The IXTEX3 Sources

The KTEX Project*
Released 2023-10-10

Abstract

This is the typset sources for the expl3 programming environment; see the matching
interface3 PDF for the API reference manual. The expl3 modules set up a naming
scheme for I¥TEX commands, which allow the IXTEX programmer to systematically
name functions and variables, and specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level I¥TEX3 programming
language.

The expl3 modules are designed to be loaded on top of KTEX 2s. With an up-to-
date IXTEX 2¢ kernel, this material is loaded as part of the format. The fundamental
programming code can also be loaded with other TEX formats, subject to restrictions
on the full range of functionality.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

Contents

I

1

Introduction

Introduction to expl3 and this document

1.1 Naming functions and variables
1.1.1 Scratch variableso oo
1.1.2 Terminological inexactitude

1.2 Documentation conventions

1.3 Formal language conventions which apply generally

1.4 TgX concepts not supported by BTEX3

II Bootstrapping

2

The 13bootstrap package: Bootstrap code
2.1 Using the BTEX3 modules

The 13names package: Namespace for primitives
3.1 Setting up the KTEX3 programming language

IIT Programming Flow

4

The 13basics package: Basic definitions
4.1 No operation functions
4.2 Grouping materialo oL
4.3 Control sequences and functions, .
4.3.1 Defining functions oo oo
4.3.2 Defining new functions using parameter text
4.3.3 Defining new functions using the signature
4.3.4 Copying control sequences Lo
4.3.5 Deleting control sequences oL Lo
4.3.6 Showing control sequences
4.3.7 Converting to and from control sequences
4.4 Analysing control sequences oo
4.5 Using or removing tokens and arguments
4.5.1 Selecting tokens from delimited arguments
4.6 Predicates and conditionals.o
4.6.1 Tests on control sequences
4.6.2 Primitive conditionals oo 0oL
4.7 Starting a paragraph oL oL
4.8 Debugging support L e

ii

p—

N Ot ot ot N

The 13expan package: Argument expansion

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Defining new variants
Methods for defining variants L L.
Introducing the variants L oo o
Manipulating the first argumento
Manipulating two arguments Lo
Manipulating three arguments L.
Unbraced expansion oo
Preventing expansiono Lo Lo
Controlled expansion Lo
Internal functions oL L Lo

The I3sort package: Sorting functions

6.1

Controlling sorting L

The I3tl-analysis package: Analysing token lists

The 13regex package: Regular expressions in TEX

8.1

8.2
8.3
8.4
8.5
8.6
8.7
8.8

Syntax of regular expressions Lo
8.1.1 Regular expression examples
8.1.2 Characters in regular expressions
8.1.3 Characters classes L L o
8.1.4 Structure: alternatives, groups, repetitions
8.1.5 Matching exact tokens o oL
8.1.6 Miscellaneous

Syntax of the replacement text L.

Pre-compiling regular expressionso

Matching e

Submatch extraction L oL L

Replacement Lo

Scratch regular expressionso

Bugs, misfeatures, future work, and other possibilities

The 13prg package: Control structures

9.1
9.2

9.3
9.4
9.5
9.6
9.7
9.8

9.9

Defining a set of conditional functions
The boolean data type e
9.2.1 Constant and scratch booleans
Boolean expressionso L
Logical loops
Producing multiple copies oo
Detecting TEX's mode Lo
Primitive conditionals L Lo o
Nestable recursions and mappings
9.8.1 Simple mappingsot
Internal programming functions Lo

iii

31
31
32
34
35
37
37
38
39
40
43

44
44

46

47
48
48
49
49
50
o1
53
53
95
o6
57
58
60
60

10 The I3sys package: System/runtime functions

10.1 The name of the job
10.2 Dateand time e
10.3 Engine L
10.4 Output format Lo
10.5 Platform
10.6 Random numbers L Lo
10.7 Accesstotheshell
10.8 Loading configuration data

10.8.1 Final settings L

11 The I13msg package: Messages

11.1 Creating new messages« v v v v v v vt i e
11.2 Customizable information for message modules
11.3 Contextual information for messages
11.4 Tssuing mesSages . . . v v v v v v v v i e e e e e e e e e e e

11.4.1 Messages for showing material

11.4.2 Expandable error messages
11.5 Redirecting messageso

12 The I3file package: File and I/O operations
12.1 Input-output stream management L.
12.1.1 Reading from files L o o
12.1.2 Reading from the terminal 0oL
12.1.3 Writing to files oL o
12.1.4 Wrapping lines in output
12.1.5 Constant input—output streams, and variables
12.1.6 Primitive conditionals oo,
12.2 File operation functions oo

13 The I3luatex package: LuaTgX-specific functions
13.1 BreakingouttoLua. o .
13.2 Luainterfaces L

14 The I3legacy package: Interfaces to legacy concepts

IV Data types

15 The 13tl package: Token lists
15.1 Creating and initialising token list variables
15.2 Adding data to token list variables
15.3 Token list conditionals L.
15.3.1 Testing the first token oL oL
15.4 Working with token lists asa whole
15.4.1 Using token lists o
15.4.2 Counting and reversing token lists
15.4.3 Viewing token lists L oo
15.5 Manipulating items in token lists 0oL,
15.5.1 Mapping over token lists

iv

74
74
74
(0]
76
76
76
i
78
79

80
80
81
82
83
87
87
88

90
90
92
95
95
97
98
98
98

104
104
105

107

15.5.2 Head and tail of token lists 118

15.5.3 Items and ranges in token lists 120
15.5.4 Sorting token lists L o 122

15.6 Manipulating tokens in token lists 122
15.6.1 Replacing tokens L o oo 122
15.6.2 Reassigning category codes 123

15.7 Constant token lists L o 124
15.8 Scratch token lists 125
16 The I3str package: Strings 126
16.1 Creating and initialising string variables 127
16.2 Adding data to string variables 0oL 128
16.3 String conditionals oo oo 128
16.4 Mapping over strings 130
16.5 Working with the content of strings 132
16.6 Modifying string variables L o oL 135
16.7 String manipulation oL oL 136
16.8 Viewing strings Lo 137
16.9 Constant strings oL L e 138
16.10 Scratch strings oL e 138
16.11 Deprecated functions Lo 138
17 The I3str-convert package: String encoding conversions 139
17.1 Encoding and escaping schemes 139
17.2 Conversion functions L o o 141
17.3 Conversion by expansion (for PDF contexts) 141
17.4 Possibilities, and thingstodo 141
18 The I3quark package: Quarks 143
181 Quarks L e 143
18.2 Defining quarks Lo 144
18.3 Quark tests L 144
18.4 Recursion Lo e 145
18.4.1 An example of recursion with quarks 146

18.5 Scanmarks 147
19 The I3seq package: Sequences and stacks 148
19.1 Creating and initialising sequences 148
19.2 Appending data to sequences 150
19.3 Recovering items from sequences 150
19.4 Recovering values from sequences with branching 152
19.5 Modifying sequenceso e 153
19.6 Sequence conditionals oL o 154
19.7 Mapping over SeqUENCES v v v e e e e e e e e 154
19.8 Using the content of sequences directly 157
19.9 Sequences asstacks e 158
19.10 Sequences as SetSo Lol e 159
19.11 Constant and scratch sequences 160
19.12 Viewing SeqUencCes v v v v vt vt e e e e e e e 161

20 The 13int package: Integers

20.1
20.2
20.3
204
20.5
20.6
20.7
20.8
20.9

Integer expressions
Creating and initialising integers
Setting and incrementing integerso L
Using integers L e
Integer expression conditionals L.
Integer expression loops. L Lo o
Integer step functionso Lo
Formatting integers Lo
Converting from other formats to integers

20.10 Random integers Lo o
20.11 Viewing integers oL o e
20.12 Constant integers
20.13 Scratch integers
20.14 Direct number expansiono
20.15 Primitive conditionals oL L oo

21 The I13flag package: Expandable flags

21.1
21.2

Setting up flagso
Expandable flag commands 0 L.

22 The I3clist package: Comma separated lists

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9

Creating and initialising comma lists
Adding data to comma lists,
Modifying comma lists
Comma list conditionals
Mapping over comma listso
Using the content of comma lists directly
Comma listsasstacks L L
Using a singleitem Lo oo
Viewing comma lists L

22.10 Constant and scratch comma lists

23 The I3token package: Token manipulation

23.1
23.2
23.3
23.4
23.5
23.6
23.7
23.8

Creating character tokens
Manipulating and interrogating character tokens
Generic tokens L oL
Converting tokens oL L
Token conditionals Lo
Peeking ahead at the next token
Description of all possible tokens
Deprecated functions L

vi

162
162
165
166
167
167
169
171
172
173
174
174
175
175
176
176

178
178
179

180
181
182
183
184
184
186
187
188
189
189

24 The 13prop package: Property lists

24.1
24.2
24.3
24.4
24.5
24.6
24.7
24.8
24.9
24.10

Creating and initialising property lists
Adding and updating property list entries
Recovering values from property lists
Modifying property lists Lo o
Property list conditionals oo L.
Recovering values from property lists with branching
Mapping over property lists oo oL
Viewing property lists. o oo
Scratch property lists Lo o
Constants e

25 The I3skip package: Dimensions and skips

25.1
25.2
25.3
25.4
25.5
25.6
25.7
25.8
25.9
25.10
25.11
25.12
25.13
25.14
25.15
25.16
25.17
25.18
25.19
25.20
25.21
25.22
25.23
25.24
25.25

Creating and initialising dim variables.
Setting dim variables L Lo L
Utilities for dimension calculations
Dimension expression conditionalso oL
Dimension expression loops 0oL
Dimension step functionso 0oL
Using dim expressions and variables
Viewing dim variables L
Constant dimensions L0
Scratch dimensions
Creating and initialising skip variables
Setting skip variables L oL o
Skip expression conditionals L. 0oL 0oL oL
Using skip expressions and variables
Viewing skip variables oo o000
Constant skips
Scratch skips oL
Inserting skips into the output
Creating and initialising muskip variables
Setting muskip variables L Lo
Using muskip expressions and variables
Viewing muskip variables L Lo
Constant muskipso oL
Scratch muskips o
Primitive conditional oo oo

26 The I3keys package: Key—value interfaces

26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10

Creating keys o
Sub-dividing keys
Choice and multiple choice keys Lo Lo
Key usage scope oo
Setting keys oL e
Handling of unknown keys
Selective key setting
Digesting keys Lo
Utility functions for keys oo oo
Low-level interface for parsing key—val lists

vii

208
208
210
211
212
212
213
214
215
216
216

217
217
218
218
219
221
222
223
225
226
226
226
227
228
228
228
229
229
229
230
230
231
231
232
232
232

27 The I3intarray package: Fast global integer arrays

27.1

[3intarray documentation oo
27.1.1 Implementation notes oL

28 The 13fp package: Floating points

28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9

Creating and initialising floating point variables
Setting floating point variables oo
Using floating points L o
Floating point conditionals
Floating point expression loops
Some useful constants, and scratch variables
Scratch variables
Floating point exceptions L.
Viewing floating points oo oo oo

28.10 Floating point expressions oL oL

28.10.1Input of floating point numbers
28.10.2 Precedence of operators
28.10.3Operations

28.11 Disclaimer and roadmap Lo

29 The I3fparray package: Fast global floating point arrays

29.1

[3fparray documentationo oL

30 The I3cctab package: Category code tables

30.1
30.2
30.3
30.4

Creating and initialising category code tables
Using category code tables 0.
Category code table conditionals
Constant and scratch category code tables

V Text manipulation

31 The 13unicode package: Unicode support functions

32 The I3text package: Text processing

32.1
32.2
32.3
324
32.5

Expanding text Lo
Case changing L
Removing formatting from text o oL
Control variables
Mapping to graphemes L e

V1 Typesetting

viii

33 The I3box package: Boxes 287
33.1 Creating and initialising boxes 287
33.2 Using boxes 288
33.3 Measuring and setting box dimensions 0oL 289
33.4 Boxconditionals 290
33.5 The last box inserted 290
33.6 Constant boxes 290
33.7 Scratch boxes 290
33.8 Viewing box contents 0oL 291
33.9 Boxesand color 291
33.10 Horizontal mode boxes 291
33.11 Vertical mode boxes 292
33.12 Using boxes efficiently o 294
33.13 Affine transformations Lo 295
33.14 Viewing part of abox L o oo 298
33.15 Primitive box conditionals 299

34 The I3coffins package: Coffin code layer 300
34.1 Creating and initialising coffins L. 300
34.2 Setting coffin content and poleso L. 301
34.3 Coffin affine transformations 302
34.4 Joining and using coffins L oL oo 303
34.5 Measuring coffinso 303
34.6 Coflin diagnostics L 304
34.7 Constants and variables. o 305

35 The I3color package: Color support 306
35.1 Colorin boxes e 306
35.2 Colormodels. 306
35.3 Color expressionsl 308
35.4 Named colors e e e e 309
35.5 Selecting colors oL 309
35.6 Colors for fills and strokes o 310

35.6.1 Coloring math mode material 310
35.7 Multiple color models 310
35.8 Exporting color specifications oL oL 311
35.9 Creating new color models 312
35.9.1 Color profiles 313

36 The 13pdf package: Core PDF support 314
36.1 Objects o . e 314
36.2 Version 315
36.3 Page (media) size 316
36.4 Compressiono oa e e e 316
36.5 Destinations e e e 316

VII Additions and removals 318

ix

37 The I3candidates package: Experimental additions to I3kernel

37.1
37.2
37.3

Important notice L L
Additions to 13seq
Additions to I3t

VIII Implementation

38 13bootstrap implementation

38.1
38.2
38.3
38.4

The \pdfstrcmp primitive in XgqITEpX
Loading support Lua code
Engine requirementso Lo o Lo Lo
The BTEX3 code environment

39 I13names implementation

40 I13kernel-functions: kernel-reserved functions

40.1
40.2

Internal kernel functions e
Kernel backend functions

41 I3basics implementation

41.1
41.2
41.3
41.4
41.5
41.6
41.7
41.8
41.9
41.10
41.11
41.12
41.13
41.14
41.15
41.16
41.17
41.18
41.19
41.20
41.21
41.22

Renaming some TEX primitives (again)
Defining some constants oL oL oL
Defining functions Lo Lo
Selecting tokens oL
Gobbling tokens from input oL oo
Debugging and patching later definitions
Conditional processing and definitions
Dissecting a control sequence oo
Exist or free L
Preliminaries for new functions L oL
Defining new functions L.
Copying definitionso
Undefining functions L oo
Generating parameter text from argument count
Defining functions from a given number of arguments
Using the signature to define functions
Checking control sequence equality
Diagnostic functions oL oo
Decomposing a macro definition o000
Doing nothing functions,
Breaking out of mapping functions
Starting a paragraph

322
322
322
323
324

326

352
352
359

42 13expan implementation
42.1 General expansion e e e
42.2 Hand-tuned definitionso
42.3 Last-unbraced versions
42.4 Preventing expansiono e
42.5 Controlled expansion L oL
42.6 Defining function variants
42.7 Definitions with the automated technique
42.8 Held-over variant generation L oL
43 I13sort implementation
43.1 Variables
43.2 Finding available \toks registers
43.3 Protected user commands oL
43.4 Merge Sort oL e
43.5 Expandable sorting
43.6 MeSsages e e e
44 13tl-analysis implementation
44.1 Internal functions Lo o
44.2 Internal format
44.3 Variables and helper functions 0oL
444 Planof attack
44.5 Disabling active characters L Lo
44.6 First pass oL
44.7 Second PASS . . .t e e e e e e e e e e e e
44.8 Mapping through the analysis
44.9 Showing theresults oL o
44.10 Peeking ahead Lo
4411 MESSAZES « v v v v e e e e e e e e e e e e e e e e e
45 13regex implementation
45.1 Planof attack L
45.2 Helpers e
45.2.1 Constants and variables
45.2.2 Testing characters o
45.2.3 Internal auxiliaries Lo oo
45.2.4 Character property tests oL oL
45.2.5 Simple character escape oL
45.3 Compiling e
45.3.1 Variables used when compiling
45.3.2 Generic helpers used when compiling
45.3.3 Mode e
45.3.4 Framework Lo
45.3.5 Quantifiers e
45.3.6 Raw characters L L
45.3.7 Character properties
45.3.8 Anchoring and simple assertions
45.3.9 Character classes L o
45.3.10 Groups and alternations oL

Xi

392
392
396
399
401
401
402
412
413

415
415
416
418
420
423
428

45.3.11 Catcodes and csnameso e 492

45.3.12Raw token lists with \u oo 496
45.3.130ther 500
45.3.14 Showing regexeso i e e e 500

454 Building 507
45.4.1 Variables used while building0 507
45.4.2 Framework Lo 508
45.4.3 Helpers for building an NFA oL 511
45.4.4 Building classes L o 512
45.4.5 Building groups oL e 514
45.4.6 Others oL e 518

45.5 Matching 520
45.5.1 Variables used when matching 520
45.5.2 Matching: framework oL L. 523
45.5.3 Using states of the NFAo 526
45.5.4 Actions when matching oL, 527

45.6 Replacemento 529
45.6.1 Variables and helpers used in replacement 529
45.6.2 Query and brace balance L. 531
45.6.3 Framework 532
45.6.4 Submatches Lo 535
45.6.5 Csnames in replacement Lo 537
45.6.6 Characters in replacement 538
45.6.7 Anerror L. 542

45.7 User functions 542
45.7.1 Variables and helpers for user functions 546
45.7.2 Matching L 547
45.7.3 Extracting submatcheso oL 548
45.7.4 Replacement Lo 553
45.7.5 Peeking ahead Lo o o 556

45.8 Messages 562
45.9 Code for tracingo 568
46 13prg implementation 570
46.1 Primitive conditionals Lo oo 570
46.2 Defining a set of conditional functions o000 570
46.3 The boolean data type L L s 570
46.4 Internal auxiliarieso L Lo 572
46.5 Boolean expressions oL Lo e 573
46.6 Logical loops L e 578
46.7 Producing multiple copies Lo 580
46.8 Detecting TEX'smode L oL o 581
46.9 Internal programming functions 582

xii

47 13sys implementation 584

471 Kernel code Lo e 584
47.1.1 Detecting the engineo 584
47.1.2 Platform. e 587
47.1.3 Configurations oL Lo 587
4714 Access totheshell o o o 589

47.2 Dynamic (every job) code o 592
47.2.1 The name of thejob 592
47.2.2 Timeand date 592
47.2.3 Random numberso 593
4724 Access totheshell L o o 594
47.2.5 Held over from 13file oo 595

47.3 Last-minute code L 595
47.3.1 Detecting the output oo 596
47.3.2 Configurations L 596

48 13msg implementation 598

48.1 Internal auxiliaries 598

48.2 Creating messages v vttt e e e 598

48.3 Messages: support functions and text Lo oL 600

48.4 Showing messages: low level mechanism 601

48.5 Displaying messages Lo e e 603

48.6 Kernel-specific functions o o 612

48.7 Internal messages e 613

48.8 Expandable errorso Lo 620

48.9 Message formattingo 621

49 13file implementation 622

49.1 Inmput operationso L 622
49.1.1 Variables and constants 0oL 622
49.1.2 Stream management 623
49.1.3 Reading input L 626

49.2 Output operations. e 629
49.2.1 Variables and constants L 0oL 629
49.2.2 Internal auxiliaries Lo L Lo 630

49.3 Stream management oL e 631
49.3.1 Deferred writing o 633
49.3.2 Immediate writing oL oo 634
49.3.3 Special characters for writing o000 635
49.3.4 Hard-wrapping lines to a character count 635

49.4 Deprecated functions Lo 644

49.5 Fileoperations 644
49.5.1 Internal auxiliaries 646

49.6 GetldInfo 662

49.7 Checking the version of kernel dependencies 663

49.8 MeSSageso e e e 665

49.9 Functions delayed from earlier modules 665

xiii

50 13luatex implementation 667
50.1 BreakingouttoLua., 667
50.2 Messages 668
50.3 Lua functions for internal use 669
50.4 Preserving iniTeX Lua data for runs 674

51 I3legacy implementation 676

52 13tl implementation 678
52.1 Functions. e 678
52.2 Constant token lists oL 680
52.3 Adding to token list variables o000 680
52.4 Internal quarks and quark-query functions 683
52.5 Reassigning token list category codes 684
52.6 Modifying token list variables o000 687
52.7 Token list conditionals L. 691
52.8 Mapping over token lists 0oL 695
52.9 Using token lists L 697
52.10 Working with the contents of token lists 698
52.11 The first token from a token list 701
52.12 Token by token changes. oo oL 705
52.13 Using a single item L L 708
52.14 Viewing token lists L o oo 711
52.15 Internal scan markso L Lo 713
52.16 Scratch token lists o 713

