set@keyQa\fi\@firstofone
5 {4
\ekv@ifdefined{#2{#1}}%
624 \ekv@errQ@reqval
625 \ekv@err@unknown
626 #2,
627 3}
628 {#1}%
629 Y
630 \ekv@set@other#2,
631 ¥
632 \def\ekv@set@key@a\fi\@firstofone{\fi\expandafter\ekv@set@key@b\lastnamedcs}
633 }
634 %
635 \long\def\ekv@set@key#1\ekvOmark#2Y,
636 Tk
637 \ifcsname #2{#1}N\endcsname
638 \ekv@set@keyQa\fi\ekv@set@keyQc#2{#1}N\endcsname
639 {%
640 \ifcsname #2{}uN\endcsname
641 \ekv@set@key@a\fi\ekv@set@key@c#2{}uN\endcsname
642 {%
623 \ekvQ@ifdefined{#2{#1}}%
644 \ekv@err@reqval
645 \ekv@err@unknown
646 #2%
647 }%
648 {#1}%
649 Yh
650 \ekv@setQother#2Y
651 }
652 \def\ekv@set@keyQ@a\fi\ekvO@set@keyQc{\fi\expandafter\ekv@set@key@b\csname}
653 \long\def\ekv@set@keyQ@c#1N\endcsname#2{#2}
654 }
655 \long\def\ekv@set@keyQb#17
oo {h
\ifx#1\relax
658 \ekv@fi@secondoftwo
659 \fi
660 \@firstoftwo#ly

37

661 }

(End definition for \ekv@set@key and others.)

\ekvsetdef Provide a macro to define a shorthand to use \ekvset on a specified (set). To gain the
maximum speed \ekvset is expanded twice by \ekv@exparg so that during runtime the
macro storing the set name is already built and one \expandafter doesn’t have to be
used.
66> \ekv@expargtwice{\protected\def\ekvsetdef#1#21}/,

o5 1h

664 \romannumeral

665 \ekvQ@exparg{\ekv@zero\ekv@exparg{\long\def#1##1}}}
666 {\ekvset{#2}{##1}}/,

67}

(End definition for \ekvsetdef. This function is documented on page 5.)

\ekvsetSneakeddef And do the same for \ekvsetSneaked in the two possible ways, with a fixed sneaked
\ekvsetdefSneaked argument and with a flexible one.

sss \ekv@expargtwice{\protected\def\ekvsetSneakeddef#1#21}7,

oo {h

670 \romannumeral

7 \ekv@exparg{\ekv@zero\ekvQexparg{\long\def#1##1##2}}%
672 {\ekvsetSneaked {#2}{##1}{##2}},

673}
672 \ekv@expargtwice{\protected\def\ekvsetdefSneaked#1#2#31}/,
o5 Lh
676 \romannumeral
677 \ekv@exparg{\ekv@zero\ekvQexparg{\long\def#1##1}}/
678 {\ekvsetSneaked {#2}{#3}{##1}}%

}

(End definition for \ekvsetSneakeddef and \ekvsetdefSneaked. These functions are documented on page 5.)

\ekv@alignsafe These macros protect the usage of ampersands inside of alignment contexts.
\ekv@endalignsafe ., \begingroup
6. \catcode ‘\""@=2
es- \@f irstofone{\endgroup
ez5 \def\ekv@alignsafe{\romannumeral\iffalse{\fi‘~"@ }
684 }
6s5 \def\ekv@endalignsafe{\ifnum‘{=\ekv@zero}\fi}

(End definition for \ekv@alignsafe and \ekv@endalignsafe.)

\ekvoptarg Provide macros to expandably collect an optional argument in brackets. The macros here
\ekvoptargTF are pretty simple in nature compared to xparse’s possibilities (they don’t care for nested
bracket levels).