53 13str implementation 714
53.1 Internal auxiliaries L Lo 714
53.2 Creating and setting string variables 715
53.3 Modifying string variableso 0oL o oL 716
53.4 String comparisons o 717
53.5 Mapping over strings Lo L Lo 720
53.6 Accessing specific characters in a stringo L. 722
53.7 Counting characters L 727
53.8 The first character in a string 728
53.9 String manipulation oL Lo 729
53.10 Viewing strings Lo 733

54 I3str-convert implementation 734
54.1 Helpers 734

54.1.1 Variables and constants 734
54.2 String conditionals Lo 736
54.3 Conversions o 737
54.3.1 Producing one byte or character 737
54.3.2 Mapping functions for conversions 738
54.3.3 Error-reporting during conversion. 739
54.3.4 Framework for conversions oL 740
54.3.5 Byte unescape and escapeo 744
54.3.6 Native strings 745
54.3.7 clist e e 746

Xiv

54.3.8 8-bit encodings Lo

544 MESSAZES « v v v e e e e e e e e e e e e e
54.5 Escaping definitions L oL Lo
54.5.1 Unescape methods
54.5.2 Escape methods Lo L.
54.6 Encoding definitions L 0oL
54.6.1 UTF-8 support o o e e
54.6.2 UTF-16 support o . o v v i
54.6.3 UTF-32 support« . o v i i e
54.7 PDF names and strings by expansion
54.7.1 18O 8859 support
55 13quark implementation
55.1 Quarks
55.2 Scanmarkso
56 13seq implementation
56.1 Allocation and initialisation L.
56.2 Appending data to eitherend oL oL 0oL
56.3 Modifying sequences
56.4 Sequence conditionals
56.5 Recovering data from sequences
56.6 Mapping over SeqUENCES . . .« . .« v e e e e e e e e e e
56.7 Using sequences o .ttt e e
56.8 Sequence stacks oL oL
56.9 Viewing sequenceso e e e e e e e
56.10 Scratch sequences e e e e
57 13int implementation
57.1 Integer expressionso e
57.2 Creating and initialising integers L oL
57.3 Setting and incrementing integers oL
57.4 Using integers oL
57.5 Integer expression conditionals L Lo L.
57.6 Integer expression loops. L Lo e
57.7 Integer step functions
57.8 Formatting integerso L Lo
57.9 Converting from other formats to integers
57.10 Viewing integer o e
57.11 Random integers e e
57.12 Constant integers L
57.13 Scratch integers L L
57.14 Integers for earlier modules Lo
58 13flag implementation
58.1 Nomn-expandable flag commands
58.2 Expandable flag commandso 0oL oL

XV

788
788
796

798
799
802
803
807
809
812
817
818
819
819

821
822
824
826
827
827
831
832
834
840
842
843
843
844
844

59 13clist implementation
59.1 Removing spaces around items oL
59.2 Allocation and initialisation
59.3 Adding data to comma lists oo
59.4 Comma listsasstacks oL oo
59.5 Modifying comma listso Lo
59.6 Comma list conditionals
59.7 Mapping over comma lists L o L oo
59.8 Using comma lists L oL
59.9 Using asingleitem Lo
59.10 Viewing comma lists L L oo
59.11 Scratch comma lists L

60 13token implementation
60.1 Internal auxiliaries L Lo
60.2 Manipulating and interrogating character tokens
60.3 Creating character tokens
60.4 Generic tokens L e e e
60.5 Token conditionals o
60.6 Peeking ahead at the next token oL

61 13prop implementation
61.1 Internal auxiliaries L o
61.2 Allocation and initialisation Lo
61.3 Accessing data in property lists L oL
61.4 Property list conditionals L oo
61.5 Recovering values from property lists with branching
61.6 Mapping over property lists Lo
61.7 Viewing property lists. Lo oo

62 13skip implementation
62.1 Length primitives renamed oL
62.2 Internal auxiliaries L L o
62.3 Creating and initialising dim variables.
62.4 Setting dim variables L L oL
62.5 Utilities for dimension calculations
62.6 Dimension expression conditionals 0oL
62.7 Dimension expression loops. L oL
62.8 Dimension step functions oL oL oo
62.9 Using dim expressions and variableso 0L
62.10 Conversion of dim to other units
62.11 Viewing dim variables oL oL oL
62.12 Constant dimensions L L e
62.13 Scratch dimensions o
62.14 Creating and initialising skip variables
62.15 Setting skip variables L L
62.16 Skip expression conditionals
62.17 Using skip expressions and variables
62.18 Inserting skips into the output oL
62.19 Viewing skip variables oL oo oL

XVi

848
849
850
852
853
855
858
859
863
865
867
868

869
869
869
872
878
879
888

62.20 Constant skips 928

62.21 Scratch skips. 928
62.22 Creating and initialising muskip variables 928
62.23 Setting muskip variables L L oo 929
62.24 Using muskip expressions and variables 930
62.25 Viewing muskip variables L oL 0oL 930
62.26 Constant muskips L 931
62.27 Scratch muskips 931
63 13keys implementation 932
63.1 Low-level interface L 932
63.2 Constants and variables. Lo 939
63.2.1 Internal auxiliarieso 941
63.3 The key defining mechanism 0oL 942
63.4 Turning properties into actions oL oL 944
63.5 Creating key properties L L o 951
63.6 Setting keys 957
63.7 Utilities 966
63.8 Messages 969
63.9 Deprecated functionso Lo 969
64 I3intarray implementation 971
64.1 Lua implementation Lo oo 971
64.1.1 Allocating arrayso 971
64.1.2 Array itemso e 974
64.1.3 Working with contents of integer arrays 976
64.2 Font dimension based implementation 977
64.2.1 Allocating arrays oo 978
64.2.2 Array items 979
64.2.3 Working with contents of integer arrays 981
64.3 Common partSt e e e e 983
65 13fp implementation 984
66 13fp-aux implementation 985
66.1 Access to primitives 985
66.2 Internal representation L L Lo 985
66.3 Using arguments and semicolons oL 986
66.4 Constants, and structure of floating points 987
66.5 Overflow, underflow, and exact zero 990
66.6 Expanding after a floating point number o000 990
66.7 Other floating point types o oL 991
66.8 Packing digits 994
66.9 Decimate (dividing by a power of 10) 997
66.10 Functions for use within primitive conditional branches 999
66.11 Integer floating points L L oo 1000
66.12 Small integer floating points L oL oL 1001
66.13 Fast string comparison L Lo 1002
66.14 Name of a function from its I3fp-parse name 1002
66.15 Messages 1002

xvii

67 13fp-traps implementation 1003

67.1 Flags o o e 1003
67.2 Traps o o e e 1003
67.3 Errors 1007
67.4 MeSSages . .« v v v i e e e e e e e e 1007
68 13fp-round implementation 1009
68.1 Rounding tools 1009
68.2 The round function 1013
69 13fp-parse implementation 1018
69.1 Work plan 1018
69.1.1 Storing results Lo 1019
69.1.2 Precedence and infix operators 1020
69.1.3 Prefix operators, parentheses, and functions 1023
69.1.4 Numbers and reading tokens one by one 1024
69.2 Main auxiliary functions oo Lo 1026
69.3 Helpers L 1027
69.4 Parsing one number Lo 1028
69.4.1 Numbers: trimming leading zeros 1034
69.4.2 Number: small significand 1035
69.4.3 Number: large significand 1037
69.4.4 Number: beyond 16 digits, rounding 1039
69.4.5 Number: finding the exponent 1042
69.5 Constants, functions and prefix operators 1045
69.5.1 Prefix operators 1045
69.5.2 Constants 1048
69.5.3 Functions L L e 1049
69.6 Main functions.o Lo 1050
69.7 Infix operatorso 1052
69.7.1 Closing parentheses and commas 1053
69.7.2 Usual infix operators L. 1055
69.7.3 Juxtapositiono 1056
69.7.4 Multi-character cases Lo oL 1056
69.7.5 Ternary operator Lo Lo o 1057
69.7.6 CompariSons i e e e 1057
69.8 Tools for functions 1059
69.9 MeSSagES e e e e e e e e e e 1062
70 13fp-assign implementation 1063
70.1 Assigning values 1063
70.2 Updating values 1064
70.3 Showing values L 1064
70.4 Some useful constants and scratch variables L. 1065

xXviii

71 13fp-logic implementation
71.1 Syntax of internal functions
T1.2 Tests . . . o o o e e
71.3 Comparison e
71.4 Floating point expression loops
715 Extremao e
71.6 Boolean operations e
71.7 Ternary operator Lo e

72 13fp-basics implementation
72.1 Addition and subtraction oL oo oo
72.1.1 Sign, exponent, and special numbers
72.1.2 Absolute additiono
72.1.3 Absolute subtractiono Lo
72.2 Multiplication Lo
72.2.1 Signs, and special numbers
72.2.2 Absolute multiplication
72.3 Division e e e e e
72.3.1 Signs, and special numberso
7232 Workplan oL L
72.3.3 Implementing the significand division
T2.4 Square Tooto e e e e e e
72.5 About the sign and exponento
72.6 Operations on tuples L

73 13fp-extended implementation
73.1 Description of fixed point numbers
73.2 Helpers for numbers with extended precision
73.3 Multiplying a fixed point number by a short one
73.4 Dividing a fixed point number by a small integer
73.5 Adding and subtracting fixed points L.
73.6 Multiplying fixed points L o o
73.7 Combining product and sum of fixed points
73.8 Extended-precision floating point numberso
73.9 Dividing extended-precision numberso
73.10 Inverse square root of extended precision numbers
73.11 Converting from fixed point to floating point

74 13fp-expo implementation
74.1 Logarithm e
74.1.1 Workplan
74.1.2 Some constants e e
74.1.3 Sign, exponent, and special numberso
74.1.4 AbsoluteIn
74.2 Exponential
74.2.1 Sign, exponent, and special numbers
T4.3 Power. e e e e e
74.4 Factorial e e

Xix

75 13fp-trig implementation 1150

75.1 Direct trigonometric functions 1151
75.1.1 Filtering special caseso 1151
75.1.2 Distinguishing small and large arguments 1154
75.1.3 Small arguments oL Lo 1155
75.1.4 Argument reduction in degrees 1155
75.1.5 Argument reduction in radians 1156
75.1.6 Computing the power series 1164
75.2 Inverse trigonometric functions oL 1166
75.2.1 Arctangent and arccotangent 1167
75.2.2 Arcsine and arccosineo oo 1172
75.2.3 Arccosecant and arcsecanto 1174

76 13fp-convert implementation 1176
76.1 Dealing with tuples L oo oo 1176
76.2 Trimming trailing zeros Lo oo 1176
76.3 Scientific notation 1177
76.4 Decimal representationo 1178
76.5 Token list representation oo 1180
76.6 Formatting L e 1181
76.7 Convert to dimension or integer oL 1181
76.8 Convert from a dimension L L oL 1182
76.9 Useandeval 1183
76.10 Convert an array of floating points to a comma list 1184

77 13fp-random implementation 1186
77.1 Engine supporto 1186
77.2 Random floating pointo oL o 1189
77.3 Random integer 1190

78 I3fparray implementation 1195
78.1 Allocating arrays 1195
78.2 Array items 1196

79 13cctab implementation 1200
79.1 Variables 1200
79.2 Allocating category code tables 1201
79.3 Saving category code tables L o oL 1202
79.4 Using category code tables L. 1203
79.5 Category code table conditionals 1208
79.6 Constant category code tables oL 1209
T9.7 MeSSAZES « . v v v e e e e e e e e e 1211

80 13unicode implementation 1213
80.1 User functions L 1213
80.2 Dataloader 1217

81 13text implementation

81.1 Internal auxiliaries L oL
81.2 Utilities e e e e
81.3 Codepoint utilities e
81.4 Configuration variables oL 0oL
81.5 Expansion to formatted text L Lo
82 I3text-case implementation
82.1 Casechanging
83 I3text-map implementation
83.1 Mapping totext
84 13text-purify implementation
84.1 Purifying texto
84.2 Accent and letter-like data for purifying text
85 I13box implementation
85.1 Support code
85.2 Creating and initialising boxes oo oL
85.3 Measuring and setting box dimensionso oL
85.4 Using boxes e
85.5 Box conditionals
85.6 The last box inserted L
85.7 Constant boxes L L
85.8 Scratch boxes L
85.9 Viewing box contents L oo
85.10 Horizontal mode boxes o
85.11 Vertical mode boxes
85.12 Affine transformations L
85.13 Viewing part of abox oL L o
86 13coffins implementation
86.1 Coflins: data structures and general variables
86.2 Basic coffin functions Lo
86.3 Measuring coffins L. o
86.4 Coffins: handle and pole management
86.5 Coffins: calculation of pole intersections
86.6 Affine transformationso L oL
86.7 Aligning and typesetting of coffins Lo
86.8 Coffin diagnostics L
86.9 MeSSAZES . . . v o e e e e e e e e e e e

XX1

87 13color implementation 1356

87.1 Basics e 1356
87.2 Predefined colornames e 1357
87.3 Setup o e 1358
87.4 Utility functions 1358
87.5 Model conversion e e e e e 1359
87.6 Color expressionsl 1360
87.7 Selecting colors (and color models) 1369
87.8 Math color e e 1371
87.9 Fill and stroke color 1374
87.10 Defining named colors L oo 1374
87.11 Exporting colors L 1377
87.12 Additional color models 1379
87.13 Applying profiles 1394
87.14 Diagnosticso 1394
8T.15 MeSsages v v v vt e e 1395

88 13pdf implementation 1399
88.1 Compression v v v e e e e e e e e e e e e e e e 1399
88.2 ODbjects o e e e 1400
88.3 Version e 1400
88.4 Pagesize e 1402
88.5 Destinations e 1402
88.6 PDF Page size (media box) 1402
88.7 Deprecated functions Lo Lo 1403

89 I3candidates implementation 1404
89.1 AdditionstoI3seq 1404
89.2 Additions to I3tlo 1404
89.2.1 Building a token list oL 1404

90 13deprecation implementation 1408
90.1 Patching definitions to deprecate 1408
90.2 Removed functions 1410
90.3 Deprecated [3basics functions oL 1414
90.4 Deprecated 13prg functions 1414
90.5 Deprecated I3str functions Lo 1415
90.6 Deprecated 13seq functions oL 1415
90.7 Deprecated I3sys functions Lo oL oo 1416
90.8 Deprecated I3tl functions L 1416
90.9 Deprecated [3token functions oL 1417

91 13debug implementation 1419

Index 1442

xxii

Part 1
Introduction

Chapter 1

Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the ITEX3 programming language is found in expl3.pdf.

1.1 Naming functions and variables

XTEX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So \foo:c {ArgumentOne} will act in the same way as \foo:N
\ArgumentOne. All macros that appear in the argument are expanded. An internal
error will occur if the result of expansion inside a c-type argument is not a series
of character tokens.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example

\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are not
expandable.

e The e specifier is in many respects identical to x, but uses \expanded primitive. Para-
meter character (usually #) in the argument need not be doubled. Functions which
feature an e-type argument may be expandable.

f The £ specifier stands for full expansion, and in contrast to x stops at the first non-
expandable token (reading the argument from left to right) without trying to expand
it. If this token is a (space token), it is gobbled, and thus won’t be part of the
resulting argument. For example, when setting a token list variable (a macro used
for storage), the sequence

\tl_set:Nn \1_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1l_mya_tl \1_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some specified string).

D The D stands for Do not use. All of the TEX primitives are initially \1let to a D name,
and some are then given a second name. These functions have no standardized
syntax, they are engine dependent and their name can change without warning,
thus their use is strongly discouraged in package code: programmers should instead
use the interfaces documented in interface3.pdf!.

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

LIf a primitive offers a functionality not yet in the kernel, programmers and users are encouraged
to write to the LaTeX-L mailing list (mailto:LATEX-L@listserv.uni-heidelberg.de) describing their
use-case and intended behaviour, so that a possible interface can be discussed. Temporarily, while an
interface is not provided, programmers may use the procedure described in the 13styleguide.pdf.

mailto:LATEX-L@listserv.uni-heidelberg.de

¢ Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module? name and then a descriptive part. Variables end with a short
identifier to show the variable type:

clist Comma separated list.

dim “Rigid” lengths.

fp Floating-point values;

int Integer-valued count register.

muskip “Rubber” lengths for use in mathematics.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
str String variables: contain character data.
t1 Token list variables: placeholder for a token list.

Applying V-type or v-type expansion to variables of one of the above types is supported,
while it is not supported for the following variable types:

bool Either true or false.
box Box register.

coffin A “box with handles” — a higher-level data type for carrying out box alignment
operations.

flag Integer that can be incremented expandably.

fparray Fixed-size array of floating point values.

intarray Fixed-size array of integers.

ior/iow An input or output stream, for reading from or writing to, respectively.
prop Property list: analogue of dictionary or associative arrays in other languages.

regex Regular expression.

2The module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

\ExplSyntaxOn
\ExplSyntax0ff

1.1.1 Scratch variables

Modules focussed on variable usage typically provide four scratch variables, two local
and two global, with names of the form \(scope)_tmpa_(type)/\(scope)_tmpb_(type).
These are never used by the core code. The nature of TEX grouping means that as
with any other scratch variable, these should only be set and used with no intervening
third-party code.

1.1.2 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and
a “token list variable” are almost the same.> On the other hand, some “variables” are
actually registers that must be initialised and their values set and retrieved with specific
functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

1.2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntax0ff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the
function takes no arguments and so the name of the function is simply reprinted.

For programming functions, which use _ and : in their name there are a few addi-
tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

3TgEXnically, functions with no arguments are \long while token list variables are not.

\seq_new:N
\seq_new:c

\cs_to_str:N %

\seq_map_function:NN v

\sys_if_engine_xetex:TF *

\1_tmpa_t1l

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows them
to be used within an x-type or e-type argument (in plain TEX terms, inside an \edef or
\expanded), as well as within an f-type argument. These fully expandable functions are
indicated in the documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\sys_if_engine_xetex:TF {(true code)} {(false code)}
The underlining and italic of TF indicates that three functions are available:

e \sys_if_engine_xetex:T

e \sys_if_engine_xetex:F

e \sys_if_engine_xetex:TF
Usually, the illustration will use the TF variant, and so both (true code) and (false code)
will be shown. The two variant forms T and F take only (true code) and (false code),
respectively. Here, the star also shows that this function is expandable. With some minor

exceptions, all conditional functions in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.

In some cases, the function is similar to one in BTEX 2¢ or plain TEX. In these cases,
the text will include an extra “TEpXhackers note” section:

\token_to_str:N x \token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or ITEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

Changes to behaviour When new functions are added to expl3, the date of first
inclusion is given in the documentation. Where the documented behaviour of a function
changes after it is first introduced, the date of the update will also be given. This means
that the programmer can be sure that any release of expl3 after the date given will contain
the function of interest with expected behaviour as described. Note that changes to code
internals, including bug fixes, are not recorded in this way wunless they impact on the
expected behaviour.

1.3 Formal language conventions which apply gener-
ally

As this is a formal reference guide for TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left
in the input stream: this will typically be part of a larger logical construct.

1.4 TgX concepts not supported by BETEX3

The TEX concept of an “\outer” macro is not supported at all by ITEX3. As such, the
functions provided here may break when used on top of IXTEX 2¢ if \outer tokens are
used in the arguments.

Part 11
Bootstrapping

\ExplSyntaxOn
\ExplSyntax0ff

Updated: 2011-08-13

\ProvidesExplPackage
\ProvidesExplClass
\ProvidesExplFile

Updated: 2023-08-03

Chapter 2

The I3bootstrap package
Bootstrap code

2.1 Using the KTEX3 modules

The modules documented in source3 are designed to be used on top of KTEX 2: and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions.

As the modules use a coding syntax different from standard I¥TEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn (code) \ExplSyntax0ff

The \ExplSyntaxOn function switches to a category code regime in which spaces and
new lines are ignored, and in which the colon (:) and underscore (_) are treated as
“letters”, thus allowing access to the names of code functions and variables. Within this
environment, ~ is used to input a space. The \ExplSyntax0ff reverts to the document
category code regime.

TEXhackers note: Spaces introduced by ~ behave much in the same way as normal space
characters in the standard category code regime: they are ignored after a control word or at
the start of a line, and multiple consecutive ~ are equivalent to a single one. However, ~ is not
ignored at the end of a line.

\RequirePackage{expl3}

\ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

These functions act broadly in the same way as the corresponding IATEX 2¢ kernel func-
tions \ProvidesPackage, \ProvidesClass and \ProvidesFile. However, they also im-
plicitly switch \ExplSyntax0On for the remainder of the code with the file. At the end
of the file, \ExplSyntax0ff will be called to reverse this. (This is the same concept as
BTEX 2¢ provides in turning on \makeatletter within package and class code.) The
(date) should be given in the format (year)/(month)/{day) or in the ISO date format
(year)-(month)-(day). If the (version) is given then a leading v is optional: if given as a
“pure” version string, a v will be prepended.

\GetIdInfo

Updated: 2012-06-04

\RequirePackage{13bootstrap}
\GetIdInfo $Id: (SVN info field) $ {(description)}

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion
for version and \ExplFileDescription for the description.

To summarize: Every single package using this syntax should identify itself using
one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or similar are loaded with usual IXTEX 2¢ category codes and the
TEX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

10

Chapter 3

The I13names package
Namespace for primitives

3.1 Setting up the KTEX3 programming language

This module is at the core of the W TEX3 programming language. It performs the following
tasks:

 defines new names for all TEX primitives;
e emulate required primitives not provided by default in LuaTgX;
o switches to the category code régime for programming;

This module is entirely dedicated to primitives (and emulations of these), which
should not be used directly within X TEX3 code (outside of “kernel-level” code). As such,
the primitives are not documented here: The TgXbook, TEX by Topic and the manuals
for pdfTEX, XHIEX, LualgX, pPIEX and uplEX should be consulted for details of the
primitives. These are named \tex_(name):D, typically based on the primitive’s (name)
in pdfTEX and omitting a leading pdf when the primitive is not related to pdf output.

11

Part 111
Programming Flow

12

\prg_do_nothing: x

\scan_stop:

\group_begin:
\group_end:

Chapter 4

The I3basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

4.1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

4.2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

13

\group_insert_after:N

\group_show_list:
\group_log_list:

New: 2021-05-11

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted is empty at the beginning of a group: multiple applications
of \group_insert_after:N may be used to build the inserted list one (token) at a time.
The current group level may be closed by a \group_end: function or by a token with
category code 2 (close-group), namely a } if standard category codes apply.

\group_show_list:

\group_log_list:

Display (to the terminal or log file) a list of the groups that are currently opened. This
is intended for tracking down problems.

TEXhackers note: This is a wrapper around the \showgroups primitive.

4.3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” are fully expanded inside an x expansion. In
contrast, “protected” functions are not expanded within x expansions.

4.3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen is checked and an error raised if it is already in use.
The name of a function can be checked at the point of definition using the \cs_new. ..
functions: this is recommended for all functions which are defined for the first time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and results in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and does not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and does not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

14

\cs_new:
\cs_new:
\cs_new:
\cs_new:
\cs_new:
\cs_new:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:
\cs_new_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:
\cs_new_protected:

Npn
cpn
Npe
cpe
Npx
cpx

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type or e-type expansion.

Finally, the functions in Subsections 4.3.2 and 4.3.3 are primarily meant to define
base functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 9.1).

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 5.2.

4.3.2 Defining new functions using parameter text

\cs_new:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Npn (function) (parameters) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Npn (function) (parameters) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type or or e-type argument. The definition is
global and an error results if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {(code)}
\cs_new_protected_nopar:cpn
\cs_new_protected_nopar:Npe
\cs_new_protected_nopar:cpe
\cs_new_protected_nopar:Npx
\cs_new_protected_nopar:cpx

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

15

\cs_set:
\cs_set:
\cs_set:
\cs_set:
\cs_set:
\cs_set:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:
\cs_set_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_set_protected:
\cs_set_protected:
\cs_set_protected:
\cs_set_protected:
\cs_set_protected:
\cs_set_protected:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_set:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn (function) (parameters) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type or e-type argument.

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {(code)}
\cs_set_protected_nopar:cpn
\cs_set_protected_nopar:Npe
\cs_set_protected_nopar:cpe
\cs_set_protected_nopar:Npx
\cs_set_protected_nopar:cpx

\cs_gset:
\cs_gset:
\cs_gset:
\cs_gset:
\cs_gset:
\cs_gset:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_gset_nopar:
\cs_gset_nopar:
\cs_gset_nopar:
\cs_gset_nopar:
\cs_gset_nopar:
\cs_gset_nopar:

Npn
cpn
Npe
cpe
Npx
cpx

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type or e-type argument.

\cs_gset:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

16

\cs_gset_protected:
\cs_gset_protected:
\cs_gset_protected:
\cs_gset_protected:
\cs_gset_protected:
\cs_gset_protected:

Npn
cpn
Npe
cpe
Npx
cpx

\cs_gset_protected:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {(code)}
\cs_gset_protected_nopar:cpn
\cs_gset_protected_nopar:Npe
\cs_gset_protected_nopar:cpe
\cs_gset_protected_nopar:Npx
\cs_gset_protected_nopar:cpx

\cs_new:Nn

\cs_new:(cn|Ne|ce)

\cs_new_nopar:Nn

\cs_new_nopar:(cn|Ne|ce)

\cs_new_protected:Nn

\cs_new_protected:(cn|Ne|ce)

Globally sets (function) to expand to {code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global. The (function) will not expand within an x-type or
e-type argument.

4.3.3 Defining new functions using the signature

\cs_new:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error results if the (function) is already defined.

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error results if the (function) is already defined.

\cs_new_protected:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
{(function) will not expand within an x-type or e-type argument. The definition is global
and an error results if the {function) is already defined.

17

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {(code)}
\cs_new_protected_nopar:(cn|Ne|ce)

\cs_set:Nn
\cs_set:(cn|Ne|ce)

\cs_set_nopar:Nn
\cs_set_nopar:(cn|Ne|ce)

\cs_set_protected:Nn
\cs_set_protected:(cn|Ne|ce)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type or e-type argument. The definition is global and an
error results if the (function) is already defined.

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {({code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {(code)}
\cs_set_protected_nopar:(cn|Ne|ce)

\cs_gset:Nn
\cs_gset:(cn|Ne|ce)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is restricted to the current TEX group level.

\cs_gset:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is global.

18

\cs_gset_nopar:Nn
\cs_gset_nopar:(cn|Ne|ce)

\cs_gset_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the (function) is global.

\cs_gset_protected:Nn

\cs_gset_protected:Nn (function) {(code)}

\cs_gset_protected:(cn|Ne|ce)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type or e-type argument. The assignment of a meaning to the
{function) is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {(code)}
\cs_gset_protected_nopar:(cn|Ne|ce)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type or e-type argument. The assignment of a meaning to the
(function) is global.

\cs_generate_from_arg_count:NNnn \cs_generate_from_arg_count:NNnn (function) (creator)
\cs_generate_from_arg_count:(NNno|cNnn|Ncnn) {(number)} {{code)}

Updated: 2012-01-14

\cs_new_eq:NN
\cs_new_eq:(Nc|cN|cc)

Uses the (creator) function (which should have signature Npn, for example \cs_new: Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

4.3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)
\cs_new_eq:NN (csi) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequenceg) or (token). The second control sequence may subsequently be altered without
affecting the copy.

19

\cs_set_eq:NN
\cs_set_eq:(Nc|cN|cc)

\cs_gset_eq:NN
\cs_gset_eq:(Nc|cN|cc)

\cs_undefine:N
\cs_undefine:c

Updated: 2011-09-15

\cs_meaning:N x
\cs_meaning:c *

Updated: 2011-12-22

\cs_show:N
\cs_show:c

Updated: 2017-02-14

\cs_log:N
\cs_log:c

New: 2014-08-22
Updated: 2017-02-14

\cs_set_eq:NN (cs1) (cs2)
\cs_set_eq:NN (csi) (token)

Sets {control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (cs1) (cs2)
\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as (control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

4.3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

4.3.6 Showing control sequences

\cs_meaning:N (control sequence)

This function expands to the meaning of the (control sequence) control sequence. For a
macro, this includes the (replacement text).

TgXhackers note: This is TEX’s \meaning primitive. For tokens that are not control
sequences, it is more logical to use \token_to_meaning:N. The c variant correctly reports
undefined arguments.

\cs_show:N (control sequence)

Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\cs_log:N (control sequence)

Writes the definition of the (control sequence) in the log file. See also \cs_show:N which
displays the result in the terminal.

20

4.3.7 Converting to and from control sequences

\use:c x \use:c {(control sequence name)}

\cs_if_exist_use:N
\cs_if_exist_use:c

*
*

\cs_if_exist_use:NTF x*

\cs_if_exist_use:c

*

New: 2012-11-10

\cs:w
\cs_end:

*
*

Expands the (control sequence name) until only characters remain, and then converts
this into a control sequence. This process requires two expansions. As in other c-type
arguments the (control sequence name) must, when fully expanded, consist of character
tokens, typically a mixture of category code 10 (space), 11 (letter) and 12 (other).

As an example of the \use:c function, both

\use:c { abc }
and

\tl_new:N \1l_my_tl
\tl_set:Nn \1_my_tl { abc}
\use:c { \tl_use:N \l_my_tl }

would be equivalent to
\abc
after two expansions of \use:c.

\cs_if_exist_use:N <control sequence)
\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined according to the conditional
\cs_if_exist:NTF (whether as a function or another control sequence type), and if it is
inserts the (control sequence) into the input stream followed by the (¢rue code). Otherwise
the (false code) is used.

\cs:w (control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically of category
code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname

As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:
and

\tl_new:N \l_my_tl
\tl_set:Nn \1_my_tl { abc }
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to

\abc

21

\cs_to_str:N *

\cs_split_function:N =

New: 2018-04-06

\cs_prefix_spec:N x

New: 2019-02-27

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The result does not include the current
escape token, contrarily to \token_to_str:N. Full expansion of this function requires
exactly 2 expansion steps, and so an x-type or e-type expansion, or two o-type expansions
are required to convert the (control sequence) to a sequence of characters in the input
stream. In most cases, an f-expansion is correct as well, but this loses a space at the
start of the result.

4.4 Analysing control sequences

\cs_split_function:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream in three
parts: the (name), the (signature) and a logic token indicating if a colon was found (to
differentiate variables from function names). The (name) does not include the escape
character, and both the (name) and (signature) are made up of tokens with category
code 12 (other).

The next three functions decompose TEX macros into their constituent parts: if the
(token) passed is not a macro then no decomposition can occur. In the latter case, all
three functions leave \scan_stop: in the input stream.

\cs_prefix_spec:N (token)

If the (token) is a macro, this function leaves the applicable TEX prefixes in input stream
as a string of tokens of category code 12 (with spaces having category code 10). Thus
for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_prefix_spec:N \next:nn

leaves \long in the input stream. If the (token) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: The prefix can be empty, \long, \protected or \protected\long with
backslash replaced by the current escape character.

22

\cs_parameter_spec:N *

New: 2022-06-24

\cs_replacement_spec:N *
\cs_replacement_spec:c *

New: 2019-02-27

\cs_parameter_spec:N (token)

If the (token) is a macro, this function leaves the primitive TEX parameter specification
in input stream as a string of character tokens of category code 12 (with spaces having
category code 10). Thus for example

\cs_set:Npn \next:nn #1#2 { x #1 y #2 }
\cs_parameter_spec:N \next:nn

leaves #1#2 in the input stream. If the (foken) is not a macro then \scan_stop: is left
in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

\cs_replacement_spec:N (token)

If the (token) is a macro, this function leaves the replacement text in input stream as
a string of character tokens of category code 12 (with spaces having category code 10).
Thus for example

\cs_set:Npn \next:nn #1#2 { x #1~y #2 }
\cs_replacement_spec:N \next:nn

leaves x#1,y#2 in the input stream. If the (foken) is not a macro then \scan_stop: is
left in the input stream.

TEXhackers note: If the parameter specification contains the string ->, then the function
produces incorrect results.

4.5 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then when absorbing them the outer set is removed. At the same
time, the category code of each token is set when the token is read by a function (if it
is read more than once, the category code is determined by the situation in force when
first function absorbs the token).

23

\use:
\use:
\use:
\use:

n *
nn *
nnn *
nnnn %

\use:n {(group:)}

\use:nn {(group:)} {(group:)}

\use:nnn {(group:)} {(group:)} {{groups)}

\use:nnnn {(group:)} {{group:)} {(groups)} {(groups)}

As illustrated, these functions absorb between one and four arguments, as indicated by
the argument specifier. The braces surrounding each argument are removed and the
remaining tokens are left in the input stream. The category code of these tokens is also
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }
results in the input stream containing
abc { def }
i.e. only the outer braces are removed.

TEXhackers note: The \use:n function is equivalent to I¥TEX 2¢’s \@firstofone.

24

\use_i:nn {(arg:i)} {(arg:)}

\use_i:nnn {(argi)} {(arg:)} {(args:)}

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

\use_i:nnnnn {(argi)} {(arg:)} {(args)} {(args)} {(args)}

\use_i:nnnnnn {(arg:)} {(argz:)} {(args)} {(args)} {{args)} {(arge)}

\use_i:nnnnnnn {(argi)} {(args)} {(args)} {({args)} {({args)} {({args)} {(argr)}
\use_i:nnnnnnnn {(arg:)} {(arg:)} {({args)} {(args)} {({args)} {(arges)} {({argr)}
{(args)}

\use_i:nnnnnnnnn {(arg:)} {(arge)} {(args)} {(args)} {(args)} {(args)} {(arg:)}
{(args)} {(argo)}

These functions absorb a number (n) arguments from the input stream. They then
discard all arguments other than that indicated by the roman numeral, which is left in
the input stream. For example, \use_i:nn discards the second argument, and leaves the
content of the first argument in the input stream. The category code of these tokens is
also fixed (if it has not already been by some other absorption). A single expansion is
needed for the functions to take effect.

\use_i:nn
\use_ii:nn
\use_i:nnn
\use_ii:nnn
\use_iii:nnn
\use_i_ii:nnn
\use_i:nnnn
\use_ii:nnnn
\use_iii:nnnn
\use_iv:nnnn
\use_i:nnnnn
\use_ii:nnnnn
\use_iii:nnnnn
\use_iv:nnnnn
\use_v:nnnnn
\use_i :nnnnnn
\use_ii:nnnnnn
\use_iii:nnnnnn
\use_iv:nnnnnn
\use_v:nnnnnn
\use_vi:nnnnnn
\use_i :nnnnnnn
\use_ii:nnnnnnn
\use_iii:nnnnnnn
\use_iv:nnnnnnn
\use_v:nnnnnnn
\use_vi:nnnnnnn
\use_vii:nnnnnnn
\use_i:nnnnnnnn
\use_ii:nnnnnnnn
\use_iii:nnnnnnnn
\use_iv:nnnnnnnn
\use_v:nnnnnnnn
\use_vi:nnnnnnnn
\use_vii:nnnnnnnn
\use_vii:nnnnnnnn
\use_i :nnnnnnnnn
\use_ii:nnnnnnnnn
\use_iii:nnnnnnnnn
\use_iv:nnnnnnnnn
\use_v:nnnnnnnnn
\use_vi:nnnnnnnnn
\use_vii:nnnnnnnnn
\use_viii:nnnnnnnnn
\use_ix:nnnnnnnnn

L S S . S D S D D S N i R, D, D P S P P P, P S S R s s S, S, S S P D S . P S i e D P S S o

25

\use_i_ii:nnn * \use_i_ii:nnn {(arg:)} {(arge)} {(args)}

This function absorbs three arguments and leaves the content of the first and second in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
results in the input stream containing
abc { def }

i.e. the outer braces are removed and the third group is removed.

\use_ii_i:nn % \use_ii_i:nn {(argi)} {(arg:)}

New: 2019-06-02

\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:
\use_none:

n *
nn

nnn

nnnn
nnnnn
nnnnnn
nnnnnnn
nnnnnnnn

*
*
*
*
*
nnnnnnnnn

\use:e *

New: 2018-06-18

This function absorbs two arguments and leaves the content of the second and first in
the input stream. The category code of these tokens is also fixed (if it has not already
been by some other absorption). A single expansion is needed for the function to take
effect.

\use_none:n {(group:)}

* These functions absorb between one and nine groups from the input stream, leaving

nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

TEXhackers note: These are equivalent to E'TEX 2¢’s \@gobble, \@gobbbletwo, etc.

\use:e {(expandable tokens)}

Fully expands the (token list) in an e-type manner, in which parameter character (usu-
ally #) need not be doubled, and the function remains fully expandable.

TEXhackers note: \use:e is a wrapper around the primitive \expanded. It requires two
expansions to complete its action.

4.5.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q _nil:w * \use_none_delimit_by_q_nil:w <balanced text) \q_nil
\use_none_delimit_by_q_stop:w * \use_none_delimit_by_q_stop:w <balanced text> \q_stop
\use_none_delimit_by_q_recursion_stop:w x \use_none_delimit_by_q_recursion_stop:w (balanced text)

\g_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

26

\use_i_delimit_by_q_nil:nw

* \use_i_delimit_by_qg_nil:nw {(inserted tokens)} (balanced text)

\use_i_delimit_by_q_stop:nw * \q_nil
\use_i_delimit_by_q_recursion_stop:nw x \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced

text) \g_stop
\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) from the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

4.6

Predicates and conditionals

I4TEX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending

on its result, either the code supplied as the (true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abc} {(true code)} {(false code)}

a function that turns the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carries out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it is usually accompanied by T and F functions as well. These are provided
for convenience when the branch only needs to go a single way. Package writers
are free to choose which types to define but the kernel definitions always provide
all three versions.

Important to note is that these branching conditionals with (¢rue code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they are accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which

can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” also exists that behaves like
a conditional described above.

27

\cs_if_eq_p:NN
\cs_if_eq:NNTF

*

\cs_if_exist_p:N
\cs_if_exist_p:c
\cs_if_exist:NTF
\cs_if_exist:c

\cs_if_free_p:N
\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_free:c

Ll I

\if_true:
\if_false:
\else:

\fi:
\reverse_if:N

*
*
*
*
*

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and ETEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

4.6.1 Tests on control sequences

\cs_if_eq_p:NN (cs1) (cs2)

\cs_if_eq:NNTF (cs1) (cs2) {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true if they are the
same, i.e. if they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any definition of {control sequence) other than \relax evaluates
as true.

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test is false if
the (control sequence) currently exists (as defined by \cs_if_exist:NTF).

4.6.2 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions
often contains a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We prefix primitive conditionals with \if_.

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. The function \or: is documented in I3int and used in
case switches.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TgX’s \unless

28

\if _meaning:w *

\if:w *
\if _charcode:w *
\if _catcode:w *

\if_cs_exist:N x
\if_cs_exist:w x

\if_mode_horizontal:
\if_mode_vertical:
\if _mode_math:
\if_mode_inner:

b S S

\mode_leave_vertical:

New: 2017-07-04

\if_meaning:w (argi) (arge) (true code) \else: (false code) \fi:

\if _meaning:w executes (true code) when (arg;) and (args) are the same, otherwise it
executes (false code). (argy) and (arge) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

\if:w (token:) (token:) (true code) \else: (false code) \fi:
\if_catcode:w (token;) (tokens) (true code) \else: (false code) \fi:

These conditionals expand any following tokens until two unexpandable tokens are left.
If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if _catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:

\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

TEXhackers note: These are TEX’s \ifdefined and \ifcsname, respectively.

\if _mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

4.7 Starting a paragraph

\mode_leave_vertical:

Ensures that TEX is not in vertical (inter-paragraph) mode. In horizontal or math mode
this command has no effect, in vertical mode it switches to horizontal mode, and inserts
a box of width \parindent, followed by the \everypar token list.

TgXhackers note: This results in the contents of the \everypar token register being
inserted, after \mode_leave_vertical: is complete. Notice that in contrast to the KTEX 2¢
\leavevmode approach, no box is used by the method implemented here.

29

\debug_on:n
\debug_off:n

New: 2017-07-16
Updated: 2023-05-23

\debug_suspend:
\debug_resume:

New: 2017-11-28

4.8 Debugging support

\debug_on:n { (comma-separated list) }
\debug_off:n { (comma-separated list) }

Turn on and off within a group various debugging code, some of which is also available
as expl3 load-time options. The items that can be used in the (list) are

o check-declarations that checks all expl3 variables used were previously declared
and that local/global variables (based on their name or on their first assignment)
are only locally/globally assigned;

e check-expressions that checks integer, dimension, skip, and muskip expressions
are not terminated prematurely;

e deprecation that makes soon-to-be-deprecated commands produce errors;
o log-functions that logs function definitions;
e all that does all of the above.

Providing these as switches rather than options allows testing code even if it relies on
other packages: load all other packages, call \debug_on:n, and load the code that one is
interested in testing.

\debug_suspend: ... \debug_resume:

Suppress (locally) errors and logging from debug commands, except for the deprecation
errors or warnings. These pairs of commands can be nested. This can be used around
pieces of code that are known to fail checks, if such failures should be ignored. See for
instance |3coffins.