We start with a temporary definition to pre-expand \ekv@alignsafe (will be #1)
and \ekv@endalignsafe (will be #2). As \ekv@alignsafe starts with a \romannumeral
we use that to also control the number of steps needed instead of adding another
\romannumeral. For this we have to remove the space token from the end of
\ekv@alignsafe’s definition.
ess \begingroup
es; \def\ekvoptarg#1#2{/
ezs \endgroup

38

\ekverr
\ekv@err@collect
\ekv@err@cleanup

The real definition starts an expansion context and afterwards grabs the arguments. #1
will be the next step, #2 the default value, and #3 might be an opening bracket, or the
mandatory argument. We check for the opening bracket, if it is found grab the optional
argument, else leave #1{#22} in the input stream after ending the expansion context.
6so \def\ekvoptarg{#1\ekv@optarga}
60 \long\def\ekv@optargQa##1##2##3/,
sor Lh
692 \ekv@optarg@if\ekvOmark##3\ekv@mark\ekv@optarg@b\ekvOmark [\ekvelmark

, #2,
694 \@firstofone{ ##1}{##2}{##3}}
605 Yh
The other variant of this will do roughly the same. Here, #1 will be the next step if an
optional argument is found, #2 the next step else, and #3 might be the opening bracket
or mandatory argument.
sos \def\ekvoptargTF{#1\ekv@optargTF@a}
67 \long\def\ekv@optargTFQa##1##2##3/,
sz 1
699 \ekv@optarg@if\ekvOmark##3\ekv@mark\ekv@optargTF@b{##1}\ekvelmark [\ekv@mark
700 #2Y,
\efirstofone{ ##2}{##3}%
R
The two macros to grab the optional argument have to remove the remainder of the test
and the wrong next step as well as grabbing the argument.
70s \long\def\ekv@optarg@b\ekv@mark [\ekvOmark\ifnum‘##1\fi\@firstofone##2##3##4##5],
soa {#2##2{##5}}
;05 \long\def\ekv@optargTF@b
706 ##1\ekvlmark [\ekv@mark\ifnum‘##2\fi\@f irstofone##3##4##5]7,

{#2 ##1{##5}}

708 }
Do the definitions and add the test macro. We use \ekv@strip to remove the trailing
space from the definition of \ekv@alignsafe.

00 \ekv@exparg

7o {h

711 \expandafter\ekv@strip\expandafter

712 {\expandafter\ekv@mark\ekv@alignsafel},
713 \ekvoptarg

74 Yh

;15 \ekv@endalignsafe

;16 \long\def\ekvQ@optarg@if#1\ekvOmark [\ekvOmark{}

(End definition for \ekvoptarg and \ekvoptargTF. These functions are documented on page 8.)

Since \ekvset is fully expandable as long as the code of the keys is (which is unlikely) we
want to somehow throw expandable errors, in our case via a runaway argument (to my
knowledge the first version of this method was implemented by Jean-Fran¢ois Burnol,
many thanks to him). The first step is to ensure that the second argument (which might
contain user input) doesn’t contain tokens we use as delimiters (in this case \par), this
will be done by the front facing macro \ekverr. But first we set some other things up.
We use a temporary definition for \ekverr to get multiple consecutive spaces. Then
we set up the macro that will collect the error and the macro that will throw the error.

39

\ekv@err

\ekv@err@common
\ekv@err@common®@
\ekv@err@unknown

\ekvQ@errOnoarg

\ekv@errQ@reqval

The latter will have an unreasonable long name. This way we can convey more infor-
mation. Though the information in the macro name is static and has to be somewhat
general to fit every occurence. The important bit is that the long named macro has a
delimited argument and is short which will throw the error at the \par at the end of
\ekv@err@collect. This macro has the drawback that it will only print nicely if the
\newlinecharis ~~J.