30

Chapter 5

The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the IATEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

5.1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions of the form \exp_-
. ... They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo expands the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
{ \1_tmpa_t1 }

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_generate_variant:Nn \seq_gpush:Nn { No }

results in the definition of \seq_gpush:No

31

\cs_new:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is safe as the \cs_generate_variant:Nn
function will only create new definitions if there is not already one available. Therefore
adding such definition to later releases of the kernel will not make such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

5.2 Methods for defining variants

We recall the set of available argument specifiers.

e N is used for single-token arguments while ¢ constructs a control sequence from its
name and passes it to a parent function as an N-type argument.

e Many argument types extract or expand some tokens and provide it as an n-type
argument, namely a braced multiple-token argument: V extracts the value of a
variable, v extracts the value from the name of a variable, n uses the argument as
it is, o expands once, £ expands fully the front of the token list, e and x expand
fully all tokens (differences are explained later).

e A few odd argument types remain: T and F for conditional processing, otherwise
identical to n-type arguments, p for the parameter text in definitions, w for argu-
ments with a specific syntax, and D to denote primitives that should not be used
directly.

32

\cs_generate_variant:Nn
\cs_generate_variant :cn

Updated: 2017-11-28

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for IXTEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the {original argument specifier) if
these are not already defined; entries which correspond to existing functions are silently
ingored. For each (variant) given, a function is created that expands its arguments as
detailed and passes them to the (parent control sequence). So for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { ¢ }

creates a new function \foo:cn which expands its first argument into a control sequence
name and passes the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

generates the functions \foo:NV and \foo:cV in the same way. The \cs_generate_-
variant:Nn function should only be applied if the (parent control sequence) is already
defined. (This is only enforced if debugging support check-declarations is enabled.)
If the (parent control sequence) is protected or if the (variant) involves any x argument,
then the (variant control sequence) is also protected. The (variant) is created globally, as
is any \exp_args:N(variant) function needed to carry out the expansion. There is no
need to re-apply \cs_generate_variant:Nn after changing the definition of the parent
function: the variant will always use the current definition of the parent. Providing
variants repeatedly is safe as \cs_generate_variant:Nn will only create new definitions
if there is not already one available.

Only n and N arguments can be changed to other types. The only allowed changes
are

e c variant of an N parent;
e 0,V, v, f, e, or x variant of an n parent;
e N, n, T, F, or p argument unchanged.

This means the (parent) of a (variant) form is always unambiguous, even in cases where
both an n-type parent and an N-type parent exist, such as for \t1l_count:n and \tl_-
count:N.

When creating variants for conditional functions, \prg_generate_conditional_-
variant:Nnn provides a convenient way of handling the related function set.

For backward compatibility it is currently possible to make n, o, V, v, £, e, or x-type
variants of an N-type argument or N or c-type variants of an n-type argument. Both
are deprecated. The first because passing more than one token to an N-type argument
will typically break the parent function’s code. The second because programmers who
use that most often want to access the value of a variable given its name, hence should
use a V-type or v-type variant instead of c-type. In those cases, using the lower-level
\exp_args:No or \exp_args:Nc functions explicitly is preferred to defining confusing
variants.

33

\exp_args_generate:n \exp_args_generate:n {(variant argument specifiers)}

New: 2018-04-04 Defines \exp_args:N(variant) functions for each (variant) given in the comma list
Updated: 2019-02-08 {(wariant argument specifiers)}. Each (variant) should consist of the letters N, ¢, n, V, v,
o, f, e, %, p and the resulting function is protected if the letter x appears in the (variant).

This is only useful for cases where \cs_generate_variant:Nn is not applicable.

5.3 Introducing the variants

The V type returns the value of a register, which can be one of t1, clist, int, skip,
dim, muskip, or built-in TEX registers. The v type is the same except it first creates a
control sequence out of its argument before returning the value.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The e type expands all tokens fully, starting from the first. More precisely the
expansion is identical to that of TEX’s \message (in particular # needs not be doubled).
It relies on the primitive \expanded hence is fast.

The x type expands all tokens fully, starting from the first. In contrast to e, all macro
parameter characters # must be doubled, and omitting this leads to low-level errors. In
addition this type of expansion is not expandable, namely functions that have x in their
signature do not themselves expand when appearing inside x or e expansion.

The £ type is so special that it deserves an example. It is typically used in contexts
where only expandable commands are allowed. Then x-expansion cannot be used, and £-
expansion provides an alternative that expands the front of the token list as much as can
be done in such contexts. For instance, say that we want to evaluate the integer expression
3 + 4 and pass the result 7 as an argument to an expandable function \example:n. For
this, one should define a variant using \cs_generate_variant:Nn \example:n { f },
then do

\example:f { \int_eval:n { 3 + 4 } }

Note that x-expansion would also expand \int_eval:n fully to its result 7, but the
variant \example:x cannot be expandable. Note also that o-expansion would not expand
\int_eval:n fully to its result since that function requires several expansions. Besides
the fact that x-expansion is protected rather than expandable, another difference between
f-expansion and x-expansion is that f-expansion expands tokens from the beginning and
stops as soon as a non-expandable token is encountered, while x-expansion continues
expanding further tokens. Thus, for instance

\example:f { \int_eval:n { 1 + 2 } , \int_eval:n { 3 + 4 } }
results in the call

\example:n { 3 , \int_eval:n { 3 + 4 } }
while using \example:x or \example:e instead results in

\example:n { 3 , 7 }

34

at the cost of being protected (for x type) or very much slower in old engines (for e type).
If you use f type expansion in conditional processing then you should stick to using TF
type functions only as the expansion does not finish any \if... \fi: itself!

It is important to note that both £- and o-type expansion are concerned with the
expansion of tokens from left to right in their arguments. In particular, o-type expansion
applies to the first token in the argument it receives: it is conceptually similar to

\exp_after:wN <base function> \exp_after:wN { <argument> }

At the same time, f-type expansion stops at the first non-expandable token. This means
for example that both

\tl_set:No \1_tmpa_tl { { \g_tmpb_tl } }
and
\tl_set:Nf \1_tmpa_tl { { \g_tmpb_tl } }

leave \g_tmpb_t1 unchanged: { is the first token in the argument and is non-expandable.
It is usually best to keep the following in mind when using variant forms.

o Variants with x-type arguments (that are fully expanded before being passed to
the n-type base function) are never expandable even when the base function is.
Such variants cannot work correctly in arguments that are themselves subject to
expansion. Consider using f or e expansion.

o In contrast, e expansion (full expansion, almost like x except for the treatment of #)
does not prevent variants from being expandable (if the base function is).

e Finally £ expansion only expands the front of the token list, stopping at the first
non-expandable token. This may fail to fully expand the argument.

When speed is essential (for functions that do very little work and whose variants are
used numerous times in a document) the following considerations apply because internal
functions for argument expansion come in two flavours, some faster than others.

e Arguments that might need expansion should come first in the list of arguments.

e Arguments that should consist of single tokens N, c, V, or v should come first among
these.

e Arguments that appear after the first multi-token argument n, f, e, or o require
slightly slower special processing to be expanded. Therefore it is best to use the
optimized functions, namely those that contain only N, c, V, and v, and, in the last
position, o, £, e, with possible trailing N or n or T or F, which are not expanded.
Any x-type argument causes slightly slower processing.

5.4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

35

\exp_args:Nc *
\exp_args:cc *

\exp_args:No *

\exp_args:NV *

\exp_args:Nv *

\exp_args:Ne *

New: 2018-05-15

\exp_args:Nf =

\exp_args:Nx

\exp_args:Nc (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a control
sequence. The result is inserted into the input stream after reinsertion of the (function).
Thus the {function) may take more than one argument: all others are left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

\exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others are left unchanged.

\exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. This control sequence should be the name of a (variable). The content of
the (variable) are recovered and placed inside braces into the input stream after reinser-
tion of the (function). Thus the (function) may take more than one argument: all others
are left unchanged.

\exp_args:Ne (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

\exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token is found (if that is a
space it is removed), and the result is inserted in braces into the input stream after rein-
sertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

\exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and exhaus-
tively expands the (tokens). The result is inserted in braces into the input stream after
reinsertion of the (function). Thus the (function) may take more than one argument: all
others are left unchanged.

36

\exp_args:NNc
\exp_args:NNo
\exp_args:NNV
\exp_args:NNv
\exp_args:NNe

\exp_args:Ncc
\exp_args:Nco
\exp_args:NcV
\exp_args:Ncv
\exp_args:Ncf
\exp_args:NVV

*
*
*
*
*
\exp_args:NNf *
*
*
*
*
*
*

Updated: 2018-05-15

\exp_args:Nnc
\exp_args:Nno
\exp_args:NnV
\exp_args:Nnv
\exp_args:Nne
\exp_args:Nnf
\exp_args:Noc
\exp_args:Noo
\exp_args:Nof
\exp_args:NVo
\exp_args:Nfo
\exp_args:Nff
\exp_args:Nee

Ll . S D S R . S .

Updated: 2018-05-15

\exp_args:NNx
\exp_args:Ncx
\exp_args:Nnx
\exp_args:Nox
\exp_args:Nxo
\exp_args:Nxx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNo
NNNV
NNNv
NNNe
Nccc
NcNc
NcNo
Ncco

Ll D D .

5.5 Manipulating two arguments

\exp_args:NNc (token;) (tokens) {(tokens)}

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Noo (token) {(tokensi)} {(tokenss)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need slower processing.

\exp_args:NNx (tokeni) (tokens) {(tokens)}

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable due to their x-type argument.

5.6 Manipulating three arguments

\exp_args:NNNo (tokeni) (tokens) (tokens) {(tokens)}

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

37

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNcf
NNno
NNnV
NNoo
NNVV
Ncno
NcnV
Ncoo
NcVVv
Nnnc
Nnno
Nnnf
Nnff
Nooo
Noof
Nffo
Neee

X X X > b ot ot X X X X o ok o Xt X

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNNx
NNnx
NNox
Nccx
Ncnx
Nnnx
Nnox
Noox

New: 2015-08-12

\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:
\exp_last_unbraced:

No
NV
Nv
Ne
Nf
NNo
NNV
NNf
Nco
NcV
Nno
Noo
Nfo

NNNo
NNNV
NNNfE
NnNo

b . P D T S S D D . D S i i

*

NNNNo *
NNNNf *

Updated: 2018-05-15

\exp_args:NNoo (tokeni) (tokenz) {(tokens)} {(tokens)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need slower processing.

\exp_args:NNnx (tokeni) (tokens) {(tokensi)} {(tokensi)}

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

5.7 Unbraced expansion

\exp_last_unbraced:Nno (token) {(tokensi)} {(tokens:)}

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, :Nfo and :NnNo variants
need slower processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \foo_bar:w { } \g_stop leads to an infinite loop, as the quark is f-
expanded.

38

\exp_last_unbraced:Nx

\exp_last_unbraced:Nx (function) {(tokens)}

This function fully expands the (tokens) and leaves the result in the input stream after
reinsertion of the (function). This function is not expandable.

\exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo (token) {(tokensi)} {(tokensz)}

\exp_after:wN x

\exp_not:N *

\exp_not:c *

This function absorbs three arguments and expands the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (tokem) (tokens)

Carries out a single expansion of (tokeny) (which may consume arguments) prior to the
expansion of (tokeny). If (tokeny) has no expansion (for example, if it is a character) then
it is left unchanged. It is important to notice that (token;) may be any single token, in-
cluding group-opening and -closing tokens ({ or } assuming normal TEX category codes).
Unless specifically required this should be avoided: expansion should be carried out us-
ing an appropriate argument specifier variant or the appropriate \exp_args:N(variant)
function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

5.8 Preventing expansion

Despite the fact that the following functions are all about preventing expansion, they’re
designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves disappear after the expansion has completed.

\exp_not:N (token)
Prevents expansion of the (token) in a context where it would otherwise be expanded,

for example an x-type argument or the first token in an o or e or £ argument.

TgXhackers note: This is the TEX \noexpand primitive. It only prevents expansion. At
the beginning of an £-type argument, a space (token) is removed even if it appears as \exp_not:N
\c_space_token. In an e-expanding definition (\cs_new:Npe), a macro parameter introduces
an argument even if it appears as \exp_not:N # 1. This differs from \exp_not:n.

\exp_not:c {(tokens)}

Expands the (tokens) until only characters remain, and then converts this into a control
sequence. Further expansion of this control sequence is then inhibited using \exp_not:N.

39

\exp_not:n *

\exp_not:o *

\exp_not:V *

\exp_not:v *

\exp_not:e *

\exp_not:f *

\exp_stop_f: «*

Updated: 2011-06-03

\exp_not:n {(tokens)}

Prevents expansion of the (tokens) in an e or x-type argument. In all other cases the
(tokens) continue to be expanded, for example in the input stream or in other types of
arguments such as c, £, v. The argument of \exp_not:n must be surrounded by braces.

TEXhackers note: This is the e-TEX \unexpanded primitive. In an x-expanding definition
(\cs_new:Npe), \exp_not:n {#1} is equivalent to ##1 rather than to #1, namely it inserts the
two characters # and 1. In an e-type argument \exp_not:n {#} is equivalent to #, namely it
inserts the character #.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in x-type or e-type
arguments using \exp_not:n.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in x-type
or e-type arguments using \exp_not:n.

\exp_not:v {(tokens)}

Expands the (tokens) until only characters remains, and then converts this into a control
sequence which should be a (variable) name. The content of the (variable) is recovered,
and further expansion in x-type or e-type arguments is prevented using \exp_not:n.

\exp_not:e {(tokens)}

Expands (tokens) exhaustively, then protects the result of the expansion (including any
tokens which were not expanded) from further expansion in e or x-type arguments using
\exp_not:n. This is very rarely useful but is provided for consistency.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found (if it is a space it
is removed). Expansion then stops, and the result of the expansion (including any to-
kens which were not expanded) is protected from further expansion in x-type or e-type
arguments using \exp_not:n.

\foo_bar:f { (tokens) \exp_stop_f: (more tokens) }

This function terminates an f-type expansion. Thus if a function \foo_bar:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop_f: terminates the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type or e-type expansion, it retains its form, but when
typeset it produces the underlying space ().

5.9 Controlled expansion

The expl3 language makes all efforts to hide the complexity of TEX expansion from the
programmer by providing concepts that evaluate/expand arguments of functions prior to

40

\exp:w *
\exp_end: *

New: 2015-08-23

calling the “base” functions. Thus, instead of using many \expandafter calls and other
trickery it is usually a matter of choosing the right variant of a function to achieve a
desired result.

Of course, deep down TEX is using expansion as always and there are cases where
a programmer needs to control that expansion directly; typical situations are basic data
manipulation tools. This section documents the functions for that level. These commands
are used throughout the kernel code, but we hope that outside the kernel there will be
little need to resort to them. Instead the argument manipulation methods document
above should usually be sufficient.

While \exp_after:wN expands one token (out of order) it is sometimes necessary to
expand several tokens in one go. The next set of commands provide this functionality.
Be aware that it is absolutely required that the programmer has full control over the
tokens to be expanded, i.e., it is not possible to use these functions to expand unknown
input as part of (expandable-tokens) as that will break badly if unexpandable tokens are
encountered in that place!

\exp:w (expandable tokens) \exp_end:

Expands (exzpandable-tokens) until reaching \exp_end: at which point expansion stops.
The full expansion of (expandable tokens) has to be empty. If any token in {expandable
tokens) or any token generated by expanding the tokens therein is not expandable the
expansion will end prematurely and as a result \exp_end: will be misinterpreted later
on.*

In typical use cases the \exp_end: is hidden somewhere in the replacement text of
(expandable-tokens) rather than being on the same expansion level than \exp:w, e.g., you

may see code such as
\exp:w \@Q_case:NnTF #1 {#2} { } { }
where somewhere during the expansion of \@@_case:NnTF the \exp_end: gets generated.

TEXhackers note: The current implementation uses \romannumeral hence ignores space
tokens and explicit signs + and - in the expansion of the (ezpandable tokens), but this should
not be relied upon.

4Due to the implementation you might get the character in position 0 in the current font (typically
“¢”) in the output without any error message!

41

\exp:w *
\exp_end_continue_f:w *

New: 2015-08-23

\exp:w *
\exp_end_continue_f:nw *

New: 2015-08-23

\exp:w (expandable-tokens) \exp_end_continue_f:w (further-tokens)

Expands (ezpandable-tokens) until reaching \exp_end_continue_f :w at which point ex-
pansion continues as an f-type expansion expanding (further-tokens) until an unexpand-
able token is encountered (or the f-type expansion is explicitly terminated by \exp_-
stop_£f:). As with all £-type expansions a space ending the expansion gets removed.

The full expansion of (expandable-tokens) has to be empty. If any token in
(expandable-tokens) or any token generated by expanding the tokens therein is not ex-
pandable the expansion will end prematurely and as a result \exp_end_continue_f:w
will be misinterpreted later on.”

In typical use cases {expandable-tokens) contains no tokens at all, e.g., you will see
code such as

\exp_after:wN { \exp:w \exp_end_continue_f:w #2 }

where the \exp_after:wN triggers an f-expansion of the tokens in #2. For technical
reasons this has to happen using two tokens (if they would be hidden inside another
command \exp_after:wN would only expand the command but not trigger any additional
f-expansion).

You might wonder why there are two different approaches available, after all the
effect of

\exp:w (expandable-tokens) \exp_end:
can be alternatively achieved through an f-type expansion by using \exp_stop_£f:, i.e.
\exp:w \exp_end_continue_f:w (expandable-tokens) \exp_stop_f:

The reason is simply that the first approach is slightly faster (one less token to parse and
less expansion internally) so in places where such performance really matters and where
we want to explicitly stop the expansion at a defined point the first form is preferable.

\exp:w (expandable-tokens) \exp_end_continue_f:nw (further-tokens)

The difference to \exp_end_continue_f :w is that we first we pick up an argument which
is then returned to the input stream. If (further-tokens) starts with space tokens then
these space tokens are removed while searching for the argument. If it starts with a brace
group then the braces are removed. Thus such spaces or braces will not terminate the
f-type expansion.

5In this particular case you may get a character into the output as well as an error message.

42

P

PP P A Y

TddNthooad =8B

::0_unbraced
::e_unbraced
::f_unbraced
::X_unbraced
::v_unbraced

::V_unbraced

5.10 Internal functions

\cs_new:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
ITREX3 approach as this makes them more readily visible in the log and so forth. They
should not be used outside this module.

\cs_new:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

Internal forms for the expansion types which leave the terminal argument unbraced.
These names do not conform to the general INTEX3 approach as this makes them more
readily visible in the log and so forth. They should not be used outside this module.

43

Chapter 6

The I13sort package
Sorting functions

6.1 Controlling sorting

ETEX3 comes with a facility to sort list variables (sequences, token lists, or comma-lists)
according to some user-defined comparison. For instance,

\clist_set:Nn \1_foo_clist { 3, 01 , -2 , 5, +1 }
\clist_sort:Nn \1_foo_clist
{
\int_compare:nNnTF { #1 } > { #2 }
{ \sort_return_swapped: }
{ \sort_return_same: }

}

results in \1_foo_clist holding the values { -2 , 01 , +1 , 3 , 5 } sorted in non-
decreasing order.

The code defining the comparison should call \sort_return_swapped: if the two
items given as #1 and #2 are not in the correct order, and otherwise it should call \sort_-
return_same: to indicate that the order of this pair of items should not be changed.

For instance, a (comparison code) consisting only of \sort_return_same: with no
test yields a trivial sort: the final order is identical to the original order. Conversely,
using a (comparison code) consisting only of \sort_return_swapped: reverses the list
(in a fairly inefficient way).

TEXhackers note: The current implementation is limited to sorting approximately 20000
items (40000 in LuaTEX), depending on what other packages are loaded.

Internally, the code from I3sort stores items in \toks registers allocated locally. Thus,
the (comparison code) should not call \newtoks or other commands that allocate new \toks
registers. On the other hand, altering the value of a previously allocated \toks register is not a
problem.

44

\sort_return_same: \seq_sort:Nn (seq Var)
\sort_return_swapped: { ... \sort_return_same: or \sort_return_swapped: ... }

New: 2017-02-06 Indicates whether to keep the order or swap the order of two items that are compared
in the sorting code. Only one of the \sort_return_. .. functions should be used by the
code, according to the results of some tests on the items #1 and #2 to be compared.

45

Chapter 7

The I13tl-analysis package:
Analysing token lists

This module provides functions that are particularly useful in the I3regex module for
mapping through a token list one (token) at a time (including begin-group/end-group
tokens). For \tl_analysis_map_inline:Nn or \tl_analysis_map_inline:nn, the to-
ken list is given as an argument; the analogous function \peek_analysis_map_inline:n
documented in I3token finds tokens in the input stream instead. In both cases the user
provides (inline code) that receives three arguments for each (token):

o (tokens), which both o-expand and x-expand to the (token). The detailed form of
(tokens) may change in later releases.

o (char code), a decimal representation of the character code of the (token), —1 if it
is a control sequence.

o (catcode), a capital hexadecimal digit which denotes the category code of the (token)
(0: control sequence, 1: begin-group, 2: end-group, 3: math shift, 4: alignment tab,
6: parameter, 7: superscript, 8: subscript, A: space, B: letter, C: other, D: active).
This can be converted to an integer by writing "(catcode).

In addition, there is a debugging function \tl_analysis_show:n, very similar to the
\ShowTokens macro from the ted package.

\tl_analysis_show:N \tl_analysis_show:n {(token list)}
\tl_analysis_show:n \tl_analysis_log:n {(token list)}
\tl_analysis_log:N

, Displays to the terminal (or log) the detailed decomposition of the (token list) into tokens,
\tl_analysis_log:n

showing the category code of each character token, the meaning of control sequences and
New: 2021-05-11 active characters, and the value of registers.

\tl_analysis_map_inline:nn \tl_analysis_map_inline:nn {(token list)} {(inline function)}
\tl_analysis_map_inline:Nn

Applies the (inline function) to each individual (token) in the (token list). The (inline

New: 2018-04-09 fynction) receives three arguments as explained above. As all other mappings the map-
Updated: 2022-03-26 ping js done at the current group level, i.e. any local assignments made by the (inline
function) remain in effect after the loop.

46

Chapter 8

The 13regex package: Regular
expressions in TEpX

The 13regex package provides regular expression testing, extraction of submatches, split-
ting, and replacement, all acting on token lists. The syntax of regular expressions is
mostly a subset of the PCRE syntax (and very close to POSIX), with some additions due
to the fact that TEX manipulates tokens rather than characters. For performance rea-
sons, only a limited set of features are implemented. Notably, back-references are not
supported.

Let us give a few examples. After

\tl_set:Nn \l_my_tl { That~cat. }
\regex_replace_once:nnN { at } { is } \1_my_tl

the token list variable \1_my_t1 holds the text “This cat.”, where the first occurrence
of “at” was replaced by “is”. A more complicated example is a pattern to emphasize
each word and add a comma after it:

\regex_replace_all:nnN { \w+ } { \c{emph}\cB\{ \0 \cE\} , } \1_my_tl

The \w sequence represents any “word” character, and + indicates that the \w sequence
should be repeated as many times as possible (at least once), hence matching a word in
the input token list. In the replacement text, \O denotes the full match (here, a word).
The command \emph is inserted using \c{emph}, and its argument \0 is put between
braces \cB\{ and \cE\}.

If a regular expression is to be used several times, it can be compiled once, and
stored in a regex variable using \regex_set:Nn. For example,

\regex_new:N \1_foo_regex
\regex_set:Nn \1_foo_regex { \c{begin} \cB. (\c["BE].*) \cE. }

stores in \1_foo_regex a regular expression which matches the starting marker for an
environment: \begin, followed by a begin-group token (\cB.), then any number of tokens
which are neither begin-group nor end-group character tokens (\c["BE] . *), ending with
an end-group token (\cE.). As explained in the next section, the parentheses “capture”
the result of \c["BE].*, giving us access to the name of the environment when doing
replacements.

47

8.1 Syntax of regular expressions

8.1.1 Regular expression examples

We start with a few examples, and encourage the reader to apply \regex_show:n to
these regular expressions.

Cat matches the word “Cat” capitalized in this way, but also matches the beginning
of the word “Cattle”: use \bCat\b to match a complete word only.

[abc] matches one letter among “a”, “b”, “c”; the pattern (alblc) matches the
same three possible letters (but see the discussion of submatches below).

[A-Za-z]* matches any number (due to the quantifier *) of Latin letters (not
accented).

\c{[A-Za-z] *} matches a control sequence made of Latin letters.

_["_1#_ matches an underscore, any number of characters other than under-
score, and another underscore; it is equivalent to _.*?_ where . matches arbitrary
characters and the lazy quantifier #? means to match as few characters as possible,
thus avoiding matching underscores.

[\+\-]1?\d+ matches an explicit integer with at most one sign.

I\N+H\-\uI*\d+* matches an explicit integer with any number of + and — signs,
with spaces allowed except within the mantissa, and surrounded by spaces.

I\NH\-\UT* (\d@+1\d*\ .\d+) _* matches an explicit integer or decimal number; us-
ing [.,] instead of \. would allow the comma as a decimal marker.

O\H\-\T* (\d+ I \d*x\ . \d+) _*x ((?i)pt |in| [cemlm|ex| [bslp| [dnld| [pcnlc) \ *
matches an explicit dimension with any unit that TEX knows, where (7i) means
to treat lowercase and uppercase letters identically.

O\+\-_J*((?1)nan|inf | (\d+|\d*\.\d+) (\L*ke [\+\-_I*\d+) ?) * matches an
explicit floating point number or the special values nan and inf (with signs and
spaces allowed).

\+\-\1* (\d+|\cC.) \L* matches an explicit integer or control sequence (without
checking whether it is an integer variable).

\G.*7\K at the beginning of a regular expression matches and discards (due to \K)
everything between the end of the previous match (\G) and what is matched by
the rest of the regular expression; this is useful in \regex_replace_all:nnN when
the goal is to extract matches or submatches in a finer way than with \regex_-
extract_all:nnN.

While it is impossible for a regular expression to match only integer expressions,
NN\ O NG\ * CON\=%/] [\+\=-\ (1 *\d+\) *) * matches among other things all valid
integer expressions (made only with explicit integers). One should follow it with further
testing.

48

8.1.2 Characters in regular expressions

Most characters match exactly themselves, with an arbitrary category code. Some charac-
ters are special and must be escaped with a backslash (e.g., * matches a star character).
Some escape sequences of the form backslash—letter also have a special meaning (for
instance \d matches any digit). As a rule,

o every alphanumeric character (A-Z, a—z, 0-9) matches exactly itself, and should
not be escaped, because \A, \B, ... have special meanings;

o mnon-alphanumeric printable ascii characters can (and should) always be escaped:
many of them have special meanings (e.g., use \(; \), \?, \.; \");

« spaces should always be escaped (even in character classes);

« any other character may be escaped or not, without any effect: both versions match
exactly that character.

Note that these rules play nicely with the fact that many non-alphanumeric characters are
difficult to input into TEX under normal category codes. For instance, \\abc\’ matches
the characters \abc¥% (with arbitrary category codes), but does not match the control
sequence \abc followed by a percent character. Matching control sequences can be done
using the \c{(regex)} syntax (see below).

Any special character which appears at a place where its special behaviour cannot
apply matches itself instead (for instance, a quantifier appearing at the beginning of a
string), after raising a warning.

Characters.

\x{hh. ..} Character with hex code hh. ..
\xhh Character with hex code hh.
\a Alarm (hex 07).
\e Escape (hex 1B).
\f Form-feed (hex 0C).
\n New line (hex 0A).
\r Carriage return (hex 0D).
\t Horizontal tab (hex 09).

8.1.3 Characters classes

Character properties.
. A single period matches any token.
\d Any decimal digit.
\h Any horizontal space character, equivalent to [\ \~"I]: space and tab.

\s Any space character, equivalent to [\ \""I\""J\""L\""M].

49

\v Any vertical space character, equivalent to [\"~J\""K\""L\""M]. Note that \""K
is a vertical space, but not a space, for compatibility with Perl.

\w Any word character, i.e., alphanumerics and underscore, equivalent to the explicit
class [A-Za-z0-9_].

\D Any token not matched by \d.
\H Any token not matched by \h.
\N Any token other than the \n character (hex 0A).
\S Any token not matched by \s.
\V Any token not matched by \v.
\W Any token not matched by \w.

Of those, ., \D, \H, \N, \S, \V, and \W match arbitrary control sequences.
Character classes match exactly one token in the subject.

[...] Positive character class. Matches any of the specified tokens.
[...] Negative character class. Matches any token other than the specified characters.
x-y Within a character class, this denotes a range (can be used with escaped characters).

[:(name):] Within a character class (one more set of brackets), this denotes the POSIX character
class (name), which can be alnum, alpha, ascii, blank, cntrl, digit, graph,
lower, print, punct, space, upper, word, or xdigit.

[:"(name):] Negative POSIX character class.

For instance, [a-oq-z\cC.] matches any lowercase latin letter except p, as well as control
sequences (see below for a description of \c).

In character classes, only [, =, =, 1, \ and spaces are special, and should be escaped.
Other non-alphanumeric characters can still be escaped without harm. Any escape se-
quence which matches a single character (\d, \D, etc.) is supported in character classes.
If the first character is ~, then the meaning of the character class is inverted; ~ appear-
ing anywhere else in the range is not special. If the first character (possibly following a
leading ~) is 1 then it does not need to be escaped since ending the range there would
make it empty. Ranges of characters can be expressed using -, for instance, [\D 0-5]
and ["6-9] are equivalent.

8.1.4 Structure: alternatives, groups, repetitions
Quantifiers (repetition).
? 0 or 1, greedy.
7?7 0 or 1, lazy.
* 0 or more, greedy.
*7 0 or more, lazy.

+ 1 or more, greedy.

50

+7 1 or more, lazy.
{n} Exactly n.
{n,} n or more, greedy.
{n,}? n or more, lazy.
{n,m} At least n, no more than m, greedy.
{n,m}? At least n, no more than m, lazy.

For greedy quantifiers the regex code will first investigate matches that involve as many
repetitions as possible, while for lazy quantifiers it investigates matches with as few
repetitions as possible first.

Alternation and capturing groups.

A|BIC Either one of A, B, or C, investigating A first.
(...) Capturing group.
(7:...) Non-capturing group.

(?1...) Non-capturing group which resets the group number for capturing groups in each
alternative. The following group is numbered with the first unused group number.

Capturing groups are a means of extracting information about the match. Paren-
thesized groups are labelled in the order of their opening parenthesis, starting at 1. The
contents of those groups corresponding to the “best” match (leftmost longest) can be
extracted and stored in a sequence of token lists using for instance \regex_extract_-
once:nnNTF.

The \K escape sequence resets the beginning of the match to the current position in
the token list. This only affects what is reported as the full match. For instance,

\regex_extract_all:nnN { a \K . } { al23aaxyz } \1_foo_seq

results in \1_foo_seq containing the items {1} and {a}: the true matches are {a1} and
{aa}, but they are trimmed by the use of \K. The \K command does not affect capturing
groups: for instance,

\regex_extract_once:nnN { (. \K c)+ \d } { acbc3 } \1_foo_seq

results in \1_foo_seq containing the items {c3} and {bc}: the true match is {acbc3},
with first submatch {bc}, but \K resets the beginning of the match to the last position
where it appears.

8.1.5 Matching exact tokens

The \c escape sequence allows to test the category code of tokens, and match control
sequences. Each character category is represented by a single uppercase letter:

e C for control sequences;
e B for begin-group tokens;

e E for end-group tokens;

o1

e M for math shift;
o T for alignment tab tokens;
o P for macro parameter tokens;
o U for superscript tokens (up);
o D for subscript tokens (down);
« S for spaces;
e L for letters;
e 0 for others; and
o A for active characters.
The \c escape sequence is used as follows.

\c{(regex)} A control sequence whose csname matches the (regex), anchored at the beginning
and end, so that \c{begin} matches exactly \begin, and nothing else.

\cX Applies to the next object, which can be a character, escape character sequence such
as \x{0A}, character class, or group, and forces this object to only match tokens
with category X (any of CBEMTPUDSLOA. For instance, \cL[A-Z\d] matches upper-
case letters and digits of category code letter, \cC. matches any control sequence,
and \c0(abc) matches abc where each character has category other.°

\c[XYZ] Applies to the next object, and forces it to only match tokens with category X, Y,
or Z (each being any of CBEMTPUDSLOA). For instance, \c[LS0] (..) matches two
tokens of category letter, space, or other.

\c["XYZ] Applies to the next object and prevents it from matching any token with category
X, Y, or Z (each being any of CBEMTPUDSLOA). For instance, \c [*0]\d matches digits
which have any category different from other.

The category code tests can be used inside classes; for instance, [\cO\d \c[LO] [A-F]]
matches what TEX considers as hexadecimal digits, namely digits with category other,
or uppercase letters from A to F with category either letter or other. Within a group
affected by a category code test, the outer test can be overridden by a nested test: for
instance, \cL(ab\cO*cd) matches abxcd where all characters are of category letter,
except * which has category other.

The \u escape sequence allows to insert the contents of a token list directly into
a regular expression or a replacement, avoiding the need to escape special characters.
Namely, \u{(var name)} matches the exact contents (both character codes and cate-
gory codes) of the variable \(var name), which are obtained by applying \exp_not:v
{(var name)} at the time the regular expression is compiled. Within a \c{. ..} control
sequence matching, the \u escape sequence only expands its argument once, in effect
performing \tl_to_str:v. Quantifiers are supported.

The \ur escape sequence allows to insert the contents of a regex variable into a
larger regular expression. For instance, A\ur{1_tmpa_regex}D matches the tokens A and

6This last example also captures “abc” as a regex group; to avoid this use a non-capturing group
\c0(?7:abc).

52

D separated by something that matches the regular expression \1_tmpa_regex. This
behaves as if a non-capturing group were surrounding \1_tmpa_regex, and any group
contained in \1_tmpa_regex is converted to a non-capturing group. Quantifiers are
supported.

For instance, if \1_tmpa_regex has value B|C, then A\ur{1_tmpa_regex}D is equiv-
alent to A(?7:B|C)D (matching ABD or ACD) and not to AB|CD (matching AB or CD). To
get the latter effect, it is simplest to use TEX’s expansion machinery directly: if \1_-
mymodule_BC_t1 contains B|C then the following two lines show the same result:

\regex_show:n { A \u{l_mymodule_BC_t1} D }
\regex_show:n{ AB | CD }

8.1.6 Miscellaneous

Anchors and simple assertions.

\b Word boundary: either the previous token is matched by \w and the next by \W,
or the opposite. For this purpose, the ends of the token list are considered as \W.

\B Not a word boundary: between two \w tokens or two \W tokens (including the
boundary).

“or \A Start of the subject token list.

$, \Z or \z End of the subject token list.

\G Start of the current match. This is only different from ~ in the case of multi-
ple matches: for instance \regex_count:nnN { \G a } { aaba } \1_tmpa_int
yields 2, but replacing \G by ~ would result in \1_tmpa_int holding the value 1.

The option (?i) makes the match case insensitive (treating A-Z and a—z as equiv-
alent, with no support yet for Unicode case changing). This applies until the end of
the group in which it appears, and can be reverted using (?7-i). For instance, in
(71) (a(?-1)blc)d, the letters a and d are affected by the i option. Characters within
ranges and classes are affected individually: (?i) [\?7-B] is equivalent to [\7@ABab]
(and differs from the much larger class [\?-b]), and (?i) [Taeiou] matches any char-
acter which is not a vowel. The i option has no effect on \c{...}, on \u{...},
on character properties, or on character classes, for instance it has no effect at all in
(?7i)\u{l_foo_tl1}\d\d[[:1lower:]].

8.2 Syntax of the replacement text

Most of the features described in regular expressions do not make sense within the re-
placement text. Backslash introduces various special constructions, described further
below:

e \O0 is the whole match;

e \1is the submatch that was matched by the first (capturing) group (.. .); similarly
for \2, ..., \9 and \g{(number)};

o _ inserts a space (spaces are ignored when not escaped);

53

e \a, \e, \f, \n, \r, \t, \xhh, \x{hhh} correspond to single characters as in regular
expressions;

o \c{(cs name)} inserts a control sequence;
o \c(category){character) (see below);
o \u{(tl var name)?} inserts the contents of the (¢l var) (see below).

Characters other than backslash and space are simply inserted in the result (but since
the replacement text is first converted to a string, one should also escape characters that
are special for TEX, for instance use \#). Non-alphanumeric characters can always be
safely escaped with a backslash.

For instance,

\tl_set:Nn \1_my_tl { Hello,~world! }
\regex_replace_all:nnN { ([er]?1llo) . } { (\0--\1) } \1_my_tl

results in \1_my_t1 holding H(ell--el) (o,--0) w(or--o) (1d--1)!

The submatches are numbered according to the order in which the opening paren-
thesis of capturing groups appear in the regular expression to match. The n-th submatch
is empty if there are fewer than n capturing groups or for capturing groups that appear in
alternatives that were not used for the match. In case a capturing group matches several
times during a match (due to quantifiers) only the last match is used in the replacement
text. Submatches always keep the same category codes as in the original token list.

By default, the category code of characters inserted by the replacement are deter-
mined by the prevailing category code regime at the time where the replacement is made,
with two exceptions:

« space characters (with character code 32) inserted with \., or \x20 or \x{20} have
category code 10 regardless of the prevailing category code regime;

o if the category code would be 0 (escape), 5 (newline), 9 (ignore), 14 (comment) or
15 (invalid), it is replaced by 12 (other) instead.

The escape sequence \c allows to insert characters with arbitrary category codes, as well
as control sequences.

\cX(...) Produces the characters “...” with category X, which must be one of CBEMTPUDSLOA
as in regular expressions. Parentheses are optional for a single character (which
can be an escape sequence). When nested, the innermost category code applies, for
instance \cL(Hello\cS\ world)! gives this text with standard category codes.

\c{(text)} Produces the control sequence with csname (text). The (text) may contain refer-
ences to the submatches \0, \1, and so on, as in the example for \u below.

The escape sequence \u{{var name)} allows to insert the contents of the variable with
name (var name) directly into the replacement, giving an easier control of category codes.
When nested in \c{...} and \u{...} constructions, the \u and \c escape sequences
perform \tl_to_str:v, namely extract the value of the control sequence and turn it into
a string. Matches can also be used within the arguments of \c and \u. For instance,

\tl_set:Nn \1_my_one_tl { first }

\tl_set:Nn \1_my_two_tl { \emph{second} }

\tl_set:Nn \1_my_tl { one , two , one , one }
\regex_replace_all:nnN { [~,]1+ } { \u{l_my_\O_t1} } \1_my_tl

54

\regex_new:N

New: 2017-05-26

\regex_set:Nn
\regex_gset:Nn

New: 2017-05-26

\regex_const:Nn

New: 2017-05-26

\regex_show:N
\regex_show:n
\regex_log:N
\regex_log:n

New: 2021-04-26
Updated: 2021-04-29

results in \1_my_t1 holding first, \emph{second},first,first.
Regex replacement is also a convenient way to produce token lists with arbitrary
category codes. For instance

\tl_clear:N \1_tmpa_tl
\regex_replace_all:nnN { } { \cU\% \cA\~ } \1_tmpa_tl

results in \1_tmpa_t1 containing the percent character with category code 7 (superscript)
and an active tilde character.

8.3 Pre-compiling regular expressions

If a regular expression is to be used several times, it is better to compile it once rather
than doing it each time the regular expression is used. The compiled regular expression
is stored in a variable. All of the [3regex module’s functions can be given their regular
expression argument either as an explicit string or as a compiled regular expression.

\regex_new:N (regex var)

Creates a new (regex var) or raises an error if the name is already taken. The declaration
is global. The (regex var) is initially such that it never matches.

\regex_set:Nn (regex var) {(regex)}
Stores a compiled version of the (regular expression) in the (regex var). The assignment

is local for \regex_set:Nn and global for \regex_gset:Nn. For instance, this function
can be used as

\regex_new:N \1_my_regex
\regex_set:Nn \1_my_regex { my\ (simple\)7 reg(ex|ular\ expression) }

\regex_const:Nn (regex var) {(regex)}

Creates a new constant (regez var) or raises an error if the name is already taken. The
value of the (regex var) is set globally to the compiled version of the (reqular expression).

\regex_show:n {(regex)}

\regex_log:n {(regex)}

Displays in the terminal or writes in the log file (respectively) how I3regex interprets the
(regex). For instance, \regex_show:n {\A X|Y} shows

+-branch
anchor at start (\A)
char code 88 (X)
+-branch
char code 89 (Y)

indicating that the anchor \A only applies to the first branch: the second branch is not
anchored to the beginning of the match.

55

\regex_match:nnTF
\regex_match:nV
\regex_match:NnTF
\regex_match:NV

New: 2017-05-26

\regex_count :nnN
\regex_count :nVN
\regex_count :NnN
\regex_count :NVN

New: 2017-05-26

\regex_match_case:nn
\regex_match_case:nnTF

New: 2022-01-10

8.4 Matching

All regular expression functions are available in both :n and :N variants. The former
require a “standard” regular expression, while the later require a compiled expression as
generated by \regex_set:Nn.

\regex_match:nnTF {(regex)} {(token 1list)} {(true code)} {(false code)}

Tests whether the (reqular expression) matches any part of the (token list). For instance,

\regex_match:nnTF { b [cdel* } { abecdcx } { TRUE } { FALSE }
\regex_match:nnTF { [b-dgq-w] } { example } { TRUE } { FALSE }

leaves TRUE then FALSE in the input stream.