;17 \def\ekv@err@cleanup\par{}

76 \def\ekv@err@collect#17

7o %

720 \def\ekv@err@collect##1\par##2y,

72 ¥

722 \expandafter

723 \ekv@err@cleanup

724 #1! ##2 Error: ##1\par

Yk

726 \def#1##1\thanks@jfbu{}/,

727 }

--s \def\ekverr{ }

;20 \expandafter\ekv@err@collect\csname <an-expandable-macro>~"J%

730 completed due to above exception. \ekverr If the error~"J}

731 summary is \ekverr not comprehensible \ekverr see the package™"J/
documentation. " J%

733 I will try to recover now. \ekverr If you’re in inter-""J)

;54 active mode hit <return> \ekverr at the ? prompt and I~"J%
continue hoping recovery\endcsname

756 \long\def\ekverr#1#2{\expandafter\ekv@err@collect\detokenize{#2}\par{#1}}

(End definition for \ekverr, \ekv@err@collect, and \ekv@err@cleanup. These functions are documented on
page 9.)

We define a shorthand to throw errors in expgv.
;37 \ekv@exparg{\long\def\ekv@err#1}{\ekverr{expkv}{#1}}

(End definition for \ekv@err.)

Now we can use \ekv@err to set up some error messages so that we can later use those
instead of the full strings.

;56 \long\def\ekv@err@common #1#2{\expandafter\ekv@err@common@\string#2{#1}}
73e \ekv@exparg{\long\def\ekv@err@common®@#1 ‘#2’ #3.#4#5}}

720 {\ekv@err{#4 ‘#5° in set ‘#2’}}

721 \ekv@exparg{\long\def\ekv@errQunknown#1}{\ekv@err@common{unknown key}{#1}}
72> \ekv@exparg{\long\def\ekv@err@noarg #1}

43 {\ekv@err@common{unwanted value for}{#1}}

721 \ekv@exparg{\long\def\ekv@err@reqval #1}{\ekv@err@common{missing value for}{#1}}
745 \ekv@exparg{\long\def\ekv@err@redirect@kv@notfound#1#2#3\ekv@stop}/

26 {\ekv@err{no key ‘#2’ in sets #31}}

77 \ekv@exparg{\def\ekv@err@redirect@k@notfound#1#2\ekv@stop}y

748 {\ekv@err{no NoVal key ‘#1’ in sets #2}}

(End definition for \ekv@err@common and others.)
Now everything that’s left is to reset the category code of @.

720 \catcode ‘\@=\ekv@tmp

40

https://github.com/Skillmon/tex_expkv

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

E
\ekvbreak 7, 455
\ekvbreakPostSneak 7,1;;
\ekvbreakPreSneak 7, 455
\ekvchangeset 8,;;;
\ekvesvloop 8,136,297,;;;
\ekvDate iﬁ77,4,8,44
\ekvdef 3,221
\ekvdefNoVal 3,214
\ekvdefunknown 3,214,5@?
\ekvdefunknownNoVal 4,;22;289
\ekverr 9,;;;,737
\ekvifdefined igg,glg
\ekvifdefinedNoVal 7,210
\ekvifdefinedset 7,373
\ekvlet 3,521
\ekvletkv 3,521
\ekvletkvNoVal 3,214
\ekvletNoVal 3,521
\ekvoptarg 8,555
\ekvoptargTF 8, 686
\ekvparse 6, 460
\ekvredirectunknown 4,5}@
\ekvredirectunknownNoVal 4,276
\ekvset 5,375,548,552,ggg
\ekvsetdef 5, 662
\ekvsetdefSneaked 6,668
\ekvsetSneaked 5,549, 672, 678
\ekvsetSneakeddef 5,668
\ekvsneak 7,458, 551
\ekvsneakPrej4;;458
\ekvtmpa 22,26,31j§g
\ekvtmpb 23,26, 32, 35
\ekvVersion 7,4,8,15, 44
T
TgX and IATEX 2, commands:
\@firstofone 61, 80, 81, 84,

619, 621, 632, 682, 694, 701, 703, 706

\efirstoftwo . 61,79, 101,110, 114, 660
\@gobble 61, 207, 319, 322
\@secondoftwo 61,
75, 78, 89, 94, 95, 204, 565, 568, 580
\ekv@alignsafe 680, 712