\regex_count:nnN {(regex)} {(token list)} (int var)

Sets (int var) within the current TEX group level equal to the number of times (regular
expression) appears in (token list). The search starts by finding the left-most longest
match, respecting greedy and lazy (non-greedy) operators. Then the search starts again
from the character following the last character of the previous match, until reaching the
end of the token list. Infinite loops are prevented in the case where the regular expression
can match an empty token list: then we count one match between each pair of characters.
For instance,

\int_new:N \1_foo_int
\regex_count:nnN { (b+|c) } { abbababcbb } \1_foo_int

results in \1_foo_int taking the value 5.

\regex_match_case:nnTF
{

{(regex1)

{(regex2)

} {(code case1)}

} {(code cases)?}
{(regexn)} {{code casen)}

} {(token list)}

{(true code)} {(false code)}

Determines which of the (regular expressions) matches at the earliest point in the (token
list), and leaves the corresponding (code;) followed by the (true code) in the input stream.
If several (regex) match starting at the same point, then the first one in the list is selected
and the others are discarded. If none of the (regex) match, the (false code) is left in the
input stream. Each (regex) can either be given as a regex variable or as an explicit regular
expression.

In detail, for each starting position in the (token list), each of the (regex) is searched
in turn. If one of them matches then the corresponding (code) is used and everything else
is discarded, while if none of the (regez) match at a given position then the next starting
position is attempted. If none of the (regex) match anywhere in the (token list) then
nothing is left in the input stream. Note that this differs from nested \regex_match:nnTF
statements since all (regezr) are attempted at each position rather than attempting to
match (regex;) at every position before moving on to (regezs).

56

\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:
\regex_extract_once:

nnN
nVN
nnNTF
nVN
NVN
NVN
NVNTF
NVN

New: 2017-05-26

\regex_extract_all:
\regex_extract_all:
\regex_extract_all:
:nVN

\regex_extract_all

\regex_extract_all:
\regex_extract_all:
\regex_extract_all:
\regex_extract_all:

nnN
nVN
nnNTF

NnN
NVN
NnNTF
NVN

New: 2017-05-26

8.5 Submatch extraction

\regex_extract_once:nnN {(regex)} {(token list)} (seq var)
\regex_extract_once:nnNTF {(regex)} {(token 1list)} (seq var) {(true code)} {(false
code)}

Finds the first match of the (regular expression) in the (token list). If it exists, the match
is stored as the first item of the {seq var), and further items are the contents of capturing
groups, in the order of their opening parenthesis. The (seq var) is assigned locally. If
there is no match, the (seq var) is cleared. The testing versions insert the (true code)
into the input stream if a match was found, and the (false code) otherwise.

For instance, assume that you type

\regex_extract_once:nnNTF { \A(La)?TeX(!*)\Z } { LaTeX!!! } \1_foo_seq
{ true } { false }

Then the regular expression (anchored at the start with \A and at the end with \Z) must
match the whole token list. The first capturing group, (La)?, matches La, and the second
capturing group, (!*), matches !!!. Thus, \1_foo_seq contains as a result the items
{LaTeX!!!}, {La}, and {!!!}, and the true branch is left in the input stream. Note
that the n-th item of \1_foo_seq, as obtained using \seq_item:Nn, correspond to the
submatch numbered (n — 1) in functions such as \regex_replace_once:nnN.

\regex_extract_all:nnN {(regex)} {(token list)} (seq var)
\regex_extract_all:nnNTF {(regex)} {(token list)} (seq var) {(true code)} {(false
code)}

Finds all matches of the (regular expression) in the (token list), and stores all the sub-
match information in a single sequence (concatenating the results of multiple \regex_-
extract_once:nnN calls). The (seq var) is assigned locally. If there is no match, the
(seq var) is cleared. The testing versions insert the (true code) into the input stream if
a match was found, and the (false code) otherwise. For instance, assume that you type

\regex_extract_all:nnNTF { \w+ } { Hello,~world! } \1_foo_seq
{ true } { false }

Then the regular expression matches twice, the resulting sequence contains the two items
{Hello} and {world}, and the true branch is left in the input stream.

57

\regex_split:nnN
\regex_split:nVN
\regex_split:nnNTF
\regex_split:nVN
\regex_split:NnN
\regex_split:NVN
\regex_split:NnNTF
\regex_split:NVN

New: 2017-05-26

\regex_replace_once:nnN
\regex_replace_once:nVN
\regex_replace_once:nnNTF
\regex_replace_once:nVN
\regex_replace_once:NnN
\regex_replace_once:NVN
\regex_replace_once:NnNTF
\regex_replace_once:NVN

New: 2017-05-26

\regex_replace_all:nnN
\regex_replace_all:nVN
\regex_replace_all:nnNTF
\regex_replace_all:nVN
\regex_replace_all:NnN
\regex_replace_all:NVN
\regex_replace_all:NnNTF
\regex_replace_all:NVN

New: 2017-05-26

\regex_split:nnN {(regular expression)} {(token list)} (seq var)
\regex_split:nnNTF {(regular expression)} {(token list)} (seq var) {(true code)}
{(false code)}

Splits the (token list) into a sequence of parts, delimited by matches of the (regular
expression). If the (regular expression) has capturing groups, then the token lists that
they match are stored as items of the sequence as well. The assignment to (seq var) is
local. If no match is found the resulting (seq var) has the (token list) as its sole item. If
the (regular expression) matches the empty token list, then the (token list) is split into
single tokens. The testing versions insert the (¢true code) into the input stream if a match
was found, and the (false code) otherwise. For example, after

\seq_new:N \1_path_seq
\regex_split:nnNTF { / } { the/path/for/this/file.tex } \1l_path_seq
{ true } { false }

the sequence \1_path_seq contains the items {the}, {path}, {for}, {this}, and
{file.tex}, and the true branch is left in the input stream.

8.6 Replacement

\regex_replace_once:nnN {(regular expression)} {(replacement)} (tl var)
\regex_replace_once:nnNTF {(regular expression)} {(replacement)} (tl1 var) {(true
code)} {(false code)}

Searches for the (regular expression) in the contents of the (¢l var) and replaces the first
match with the (replacement). In the (replacement), \O represents the full match, \1
represent the contents of the first capturing group, \2 of the second, etc. The result is
assigned locally to (tl var).

\regex_replace_all:nnN {(regular expression)} {(replacement)} (tl var)
\regex_replace_all:nnNTF {(regular expression)} {(replacement)} (tl1 var) {(true
code)} {(false code)}

Replaces all occurrences of the (regular expression) in the contents of the (¢l var) by
the (replacement), where \O represents the full match, \1 represent the contents of the
first capturing group, \2 of the second, etc. Every match is treated independently, and
matches cannot overlap. The result is assigned locally to (¢l var).

58

\regex_replace_case_once:nN \regex_replace_case_once:nNTF
\regex_replace_case_once:nNTF {

Now: 2022-01-10 {(regexﬁi E(replacementl)}

{(regex2)} {(replacements)}

:[<'1;egexn>} {(replacement,)}
} (t1 var)
{(true code)} {(false code)}

Replaces the earliest match of the regular expression (7| (regez;)|... |(regex,)) in the
(token list variable) by the (replacement) corresponding to which (regex;) matched, then
leaves the (true code) in the input stream. If none of the (regex) match, then the (¢l var)
is not modified, and the (false code) is left in the input stream. Each (regex) can either
be given as a regex variable or as an explicit regular expression.

In detail, for each starting position in the (token list), each of the (regex) is searched
in turn. If one of them matches then it is replaced by the corresponding (replacement) as
described for \regex_replace_once:nnN. This is equivalent to checking with \regex_-
match_case:nn which (regez) matches, then performing the replacement with \regex_-
replace_once:nnN.

\regex_replace_case_all:nN \regex_replace_case_all:nNTF
\regex_replace_case_all:nNTF {

{(regex1)} {(replacementq)}

————— A
New: 2022-01-10 {(regex2)} {(replacements)}

{(regexn)} {(replacement,)}
} (t1 var)
{(true code)} {(false code)}

Replaces all occurrences of all {regex) in the (token list) by the corresponding (replacement).
Every match is treated independently, and matches cannot overlap. The result is assigned
locally to (¢l var), and the {true code) or (false code) is left in the input stream depending
on whether any replacement was made or not.

In detail, for each starting position in the (token list), each of the (regez) is searched
in turn. If one of them matches then it is replaced by the corresponding (replacement),
and the search resumes at the position that follows this match (and replacement). For
instance

\tl_set:Nn \1_tmpa_tl { Hello,~world! }
\regex_replace_case_all:nN

{
{ [A-Za-z]+ } { “\0’’ }
{\vo}r{-——-—-1%
{ .3 { N0l }
} \1_tmpa_tl
results in \1_tmpa_t1 having the contents ¢ ‘Hello’’---[,]1[,] ¢ ‘world’’---[!]. Note

in particular that the word-boundary assertion \b did not match at the start of words
because the case [A-Za-z]+ matched at these positions. To change this, one could simply
swap the order of the two cases in the argument of \regex_replace_case_all:nN.

59

\1_tmpa_regex
\1_tmpb_regex

New: 2017-12-11

\g_tmpa_regex
\g_tmpb_regex

New: 2017-12-11

8.7 Scratch regular expressions

Scratch regex for local assignment. These are never used by the kernel code, and so are
safe for use with any IATEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch regex for global assignment. These are never used by the kernel code, and so
are safe for use with any I¥TX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

8.8 Bugs, misfeatures, future work, and other possi-
bilities
The following need to be done now.
e Rewrite the documentation in a more ordered way, perhaps add a BNF?
Additional error-checking to come.
e Clean up the use of messages.
e Cleaner error reporting in the replacement phase.
e Add tracing information.
e Detect attempts to use back-references and other non-implemented syntax.
o Test for the maximum register \c_max_register_int.

e Find out whether the fact that \W and friends match the end-marker leads to bugs.
Possibly update __regex_item_reverse:n.

e The empty cs should be matched by \c{}, not by \c{csname.?endcsname\s?}.
Code improvements to come.

o Shift arrays so that the useful information starts at position 1.

e Only build \c{. ..} once.

o Use arrays for the left and right state stacks when compiling a regex.

e Should __regex_action_free_group:n only be used for greedy {n,} quantifier?
(I think not.)

e Quantifiers for \u and assertions.

e When matching, keep track of an explicit stack of curr_state and curr_-
submatches.

o If possible, when a state is reused by the same thread, kill other subthreads.

60

Use an array rather than \g__regex_balance_t1 to build the function __regex_-
replacement_balance_one_match:n.

Reduce the number of epsilon-transitions in alternatives.

Optimize simple strings: use less states (abcade should give two states, for abc and
ade). [Does that really make sense?]

Optimize groups with no alternative.
Optimize states with a single __regex_action_free:n.

Optimize the use of __regex_action_success: by inserting it in state 2 directly
instead of having an extra transition.

Optimize the use of \int_step_. .. functions.

Groups don’t capture within regexes for csnames; optimize and document.
Better “show” for anchors, properties, and catcode tests.

Does \K really need a new state for itself?

When compiling, use a boolean in_cs and less magic numbers.

Instead of checking whether the character is special or alphanumeric using its char-
acter code, check if it is special in regexes with \cs_if_exist tests.

The following features are likely to be implemented at some point in the future.
General look-ahead/behind assertions.
Regex matching on external files.

Conditional subpatterns with look ahead/behind: “if what follows is [...], then

[..]>
(x..) and (7..) sequences to set some options.
UTF-8 mode for pdfTEX.

Newline conventions are not done. In particular, we should have an option for . not
to match newlines. Also, \A should differ from ~, and \Z, \z and $ should differ.

Unicode properties: \p{..} and \P{..}; \X which should match any “extended”
Unicode sequence. This requires to manipulate a lot of data, probably using tree-
boxes.

The following features of PCRE or Perl may or may not be implemented.

e Callout with (?C...) or other syntax: some internal code changes make that pos-
sible, and it can be useful for instance in the replacement code to stop a regex
replacement when some marker has been found; this raises the question of a po-
tential \regex_break: and then of playing well with \t1_map_break: called from
within the code in a regex. It also raises the question of nested calls to the regex
machinery, which is a problem since \fontdimen are global.

61

o Conditional subpatterns (other than with a look-ahead or look-behind condition):
this is non-regular, isn’t it?

e Named subpatterns: TEX programmers have lived so far without any need for
named macro parameters.

The following features of PCRE or Perl will definitely not be implemented.

e Back-references: non-regular feature, this requires backtracking, which is pro-
hibitively slow.

e Recursion: this is a non-regular feature.

e Atomic grouping, possessive quantifiers: those tools, mostly meant to fix catastrophic
backtracking, are unnecessary in a non-backtracking algorithm, and difficult to im-
plement.

e Subroutine calls: this syntactic sugar is difficult to include in a non-backtracking al-
gorithm, in particular because the corresponding group should be treated as atomic.

e Backtracking control verbs: intrinsically tied to backtracking.

e \ddd, matching the character with octal code ddd: we already have \x{...} and
the syntax is confusingly close to what we could have used for backreferences (\1,
\2, ...), making it harder to produce useful error message.

o \cx, similar to TEX’s own \~"x.
e Comments: TEX already has its own system for comments.

e \Q...\E escaping: this would require to read the argument verbatim, which is not
in the scope of this module.

e \C single byte in UTF-8 mode: XHTEX and LuaTgX serve us characters directly,
and splitting those into bytes is tricky, encoding dependent, and most likely not
useful anyways.

62

\prg_new_conditional:Npnn
\prg_set_conditional:Npnn
\prg_gset_conditional:Npnn
\prg_new_conditional:Nnn
\prg_set_conditional:Nnn
\prg_gset_conditional:Nnn

Updated: 2022-11-01

Chapter 9

The 13prg package
Control structures

Conditional processing in ITEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The states returned
are (true) and (false).

TEX3 has two forms of conditional flow processing based on these states. The first
form is predicate functions that turn the returned state into a boolean (true) or (false).
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean (true) or (false) values to be used in
testing with \if _predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result.

TEXhackers note: The arguments are executed after exiting the underlying \if...\fi:
structure.

9.1 Defining a set of conditional functions

\prg_new_conditional:Npnn \(name):(arg spec) (parameters) {(conditions)} {({code)}
\prg_new_conditional:Nnn \(name):{arg spec) {(conditions)} {(code)}

These functions create a family of conditionals using the same {(code)} to perform the
test created. Those conditionals are expandable if (code) is. The new versions check for
existing definitions and perform assignments globally (c¢f. \cs_new:Npn) whereas the set
versions do no check and perform assignments locally (cf. \cs_set:Npn). The condition-
als created are dependent on the comma-separated list of (conditions), which should be
one or more of p, T, F and TF.

63

\prg_new_protected_conditional:Npnn \prg_new_protected_conditional:Npnn \(name):(arg spec)
\prg_set_protected_conditional:Npnn (parameters) {(conditions)} {(code)}
\prg_gset_protected_conditional:Npnn \prg_new_protected_conditional:Nnn \(name):(arg spec)
\prg_new_protected_conditional:Nnn {(conditions)} {(code)}
\prg_set_protected_conditional:Nnn

\prg_gset_protected_conditional:Nnn

Updated: 2012-02-06

These functions create a family of protected conditionals using the same {(code)} to
perform the test created. The (code) does not need to be expandable. The new version
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set version do not (¢f. \cs_set:Npn). The conditionals created are depended on the
comma-separated list of (conditions), which should be one or more of T, F and TF (not

p)-
The conditionals are defined by \prg_new_conditional:Npnn and friends as:

e \(name)_p:(arg spec) — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function cannot be
defined for protected conditionals.

e \(name):(arg spec)T — a function with one more argument than the original {arg
spec) demands. The (true branch) code in this additional argument will be left on
the input stream only if the test is true.

e \(name):(arg spec)F — a function with one more argument than the original {arg
spec) demands. The (false branch) code in this additional argument will be left on
the input stream only if the test is false.

o \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument will
be left on the input stream if the test is true, while the (false branch) code in the
second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to \prg_-
set_conditional:Npnn: this should match the (argument specification) but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, etc.). Within the (code), the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if _meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if _meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

64

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the {conditions) list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

\prg_new_eq_conditional:NNn \prg_new_eq_conditional:NNn \(name:):(arg speci) \(name;):(arg specz)
\prg_set_eq_conditional:NNn {(conditions)}
\prg_gset_eq_conditional:NNn

Updated: 2023-05-26

\prg_return_true: x
\prg_return_false: x

These functions copy a family of conditionals. The new version checks for existing defin-
itions (c¢f. \cs_new_eq:NN) whereas the set version does not (c¢f. \cs_set_eq:NN). The
conditionals copied are depended on the comma-separated list of (conditions), which
should be one or more of p, T, F and TF.

\prg_return_true:

\prg_return_false:

These “return” functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch should be taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions ezactly once.

The return functions trigger what is internally an f-expansion process to com-
plete the evaluation of the conditional. Therefore, after \prg_return_true: or \prg_-
return_false: there must be no non-expandable material in the input stream for the
remainder of the expansion of the conditional code. This includes other instances of
either of these functions.

\prg_generate_conditional_variant:Nnn \prg_generate_conditional_variant:Nnn \(name):(arg spec)

variant argument specifiers condition specifiers
New: 2017-12-12 U g P)+ D)33

Defines argument-specifier variants of conditionals. This is equivalent to running \cs_-
generate_variant:Nn (conditional) {{variant argument specifiers)} on each (conditional)
described by the (condition specifiers). These base-form (conditionals) are obtained
from the (name) and (arg spec) as described for \prg_new_conditional :Npnn, and they
should be defined.

9.2 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if_false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting

65

\bool_new:N

\bool_new:c

\bool_const:Nn
\bool_const:cn

New: 2017-11-28

\bool_set_false:N
\bool_set_false:c
\bool_gset_false:N
\bool_gset_false:c

\bool_set_true:N
\bool_set_true:c
\bool_gset_true:N
\bool_gset_true:c

\bool_set_eq:NN
\bool_set_eq:(cN|Nc|cc)
\bool_gset_eq:NN
\bool_gset_eq:(cN|Nc|cc)

\bool_set:Nn
\bool_set:cn
\bool_gset:Nn
\bool_gset:cn

Updated: 2017-07-15

\bool_set_inverse:N
\bool_set_inverse:c
\bool_gset_inverse:N
\bool_gset_inverse:c

New: 2018-05-10

the logical operations And, Or, Not, efc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which generally means being constructed from predicate
functions and booleans, possibly nested).

TEXhackers note: The bool data type is not implemented using the \iffalse/\iftrue
primitives, in contrast to \newif, etc., in plain TEX, ITEX 2¢ and so on. Programmers should
not base use of bool switches on any particular expectation of the implementation.

\bool_new:N (boolean)

Creates a new (boolean) or raises an error if the name is already taken. The declaration
is global. The (boolean) is initially false.

\bool_const:Nn (boolean) {(boolexpr)}

Creates a new constant (boolean) or raises an error if the name is already taken. The
value of the (boolean) is set globally to the result of evaluating the (boolexpr).

\bool_set_false:N (boolean)

Sets (boolean) logically false.

\bool_set_true:N (boolean)

Sets (boolean) logically true.

\bool_set_eq:NN (boolean;) (booleans)

Sets (boolean) to the current value of (booleansy).

\bool_set:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if :nTF, and sets the (boolean)
variable to the logical truth of this evaluation.

\bool_set_inverse:N (boolean)

Toggles the (boolean) from true to false and conversely: sets it to the inverse of its
current value.

66

\bool_if p:N * \bool_if_p:N (boolean)
\bool_if p:c x \bool_if:NTF (boolean) {(true code)} {(false code)}
\bool_if:NTF *

: Tests the current truth of (boolean), and continues expansion based on this result.
\bool _if:c *

Updated: 2017-07-15

\bool_to_str:N x \bool_to_str:N (boolean)
\bool_to_str:c x \bool_to_str:n (boolean expression)
\bool_to_str:n *

Expands to the letters true or false depending on the logical truth of the (boolean) or
New: 2021-11-01 (boolean expression,).

\bool_show:N \bool_show:N (boolean)

M Displays the logical truth of the (boolean) on the terminal.

New: 2012-02-09
Updated: 2021-04-29

\bool_show:n \bool_show:n {(boolean expression)}

New: 2012-02-09 Displays the logical truth of the (boolean expression) on the terminal.
Updated: 2017-07-15

\bool_log:N \bool_log:N (boolean)

bool_log: . . .
\bool._log:c Writes the logical truth of the (boolean) in the log file.
New: 2014-08-22
Updated: 2021-04-29

\bool_log:n \bool_log:n {(boolean expression)}

New: 2014-08-22 Writes the logical truth of the (boolean expression) in the log file.
Updated: 2017-07-15

\bool_if_exist_p:N x \bool_if_exist_p:N (boolean)
\bool_if_exist_p:c % \bool_if_exist:NTF (boolean) {(true code)} {(false code)}
\b°°1-}f-ex}3t:NE * Tests whether the (boolean) is currently defined. This does not check that the (boolean)
\bool_if_exist:c * . .
really is a boolean variable.

New: 2012-03-03

9.2.1 Constant and scratch booleans

\c_true_bool (Constants that represent true and false, respectively. Used to implement predicates.
\c_false_bool

\1_tmpa_bool A scratch boolean for local assignment. It is never used by the kernel code, and so is
\1_tmpb_bool gafe for use with any IATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

67

\g_tmpa_bool A scratch boolean for global assignment. It is never used by the kernel code, and so is
\g_tmpb_bool gafe for use with any IATEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

9.3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true) or (false)
values, it seems only fitting that we also provide a parser for (boolean expressions).

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean (true) or (false). It supports the logical
operations And, Or and Not as the well-known infix operators && and || and prefix !
with their usual precedences (namely, && binds more tightly than []). In addition to
this, parentheses can be used to isolate sub-expressions. For example,

\int_compare_p:n { 1 = 1 } &&
(
\int_compare_p:n { 2 = 3 } ||
\int_compare_p:n { 4 <= 4 } ||
\str_if_eq_p:nn { abc } { def }
) &&
! \int_compare_p:n { 2 = 4 }

is a valid boolean expression.

Contrarily to some other programming languages, the operators && and || evaluate
both operands in all cases, even when the first operand is enough to determine the result.
This “eager” evaluation should be contrasted with the “lazy” evaluation of \bool_lazy_-
... functions.

TgXhackers note: The eager evaluation of boolean expressions is unfortunately necessary
in TEX. Indeed, a lazy parser can get confused if && or || or parentheses appear as (unbraced)
arguments of some predicates. For instance, the innocuous-looking expression below would break
(in a lazy parser) if #1 were a closing parenthesis and \1_tmpa_bool were true.

(\1_tmpa_bool || \token_if_eq meaning p:NN X #1)

Minimal (lazy) evaluation can be obtained using the conditionals \bool_lazy_-
all:nTF, \bool_lazy_and:nnTF, \bool_lazy_any:nTF, or \bool_lazy_or:nnTF, which
only evaluate their boolean expression arguments when they are needed to determine the
resulting truth value. For example, when evaluating the boolean expression

\bool_lazy_and_p:nn

{
\bool_lazy_any_p:n
{
{ \int_compare_p:n { 2 =3 } }
{ \int_compare_p:n { 4 <=4 } }
{ \int_compare_p:n { 1 = \error } } ’ skipped
}
}
{ ! \int_compare_ p:n { 2 =4 } }

68

\bool_if _p:n «*
\bool_if:nTF *

Updated: 2017-07-15

\bool_lazy_all_p:n *
\bool_lazy_all:nTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_and_p:nn *
\bool_lazy_and:nnTF *

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_any_p:n x
\bool_lazy_any:nTF x

New: 2015-11-15
Updated: 2017-07-15

\bool_lazy_or_p:nn %
\bool_lazy_or:nnTF =%

New: 2015-11-15
Updated: 2017-07-15

\bool_not_p:n *

Updated: 2017-07-15

the line marked with skipped is not expanded because the result of \bool_lazy_any_-
p:n is known once the second boolean expression is found to be logically true. On the
other hand, the last line is expanded because its logical value is needed to determine the
result of \bool_lazy_and_p:nn.

\bool_if_p:n {(boolean expression)}
\bool_if:nTF {(boolean expression)} {(true code)} {(false code)}

Tests the current truth of (boolean expression), and continues expansion based on this
result. The (boolean expression) should consist of a series of predicates or boolean vari-
ables with the logical relationship between these defined using && (“And”), || (“Or”), !
(“Not”) and parentheses. The logical Not applies to the next predicate or group.

\bool_lazy_all_p:n { {(boolexpri)
\bool_lazy_all:nTF { {(boolexpri)
{(false code)}

} {(boolexprs)} --- {(boolexpry)} }
} {(boolexprs)} --- {(boolexprn)} } {(true code)}

Implements the “And” operation on the (boolean expressions), hence is true if all of
them are true and false if any of them is false. Contrarily to the infix operator &&,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
all:nTF are evaluated. See also \bool_lazy_and:nnTF when there are only two (boolean

expressions).

\bool_lazy_and_p:nn {(boolexpr:i)} {(boolexprs)}

\bool_lazy_and:nnTF {(boolexpri)} {(boolexprz)} {(true code)} {(false code)}
Implements the “And” operation between two boolean expressions, hence is true if both
are true. Contrarily to the infix operator &&, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_and:nnTF. See also \bool_lazy_all:nTF
when there are more than two (boolean expressions).

\bool_lazy_any_p:n { {(boolexpr;)
\bool_lazy_any:nTF { {(boolexpri)
{(false code)?}

} {(boolexprs)} --- {(boolexpry)} }

} {(boolexprs)} --- {(boolexprn)} } {(true code)}
Implements the “Or” operation on the (boolean expressions), hence is true if any of
them is true and false if all of them are false. Contrarily to the infix operator ||,
only the (boolean expressions) which are needed to determine the result of \bool_lazy_-
any:nTF are evaluated. See also \bool_lazy_or:nnTF when there are only two (boolean

expressions).

\bool_lazy_or_p:nn {(boolexpr:)} {(boolexprs)}
\bool_lazy_or:nnTF {(boolexpr:i)} {(boolexprs)} {(true code)} {(false code)}

Implements the “Or” operation between two boolean expressions, hence is true if either
one is true. Contrarily to the infix operator ||, the (boolexprs) is only evaluated if it is
needed to determine the result of \bool_lazy_or:nnTF. See also \bool_lazy_any:nTF
when there are more than two (boolean expressions).

\bool_not_p:n {(boolean expression)}

Function version of ! ((boolean expression)) within a boolean expression.

69

\bool_xor_p:nn *
\bool_xor:nnTF x

New: 2018-05-09

\bool_do_until:Nn %
\bool_do_until:cn %

Updated: 2017-07-15

\bool_do_while:Nn 3¢
\bool_do_while:cn 3¢

Updated: 2017-07-15

\bool_until_do:Nn ¥
\bool _until _do:cn %%

Updated: 2017-07-15

\bool_while_do:Nn
\bool_while _do:cn %

Updated: 2017-07-15

\bool_do_until:nn 3

Updated: 2017-07-15

\bool_do_while:nn

Updated: 2017-07-15

\bool_until_do:nn 3

Updated: 2017-07-15

\bool_xor_p:nn {(boolexpr:)} {(boolexprs)}
\bool_xor:nnTF {(boolexpri)} {(boolexpr:)} {(true code)} {(false code)}

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operation.

9.4 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is false then the (code) is inserted into the input stream
again and the process loops until the (boolean) is true.

\bool_do_while:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is true then the (code) is inserted into the input stream again
and the process loops until the (boolean) is false.

\bool_until_do:Nn (boolean) {{code)}

This function firsts checks the logical value of the (boolean). If it is false the (code) is
placed in the input stream and expanded. After the completion of the {(code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is true.

\bool_while_do:Nn (boolean) {(code)}

This function firsts checks the logical value of the (boolean). If it is true the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process then loops until the (boolean) is false.

\bool_do_until:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is false then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to true.

\bool_do_while:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is true then the
(code) is inserted into the input stream again and the process loops until the (boolean
expression) evaluates to false.

\bool_until_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is false the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the {(boolean expression) is true.

70

\bool_while_do:nn 3

Updated: 2017-07-15

\bool_case:n *
\bool_case:nTF *

New: 2023-05-03

\prg_replicate:nn *

Updated: 2011-07-04

\mode_if_horizontal_p: *
\mode_if_horizontal:TF x

\bool_while_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is true the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process then loops until the {boolean expression) is false.

\bool_case:nTF
{
{(boolexpr casei)
{(boolexpr cases)

(code case1)}
(code casez)}

AL
A

{éboolexpr casen)} {(code case,)?}
}
{{true code)}
{(false code)}

Evaluates in turn each of the (boolean expression cases) until the first one that evaluates
to true. The (code) associated to this first case is left in the input stream, followed by
the (true code), and other cases are discarded. If none of the cases match then only the
(false code) is inserted. The function \bool_case:n, which does nothing if there is no
match, is also available. For example

\bool_case:nF

{
{ \dim_compare_p:n { \1__mypkg_wd_dim <= 10pt } }
{ Fits }
{ \int_compare_p:n { \1__mypkg_total_int >= 10 } }
{ Many }
{ \1__mypkg_special_bool }
{ Special }
}
{ No idea! }

leaves “Fits” or “Many” or “Special” or “No idea!” in the input stream, in a way
b2

similar to some other language’s “if ... elseif ... elseif ... else...”.

9.5 Producing multiple copies

\prg_replicate:nn {(integer expression)} {(tokens)}

Evaluates the (integer expression) (which should be zero or positive) and creates the
resulting number of copies of the (tokens). The function is both expandable and safe for
nesting. It yields its result after two expansion steps.

9.6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {(true code)} {(false code)}

Detects if TEX is currently in horizontal mode.

71

\mode_if_inner_p: *
\mode_if_inner:TF x

\mode_if_math_p: *
\mode_if_math:TF x

Updated: 2011-09-05

\mode_if_vertical_p: =
\mode_if_vertical:TF x

\if_predicate:w *

\if_bool:N *

\prg_break_point:Nn *

New: 2018-03-26

\mode_if_inner_p:
\mode_if_inner:TF {(true code)} {(false code)}

Detects if TEX is currently in inner mode.

\mode_if_math_p:
\mode_if _math:TF {(true code)} {(false code)}

Detects if TEX is currently in maths mode.

\mode_if_vertical_p:
\mode_if_vertical:TF {(true code)} {(false code)}

Detects if TEX is currently in vertical mode.

9.7 Primitive conditionals

\if_predicate:w (predicate) (true code) \else: (false code) \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if _bool:N.)

\if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

9.8 Nestable recursions and mappings

There are a number of places where recursion or mapping constructs are used in expl3.
At a low-level, these typically require insertion of tokens at the end of the content to
allow “clean up”. To support such mappings in a nestable form, the following functions
are provided.

\prg_break_point:Nn \(type)_map_break: {(code)}

Used to mark the end of a recursion or mapping: the functions \(type)_map_break:
and \(type)_map_break:n use this to break out of the loop (see \prg_map_break:Nn
for how to set these up). After the loop ends, the (code) is inserted into the input
stream. This occurs even if the break functions are not applied: \prg_break_point:Nn
is functionally-equivalent in these cases to \use_ii:nn.

72

\prg_map_break:Nn *

\prg_map_break:Nn \(type)_map_break: {(user code)}

New: 2018-03-26 |

\prg_break_point: *

New: 2018-03-27

\prg_break: «x
\prg_break:n *

New: 2018-03-27

\group_align_safe_begin: «*

\group_align_safe_end: * .

Updated: 2011-08-11

\prg_break_point:Nn \(type)_map_break: {(ending code)}

Breaks a recursion in mapping contexts, inserting in the input stream the (user code)
after the (ending code) for the loop. The function breaks loops, inserting their (ending
code), until reaching a loop with the same (type) as its first argument. This \(type)_-
map_break: argument must be defined; it is simply used as a recognizable marker for the
(type).

For types with mappings defined in the kernel, \(type)_map_break: and \(type)_-
map_break:n are defined as \prg_map_break:Nn \(type)_map_break: {} and the same
with {} omitted.

9.8.1 Simple mappings

In addition to the more complex mappings above, non-nestable mappings are used in a
number of locations and support is provided for these.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursion:
the function \prg_break:n uses this to break out of the loop.

\prg_break:n {(code)} ... \prg_break_point:

Breaks a recursion which has no (ending code) and which is not a user-breakable mapping
(see for instance \prop_get:Nn), and inserts the (code) in the input stream.

9.9 Internal programming functions

\group_align_safe_begin:

\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw would result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

73

Chapter 10

The 13sys package:
System /runtime functions

10.1 The name of the job

\c_sys_jobname_str Constant that gets the “job name” assigned when TEX starts.

New: 2015-09-19

Updated: 2019-10-27 TEXhackers note: This copies the contents of the primitive \jobname. For technical

reasons, the string here is not of the same internal form as other, but may be manipulated using
normal string functions.

10.2 Date and time

\c_sys_minute_int The date and time at which the current job was started: these are all reported as integers.
\c_sys_hour_int

\c_sys_day_int TEXhackers note: Whilst the underlying primitives can be altered by the user, this
\c_sys_month_int interface to the time and date is intended to be the “real” values.

\c_sys_year_int

New: 2015-09-22

\c_sys_timestamp_str The timestamp for the current job: the format is as described for \file_timestamp:n.

New: 2023-08-27

74

\sys_if_engine_luatex_p: *
\sys_if_engine_luatex:TF *
\sys_if_engine_pdftex_p: *
\sys_if_engine_pdftex:TF *
\sys_if_engine_ptex_p: *
\sys_if_engine_ptex:TF *
\sys_if_engine_uptex_p: «*
\sys_if_engine_uptex:TF
\sys_if_engine_xetex_p: *
\sys_if_engine_xetex:TF «

New: 2015-09-07

\c_sys_engine_str

New: 2015-09-19

\c_sys_engine_exec_str

New: 2020-08-20

\c_sys_engine_format_str

New: 2020-08-20

\c_sys_engine_version_str

New: 2018-05-02

\sys_timer: *

New: 2021-05-12

10.3 Engine

\sys_if_engine_pdftex_p:
\sys_if_engine_pdftex:TF {(true code)} {(false code)}

Conditionals which allow engine-specific code to be used. The names follow naturally
from those of the engine binaries: note that the (u) ptex tests are for e-pI'EX and e-uplEX
as expl3 requires the e-TEX extensions. Each conditional is true for ezactly one supported
engine. In particular, \sys_if_engine_ptex_p: is true for e-pIgX but false for e-upIrX.

The current engine given as a lower case string: one of luatex, pdftex, ptex, uptex or
xetex.

The name of the standard executable for the current TEX engine given as a lower case
string: one of luatex, luahbtex, pdftex, eptex, euptex or xetex.

The name of the preloaded format for the current TEX run given as a lower case string:
one of lualatex (or dvilualatex), pdflatex (or latex), platex, uplatex or xelatex

for BTEX, similar names for plain TEX (except pdfTEX in DVI mode yields etex), and
cont-en for ConTEXt (i.e. the \fmtname).

The version string of the current engine, in the same form as given in the banner issued
when running a job. For pdfTEX and LuaTgX this is of the form

(major).(minor).(revision)
For XHTEX, the form is
(major).{minor)

For PIEX and uplgX, only releases since TEX Live 2018 make the data available, and
the form is more complex, as it comprises the pIEX version, the uplEX version and the

e-pIEX version.
p{major).(minor).(revision)-u{major).(minor)-(epTeX)
where the u part is only present for upIgX.

\sys_timer:

Expands to the current value of the engine’s timer clock, a non-negative integer. This
function is only defined for engines with timer support. This command measures not
just CPU time but real time (including time waiting for user input). The unit are scaled
seconds (2716 seconds).

0]

\sys_if_timer_exist_p: =
\sys_if_timer_exist:TF *

New: 2021-05-12

\sys_if_output_dvi_p:
\sys_if_output_dvi:TF
\sys_if_output_pdf_p:

*
*
*
\sys_if_output_pdf:TF *

New: 2015-09-19

\c_sys_output_str

New: 2015-09-19

\sys_if_timer_exist_p:
\sys_if_timer_exist:TF {(true code)} {(false code)}

Tests whether current engine has timer support.
10.4 Output format

\sys_if_output_dvi_p:

\sys_if_output_dvi:TF {(true code)} {(false code)}

Conditionals which give the current output mode the TEX run is operating in. This is
always one of two outcomes, DVI mode or PDF mode. The two sets of conditionals are
thus complementary and are both provided to allow the programmer to emphasise the
most appropriate case.

The current output mode given as a lower case string: one of dvi or pdf.

10.5 Platform

\sys_if_platform_unix_p: * \sys_if_platform_unix_p:

\sys_if_platform_unix:TF * \sys_if_platform_unix:TF {(true code)} {(false code)}
\sys_if_platform_windows_p: *

\sys_if_platform_windows:TF %

New: 2018-07-27

\c_sys_platform_str

New: 2018-07-27

\sys_rand_seed: *

New: 2017-05-27

Conditionals which allow platform-specific code to be used. The names follow the Lua
os.type() function, 7.e. all Unix-like systems are unix (including Linux and MacOS).

The current platform given as a lower case string: one of unix, windows or unknown.

10.6 Random numbers

\sys_rand_seed:

Expands to the current value of the engine’s random seed, a non-negative integer. In
engines without random number support this expands to 0.

76

\sys_gset_rand_seed:n

New: 2017-05-27

\sys_get_shell :nnN

\sys_gset_rand_seed:n {(int expr)}

Globally sets the seed for the engine’s pseudo-random number generator to the (integer
expression). This random seed affects all \..._rand functions (such as \int_rand:nn or
\clist_rand_item:n) as well as other packages relying on the engine’s random number
generator. In engines without random number support this produces an error.

TEXhackers note: While a 32-bit (signed) integer can be given as a seed, only the absolute
value is used and any number beyond 2?2 is divided by an appropriate power of 2. We recommend
using an integer in [0,2%® — 1].

10.7 Access to the shell

\sys_get_shell:nnN {(shell command)} {(setup)} (t1 var)

\sys_get_shell:nnNTF \sys_get_shell:nnNTF {(shell command)} {(setup)} (tl var) {(true code)} {(false

New: 2019-09-20

code)}

Defines (tl var) to the text returned by the (shell command). The (shell command) is
converted to a string using \tl_to_str:n. Category codes may need to be set appro-
priately via the (setup) argument, which is run just before running the (shell command)
(in a group). If shell escape is disabled, the (¢l var) will be set to \q_no_value in the
non-branching version. Note that quote characters (") cannot be used inside the (shell
command). The \sys_get_shell:nnNTF conditional inserts the (true code) if the shell
is available and no quote is detected, and the (false code) otherwise.

\c_sys_shell_escape_int

This variable exposes the internal triple of the shell escape status. The possible values

New: 2017-05-27

are

0 Shell escape is disabled
1 Unrestricted shell escape is enabled

2 Restricted shell escape is enabled

\sys_if_shell_p: * \sys_if_shell _p:
\sys_if_shell:TF x \sys_if_shell:TF {(true code)} {(false code)}

New: 2017-05-27

Performs a check for whether shell escape is enabled. This returns true if either of

restricted or unrestricted shell escape is enabled.

\sys_if_shell_unrest
\sys_if_shell_unrest

ricted_p: x \sys_if_shell_unrestricted_p:
ricted:TF x \sys_if_shell_unrestricted:TF {(true code)} {(false code)}

New: 2017-05-27

Performs a check for whether unrestricted shell escape is enabled.

7

\sys_if_shell_restricted_p: x \sys_if_shell_restricted_p:
\sys_if_shell_restricted:TF x \sys_if_shell_restricted:TF {(true code)} {(false code)}

New: 2017-05-27

\sys_shell_now:n
\sys_shell_now:e

New: 2017-05-27

\sys_shell_shipout:n
\sys_shell_shipout:e

New: 2017-05-27

\sys_load_backend:n

New: 2019-09-12

\sys_ensure_backend:

New: 2022-07-29

\c_sys_backend_str

\sys_load_debug:

New: 2019-09-12

Performs a check for whether restricted shell escape is enabled. This returns false if
unrestricted shell escape is enabled. Unrestricted shell escape is not considered a superset
of restricted shell escape in this case. To find whether any shell escape is enabled use
\sys_if_shell:.

\sys_shell_now:n {(tokens)}

Execute (tokens) through shell escape immediately.

\sys_shell_shipout:n {(tokens)}

Execute (tokens) through shell escape at shipout.

10.8 Loading configuration data

\sys_load_backend:n {(backend)}

Loads the additional configuration file needed for backend support. If the (backend) is
empty, the standard backend for the engine in use will be loaded. This command may
only be used once.

\sys_ensure_backend:

Ensures that a backend has been loaded by calling \sys_load_backend:n if required.

Set to the name of the backend in use by \sys_load_backend:n when issued. Possible
values are

e pdftex

e luatex

e Xetex

e dvips

e dvipdfmx

e dvisvgm

\sys_load_debug:
Load the additional configuration file for debugging support.

78

10.8.1 Final settings

\sys_finalise: \sys_finalise:

New: 2019-10-06 Finalises all system-dependent functionality: required before loading a backend.

79

Chapter 11

The 13msg package
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The I13msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by 13msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

11.1 Creating new messages

All messages have to be created before they can be used. The text of messages is auto-
matically wrapped to the length available in the console. As a result, formatting is only
needed where it helps to show meaning. In particular, \\ may be used to force a new
line and \, forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be used to
produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the IXTEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow to filter out specifically messages from the submodule.
Some authors may find the need to include spaces as ~ characters tedious. This can
be avoided by locally reseting the cateogry code of .