41

\ekv@changeset 558, 560
\ekv@checkvalid 1§§,233,244,;g;
\ekv@csv@loop 144, 148, 153
\ekv@csv@loop@active 136,;;;
\ekv@csv@loop@active@end . .. o 136
\ekv@csv@loop@blank 158,169,;;g
\ekv@csv@loop@do 153
\ekv@csv@loop@end IE;
\ekv@defredirectunknown ;;g
\ekv@defsetmacro 270,;65
\ekv@empty ég,ggg
\ekv@endalignsafe 680, 715
\ekv@endparse 467, 470
\ekv@endparse@other 475,;;§
\ekv@endset 386,;g;
\ekv@endset@other 396,235

\ekv@eq@active . 392, 404, 424, 483, 503

\ekv@eq@other .. 392,397, 452, 476, 530
\ekv@err TATV737,740,746,748
\ekv@err@cleanup . e 717
\ekv@err@collect 12,;;;
\ekv@err@common ;;g
\ekv@err@common@ ;;5
\ekv@err@noarg 572,595,;§§

\ekv@err@redirect@k@notfound 288, 747
\ekv@err@redirect@kv@notfound ..
...................... 280, 745
\ekv@errQ@reqval 624, 644,738
\ekv@err@unknown 573, 596, 625, 645,738

\ekv@expanded 462

\ekv@exparg . 131, 186, 209, 372, 378,
407, 414, 427, 440, 486, 493, 500,
518, 533, 555, 613, 665, 671, 677,
709, 737, 739, 741, 742, 744, 745, 747

\ekv@exparg@ 131, 227,238
\ekv@expargtwice 131,210, 212,
224, 235, 301, 373, 554, 662, 668, 674
\ekv@expargtwice@ 131
\ekvefi@firstofone 61
\ekv@fi@firstoftwo 61
\ekv@fi@Ggobble 61
\ekv@fi@secondoftwo

\ekv@gobble@from@mark@to@stop . .

61, 143, 157, 386, 396, 467, 475
\ekv@gobble@mark 61
\ekv@gobbleto@stop
\ekv@if@lastnamedcs

\ekv@ifblank
\ekv@ifblank@

.................. 86
... 86,158,169, 434, 513

\ekv@ifdef@ 94, 95, 107, 112
\ekv@ifdef@false 107,112,113
\ekv@ifdefined
92,211, 213, 374, 571, 594, 623, 643
\ekv@ifempty 72,190, 197
\ekv@ifempty@ 72,91
\ekv@ifempty@A

74,75, 77,78, 79, 80, 81, 84,
89,91, 159, 170, 176, 435, 447, 514, 525

\ekv@ifempty@B 74,75, 77,78,
79, 80, 81, 84, 88, 89, 158, 159, 169,
170, 176, 434, 435, 447, 513, 514, 525

\ekv@ifempty@false 72
\ekv@ifempty@true 72,§g
\ekv@ifempty@true@F L 72
\ekv@ifempty@true@F@gobble ;;
\ekv@ifempty@true@FQ@gobbletwo . .. ;;

\ekv@mark
126, 130,
174, 177,
397, 398,
413, 417,
428, 429,

69, 71,91, 123,
140, 148, 164, 169, 172,
178, 382, 390, 392, 393,
400, 404, 405, 410, 411,
418, 420, 422, 424, 425,
438, 443, 448, 452, 453,
463, 471, 476, 477, 479, 483, 484,
489, 490, 496, 497, 501, 503, 504,
507, 521, 526, 530, 531, 563, 584,
617, 635, 692, 699, 703, 706, 712, 716
\ekv@name 10,179, 211, 213,
230, 241, 268, 273, 349, 350, 351, 352

\ekv@name@key 10,179, 368
\ekv@name@set 10, 179, 367
\ekv@nil 88,122,124, 129, 130,

158, 169, 397, 404, 410, 411, 413,
417, 422, 424, 428, 429, 434, 443,
452, 476, 483, 489, 490, 492, 496,
501, 503, 513, 521, 530, 533, 563, 584

\ekv@optarg@a 689, 690
\ekv@optarg@b 692, 703
\ekv@optarg@if 692, 699, 716
\ekvQoptargTF@a 696, 697
\ekv@optargTF@b 699, 705
\ekv@parse 463, 465, 532
\ekv@parse@eq@active

477,490,497, 500, 531

42

\ekv@parse@eq@active@
\ekv@parse@eqg@other@a

476, 481, 501, 530
\ekv@parse@eq@other@active

483, 489, 493
481, 497

\ekv@parse@eqg@other@b

\ekv@parse@key 516, 526, 540
\ekv@parse@noeq 504, 507, 509
\ekv@parse@other

468, 471, 473, 527, 538, 543

\ekv@parse@pair 492, 499, 508, 533
\ekv@parse@pair@ gg;
\ekv@parse@was@blank 513,§£Z
\ekv@redirect@k 287, 307
\ekv@redirect@k@a ;8;
\ekv@redirect@k@a®@ ;6;
\ekveredirect@k@b 307
\ekv@redirect@k@c 56;
\ekveredirect@k@d 307
\ekv@redirect@kv 279,;8;
\ekv@redirect@kv@a ;6;
\ekv@redirect@kv@a®@ ;6;
\ekv@redirect@kveb 307
\ekv@redirect@kv@c ;6;
\ekv@redirect@kved ;8;
\ekv@redirectunknown@aux ;;g
\ekv@redirectunknownNoVal@aux . . ;;g

\ekv@set 381, 384, 454
\ekv@set@eq@active
........... 398,411, 418, 421, 453
\ekv@set@eq@active®@ 421, 443
\ekv@set@eq@othera 397,402,;;;,452
\ekv@set@eq@otherQactive 262’410'ili
\ekv@set@eq@other@b 402, 418
\ekv@set@key 438, 615
\ekv@set@key@a g;;
\ekv@set@key@b 82;
\ekv@set@key@c EIE
\ekv@set@noeq 425,428,258
\ekv@set@other 387:47

390, 394, 449, 560, 578, 601, 630, 650

\ekv@set@pair 413, 420, 429, 561
\ekv@set@pair@a ;g;
\ekv@set@pair@b ;g;
\ekv@set@pair@c g@f
\ekv@set@pair@d ;g;
\ekv@set@pair@e ;g:

\ekv@set@was@blank 434, 446
\ekv@stop 70,71, 140, 143,
144, 147, 148, 157, 168, 169, 174,
303, 346, 349, 350, 351, 352, 358,
362, 382, 386, 387, 390, 392, 393,
396, 402, 410, 417, 422, 428, 443,
451, 452, 455, 456, 457, 458, 459,
463, 467, 468, 471, 475, 481, 489,
496, 501, 507, 521, 529, 530, 745, 747
\ekv@strip 117, 163,
174, 177, 413, 420, 429, 438, 448,
492, 499, 508, 516, 526, 534, 613, 711
\ekv@stripQa 117
\ekv@strip@b

43

\ekv@strip@c 117
\ekv@tmp 1,193, 201, 295, 303, 749
\ekv@tmpa 50, 52
\ekv@tmpb 51, 52
\ekv@undefined@set
........... 187,271, 374, 381, 558
\ekv@unexpanded

164, 183, 184, 190, 191, 197,
198, 207, 267, 268, 270, 271, 273,
298, 346, 365, 367, 368, 370, 432,
437, 462, 511, 516, 537, 542, 551, 552

\ekv@zero 131,233, 244, 665, 671, 677,685

\thanks@jfbu

726

	Contents
	1 Documentation
	1.1 Setting up Keys
	1.2 Parsing Keys
	1.3 Other Macros
	1.4 Examples
	1.4.1 Standard Use-Case
	1.4.2 A Macro to Draw Rules
	1.4.3 An Expandable <key>=<value> Macro Using \ekvsneak

	1.5 Error Messages
	1.5.1 Load Time
	1.5.2 Defining Keys
	1.5.3 Using Keys

	1.6 Bugs
	1.7 Comparisons
	1.8 License

	2 Implementation
	2.1 The LaTeX Package
	2.2 The ConTeXt module
	2.3 The Generic Code

	Index
	E
	T