80

\char_set_catcode_space:n { ‘\ }
\msg_new:nnn { foo } { bar }

{Some message text using ’#1’ and usual message shorthands \{ \ \ \}.}
\char_set_catcode_ignore:n { ‘\ }

although in general this may be confusing; simply writing the messages using ~ characters
is the method favored by the team.

\msg_new:nnnn \msg_new:nnnn {(module)} {(message)} {(text)} {(more text)}
\msg_new:nnee
\msg_new:nnn
\msg_new:nne

Creates a (message) for a given (module). The message is defined to first give (text) and
then (more text) if the user requests it. If no (more text) is available then a standard
text is given instead. Within (text) and (more text) four parameters (#1 to #4) can be
used: these will be supplied at the time the message is used. An error is raised if the
(message) already exists.

Updated: 2011-08-16

\msg_set:nnnn \msg_set:nnnn {(module)} {(message)} {(text)} {(more text)}
\msg_set :nnn
\msg_gset :nnnn
\msg_gset:nnn

Sets up the text for a (message) for a given (module). The message is defined to first
give (text) and then (more text) if the user requests it. If no (more text) is available then
a standard text is given instead. Within (text) and (more text) four parameters (#1 to
#4) can be used: these will be supplied at the time the message is used.

\msg_if_exist_p:nn * \msg_if_exist_p:nn {(module)} {(message)}
\msg_if_exist:nnTF * \msg_if_exist:nnTF {(module)} {(message)} {(true code)} {(false code)}

New: 2012-03-03 Tests whether the (message) for the (module) is currently defined.

11.2 Customizable information for message modules

\msg_module_name:n * \msg_module_name:n {(module)}

New: 2018-10-10 Expands to the public name of the (module) as defined by \g_msg_module_name_prop
(or otherwise leaves the (module) unchanged).

\msg_module_type:n * \msg_module_type:n {(module)}

New: 2018-10-10 Expands to the description which applies to the (module), for example a Package or
Class. The information here is defined in \g_msg_module_type_prop, and will default
to Package if an entry is not present.

\g_msg_module_name_prop Provides a mapping between the module name used for messages, and that for documen-

New: 2018-10-10 tation.

\g_msg_module_type_prop Provides a mapping between the module name used for messages, and that type of
New: 2018-10-10 module. For example, for X TEX3 core messages, an empty entry is set here meaning that
they are not described using the standard Package text.

81

\msg_line_context:

\msg_line_number: x

\msg_fatal_text:n *

\msg_critical_text:n *

\msg_error_text:n *

\msg_warning_text:n x

\msg_info_text:n %

11.3 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving
context to messages. The number itself is proceeded by the text on line.

\msg_line_number:

Prints the current line number when a message is given.
\msg_fatal_text:n {(module)}
Produces the standard text

Fatal Package (module) Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included.

\msg_critical_text:n {(module)}
Produces the standard text
Critical Package (module) Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the {(module) to be included.

\msg_error_text:n {(module)}
Produces the standard text
Package (module) Error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included.

\msg_warning_text:n {(module)}
Produces the standard text
Package (module) Warning

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The (type) of (module) may be adjusted:
Package is the standard outcome: see \msg_module_type:n.

\msg_info_text:n {(module)}

Produces the standard text:
Package (module) Info

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The (type) of (module) may be adjusted:
Package is the standard outcome: see \msg_module_type:n.

82

\msg_see_documentation_text:n * \msg_see_documentation_text:n {(module)}

Updated: 2018-09-30

Produces the standard text
See the (module) documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included. The name of the (module) is produced
using \msg_module_name:n.

11.4 Issuing messages

Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments are ignored, or
empty arguments added (of course the sense of the message may be impaired). The four
arguments are converted to strings before being added to the message text: the x-type
variants should be used to expand material. Note that this expansion takes place with
the standard definitions in effect, which means that shorthands such as \~ or \\ are not
available; instead one should use \iow_char:N \~ and \iow_newline:, respectively. The
following message classes exist:

o fatal, ending the TEX run;
e critical, ending the file being input;
e error, interrupting the TEX run without ending it;

e warning, written to terminal and log file, for important messages that may require
corrections by the user;

o note (less common than info) for important information messages written to the
terminal and log file;

e info for normal information messages written to the log file only;

e term and log for un-decorated messages written to the terminal and log file, or to
the log file only;

e none for suppressed messages.

83

\msg_fatal:nnnnnn \msg_fatal:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)}

\msg_fatal:nneeee {(arg three)} {(arg four)}

\msg_fatal:nnnnn

\msg_fatal:(nneee|nnnee)

\msg_fatal:nnnn

\msg_fatal:(nnVV|nnVn|nnnV|nnee|nnne)

\msg_fatal:nnn

\msg_fatal:(nnV|nne)

\msg_fatal:nn
Updated: 2012-08-11
Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a fatal error the TEX run halts. No PDF file will be produced in
this case (DVI mode runs may produce a truncated DVI file).

\msg_critical :nnnnnn \msg_critical:nnnnnn {({module)} {(message)} {(arg ome)} {({arg

\msg_critical :nneeee two)} {(arg three)} {(arg four)}

\msg_critical:nnnnn
\msg_critical:(nneee|nnnee)
\msg_critical:nnnn
\msg_critical:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_critical:nnn
\msg_critical:(nnV|nne)
\msg_critical:nn

Updated: 2012-08-11

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a critical error, TEX stops reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

\msg_error:
\msg_error:
\msg_error:
\msg_error:
\msg_error:
\msg_error:
\msg_error:
\msg_error:
\msg_error:

nnnnnn \msg_error:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)}
nneeee {(arg three)} {(arg four)}

nnnnn

(nneee|nnnee)

nnnn

(nnVV|nnVn|nnnV|nnee|nnne)

nnn

(nnV|nne)

nn

Updated: 2012-08-11

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. The error interrupts processing and issues the text at the terminal. After user
input, the run continues.

84

\msg_warning:nnnnnn \msg_warning:nnnnnn {(module)} {(message)} {(arg one)} {(arg
\msg_warning:nneeee two)} {(arg three)} {(arg four)}

\msg_warning:nnnnn

\msg_warning: (nneee|nnnee)

\msg_warning:nnnn

\msg_warning: (nnVV|nnVn|nnnV|nnee|nnne)

\msg_warning:nnn

\msg_warning: (nnV|nne)

\msg_warning:nn

Updated: 2012-08-11

Issues (module) warning (message), passing {(arg one) to {arg four) to the text-creating
functions. The warning text is added to the log file and the terminal, but the TEX run
is not interrupted.

\msg_note:nnnnnn \msg_note:nnnnnn {(module)} {(message)} {(arg omne)} {({arg two)} {(arg
\msg_note:nneeee three)} {(arg four)}
\msg_note:nnnnn \msg_info:nnnnnn {({module)} {(message)} {(arg ome)} {{arg two)} {(arg
\msg_note: (nneee|nnnee) three)} {(arg four)}

\msg_note:nnnn

\msg_note: (nnVV|nnVn|nnnV|nnee|nnne)
\msg_note:nnn

\msg_note: (nnV|nne)

\msg_note:nn

\msg_info:nnnnnn

\msg_info:nneeee

\msg_info:nnnnn
\msg_info:(nneee|nnnee)
\msg_info:nnnn
\msg_info:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_info:nnn

\msg_info:(nnV|nne)

\msg_info:nn

New: 2021-05-18

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. For the more common \msg_info:nnnnnn, the information text is added to
the log file only, while \msg_note:nnnnnn adds the info text to both the log file and the
terminal. The TEX run is not interrupted.

85

\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:
\msg_term:

nnnnnn \msg_term:nnnnnn {(module)} {(message)} {(arg ome)} {{arg two)} {(arg
nneeee three)} {(arg four)}

nnnnn \msg_log:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {(arg
(nneee|nnnee) three)} {(arg four)}
nnnn

(nnVV|nnVn|nnnV|nnee|nnne)
nnn

(nnV|nne)

nn

\msg_log:nnnnnn

\msg_log:nneeee

\msg_log:nnnnn
\msg_log:(nneee|nnnee)
\msg_log:nnnn
\msg_log:(nnVV|nnVn|nnnV|nnee|nnne)
\msg_log:nnn

\msg_log:(nnV|nne)

\msg_log:nn

Updated: 2012-08-11

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The output is briefer than \msg_info:nnnnnn, omitting for instance the mod-
ule name. It is added to the log file by \msg_log:nnnnnn while \msg_term:nnnnnn also
prints it on the terminal.

\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:
\msg_none:

nnnnnn \msg_none:nnnnnn {(module)} {(message)} {{arg one)} {{arg two)} {(arg
nneeee three)} {(arg four)}

nnnnn

(nneee|nnnee)

nnnn

(nnVV|nnVn|nnnV|nnee|nnne)
nnn

(nnV|nne)

nn

Updated: 2012-08-11

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

86

11.4.1 Messages for showing material

\msg_show:nnnnnn \msg_show:nnnnnn {(module)} {(message)} {(arg ome)} {{arg two)} {(arg

\msg_show:nneeee three)} {(arg four)}

\msg_show:nnnnn

\msg_show: (nneee|nnnee)

\msg_show:nnnn

\msg_show: (nnVV|nnVn|nnnV|nnee|nnne)

\msg_show:nnn

\msg_show: (nnV|nne)

\msg_show:nn

New: 2017-12-04

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The information text is shown on the terminal and the TEX run is interrupted
in a manner similar to \t1_show:n. This is used in conjunction with \msg_show_item:n
and similar functions to print complex variable contents completely. If the formatted
text does not contain >~ at the start of a line, an additional line >~. will be put at the
end. In addition, a final period is added if not present.

\msg_show_item:n * \seq_map_function:NN (seq) \msg_show_item:n

\msg_show_item_unbraced:n * \prop_map_function:NN (prop) \msg_show_item:nn

\msg_show_item:nn *

\msg_show_item_unbraced:nn =%

New: 2017-12-04

Used in the text of messages for \msg_show:nnnnnn to show or log a list of items or
key—value pairs. The output of \msg_show_item:n produces a newline, the prefix >,
two spaces, then the braced string representation of its argument. The two-argument
versions separates the key and value using __=>_.., and the unbraced versions don’t
print the surrounding braces.

These functions are suitable for usage with iterator functions like \seq_map_-
function:NN, \prop_map_function:NN, etc. For example, with a sequence \1_tmpa_seq
containing a, {b} and \c,

\seq_map_function:NN \1_tmpa_seq \msg_show_item:n
would expand to three lines:

>uu{a}
>uu{{b}?
>Lu{\eut

11.4.2 Expandable error messages

In very rare cases it may be necessary to produce errors in an expansion-only context.
The functions in this section should only be used if there is no alternative approach
using \msg_error :nnnnnn or other non-expandable commands from the previous section.
Despite having a similar interface as non-expandable messages, expandable errors must
be handled internally very differently from normal error messages, as none of the tools

87

to print to the terminal or the log file are expandable. As a result, short-hands such as
\{ or \\ do not work, and messages must be very short (with default settings, they are
truncated after approximately 50 characters). It is advisable to ensure that the message
is understandable even when truncated, by putting the most important information up
front. Another particularity of expandable messages is that they cannot be redirected or
turned off by the user.

\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:
\msg_expandable_error:

nnnnnn * \msg_expandable_error:nnnnnn {(module)} {(message)} {(arg omne)} {(arg
mnffff * two)} {(arg three)} {(arg four)}

nnnnn %

nnfff
nnnn
nnff
nnn
nnf

*
*
*
*
*
nn *

New: 2015-08-06
Updated: 2019-02-28

Issues an “Undefined error” message from TEX itself using the undefined control sequence
\: :error then prints “! (module): ”({error message), which should be short. With default
settings, anything beyond approximately 60 characters long (or bytes in some engines) is
cropped. A leading space might be removed as well.

11.5 Redirecting messages

Each message has a “name”, which can be used to alter the behaviour of the message
when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }
to define a message, with
\msg_error:nn { module } { my-message }

when it is used. With no filtering, this raises an error. However, we could alter the
behaviour with

\msg_redirect_class:nn { error } { warning }

to turn all errors into warnings, or with
\msg_redirect_module:nnn { module } { error } { warning }

to alter only messages from that module, or even
\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class raises an error

88

\msg_redirect_class:nn

Updated: 2012-04-27

\msg_redirect_module:nnn

Updated: 2012-04-27

\msg_redirect_name:nnn

Updated: 2012-04-27

immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A — B, B — (' and C — A in this order, then the A — B redirection is
cancelled.

\msg_redirect_class:nn {(class one)} {(class two)}

Changes the behaviour of messages of (class one) so that they are processed using the
code for those of (class two). Each (class) can be one of fatal, critical, error,
warning, note, info, term, log, none.

\msg_redirect_module:nnn {(module)} {(class one)} {(class two)}

Redirects message of (class one) for (module) to act as though they were from (class
two). Messages of (class one) from sources other than (module) are not affected by this
redirection. This function can be used to make some messages “silent” by default. For
example, all of the warning messages of (module) could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_name:nnn {(module)} {(message)} {(class)}

Redirects a specific (message) from a specific (module) to act as a member of (class) of
messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

89

Chapter 12

The 13file package
File and I/0O operations

This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_. .., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_... (writing).

It is important to remember that when reading external files TEX attempts to locate
them using both the operating system path and entries in the TEX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a (file name) argument, this argument may contain both
literal items and expandable content, which should on full expansion be the desired
file name. Active characters (as declared in \1_char_active_seq) are not expanded,
allowing the direct use of these in file names. Quote tokens (") are not permitted in file
names as they are reserved for internal use by some TEX primitives.

Spaces are trimmed at the beginning and end of the file name: this reflects the
fact that some file systems do not allow or interact unpredictably with spaces in these
positions. When no extension is given, this will trim spaces from the start of the name
only.

12.1 Input—output stream management

As TgX engines have a limited number of input and output streams, direct use of the
streams by the programmer is not supported in I¥TEX3. Instead, an internal pool of
streams is maintained, and these are allocated and deallocated as needed by other mod-
ules. As a result, the programmer should close streams when they are no longer needed,
to release them for other processes.

Note that 1/O operations are global: streams should all be declared with global
names and treated accordingly.

90

\ior_new:
\ior_new:
\iow_new:
\iow_new:

o =0 =

New: 2011-09-26
Updated: 2011-12-27

\ior_open:Nn
\ior_open:cn

Updated: 2012-02-10

\ior_open:NnTF
\ior_open:cn

New: 2013-01-12

\iow_open:Nn
\iow_open: (NV|cn|cV)

Updated: 2012-02-09

\ior_shell_open:Nn

New: 2019-05-08

\iow_shell_open:Nn

New: 2023-05-25

\ior_new:N (stream)

\iow_new:N (stream)

Globally reserves the name of the (stream), either for reading or for writing as appropri-
ate. The (stream) is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a (stream) which has not been opened is an error, and the (stream)
will behave as the corresponding \c_term_. ...

\ior_open:Nn (stream) {(file name)}

Opeuns (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. If the file is not found, an error is
raised.

\ior_open:NnTF (stream) {(file name)} {(true code)} {(false code)}

Opens (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. The (¢rue code) is then inserted into
the input stream. If the file is not found, no error is raised and the (false code) is inserted
into the input stream.

\iow_open:Nn (stream) {(file name)}

Opens (file name) for writing using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \iow_-
close:N instruction is given or the TEX run ends. Opening a file for writing clears any
existing content in the file (i.e. writing is not additive).

\ior_shell_open:Nn (stream) {(shell command)}

Opens the pseudo-file created by the output of the (shell command) for reading using
(stream) as the control sequence for access. If the (stream) was already open it is closed
before the new operation begins. The (stream) is available for access immediately and
will remain allocated to (shell command) until a \ior_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the (shell command), see \sys_get_shell:nnNTF.

\iow_shell_open:Nn (stream) {(shell command)}

Opens the pseudo-file created by the output of the (shell command) for writing using
(stream) as the control sequence for access. If the (stream) was already open it is closed
before the new operation begins. The (stream) is available for access immediately and
will remain allocated to (shell command) until a \iow_close:N instruction is given or
the TEX run ends. If piped system calls are disabled an error is raised.

For details of handling of the (shell command), see \sys_get_shell:nnNTF.

91

\ior_close:
\ior_close:
\iow_close:
\iow_close:

o =0 =

Updated: 2012-07-31

\ior_show:N

\ior_show:c
\ior_log:N
\ior_log:c
\iow_show:N
\iow_show:c
\iow_log:N
\iow_log:c

New: 2021-05-11

\ior_show_list:

\ior_log_list:
\iow_show_list:

\iow_log_list:

New: 2017-06-27

\ior_close:N (stream)
\iow_close:N (stream)

Closes the (stream). Streams should always be closed when they are finished with as this
ensures that they remain available to other programmers.

\ior_show:N (stream)
\ior_log:N (stream)
\iow_show:N (stream)
\iow_log:N (stream)

Display (to the terminal or log file) the file name associated to the (read or write) (stream).

\ior_show_list:

\ior_log_list:

\iow_show_list:

\iow_log_list:

Display (to the terminal or log file) a list of the file names associated with each open
(read or write) stream. This is intended for tracking down problems.

12.1.1 Reading from files

Reading from files and reading from the terminal are separate processes in expl3. The
functions \ior_get:NN and \ior_str_get:NN, and their branching equivalents, are de-
signed to work with files.

92

\ior_get:NN
\ior_get:NNTF

New: 2012-06-24
Updated: 2019-03-23

\ior_str_get:NN
\ior_str_get:NNTF

New: 2016-12-04
Updated: 2019-03-23

\ior_get:NN (stream) (token list variable)
\ior_get:NNTF (stream) (token list variable) (true code) (false code)

Function that reads one or more lines (until an equal number of left and right braces are
found) from the file input (stream) and stores the result locally in the (token list) variable.
The material read from the (stream) is tokenized by TEX according to the category codes
and \endlinechar in force when the function is used. Assuming normal settings, any
lines which do not end in a comment character % have the line ending converted to a
space, so for example input

ab c

results in a token list a_b_,c,. Any blank line is converted to the token \par. Therefore,
blank lines can be skipped by using a test such as

\ior_get:NN \1_my_stream \1_tmpa_tl
\tl_set:Nn \1_tmpb_tl1 { \par }
\tl_if_eq:NNF \1_tmpa_tl \1_tmpb_tl

Also notice that if multiple lines are read to match braces then the resulting token list
can contain \par tokens. In the non-branching version, where the (stream) is not open
the (tl var) is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the TEX primitive \read.
Regardless of settings, TEX replaces trailing space and tab characters (character codes 32 and 9)
in each line by an end-of-line character (character code \endlinechar, omitted if \endlinechar
is negative or too large) before turning characters into tokens according to current category
codes. With default settings, spaces appearing at the beginning of lines are also ignored.

\ior_str_get:NN (stream) (token list variable)
\ior_str_get:NNTF (stream) (token list variable) (true code) (false code)

Function that reads one line from the file input (stream) and stores the result locally in
the (token list) variable. The material is read from the (stream) as a series of tokens with
category code 12 (other), with the exception of space characters which are given category
code 10 (space). Multiple whitespace characters are retained by this process. It always
only reads one line and any blank lines in the input result in the (token list variable)
being empty. Unlike \ior_get:NN, line ends do not receive any special treatment. Thus
input

ab c

results in a token list a b ¢ with the letters a, b, and ¢ having category code 12. In the
non-branching version, where the(stream) is not open the (tl var) is set to \q_no_value.

TEXhackers note: This protected macro is a wrapper around the e-TEX primitive
\readline. Regardless of settings, TEX removes trailing space and tab characters (character
codes 32 and 9). However, the end-line character normally added by this primitive is not in-
cluded in the result of \ior_str_get:NN.

All mappings are done at the current group level, i.e. any local assignments made
by the (function) or (code) discussed below remain in effect after the loop.

93

\ior_map_inline:Nn

New: 2012-02-11

\ior_str_map_inline:Nn

New: 2012-02-11

\ior_map_variable:NNn

New: 2019-01-13

\ior_str_map_variable:NNn

New: 2019-01-13

\ior_map_break:

New: 2012-06-29

\ior_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to each set of (lines) obtained by calling \ior_get : NN until
reaching the end of the file. TEX ignores any trailing new-line marker from the file it
reads. The (inline function) should consist of code which receives the (line) as #1.

\ior_str_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to every (line) in the (stream). The material is read from
the (stream) as a series of tokens with category code 12 (other), with the exception of
space characters which are given category code 10 (space). The (inline function) should
consist of code which receives the (line) as #1. Note that TEX removes trailing space and
tab characters (character codes 32 and 9) from every line upon input. TEX also ignores
any trailing new-line marker from the file it reads.

\ior_map_variable:NNn (stream) (t1 var) {{code)}

For each set of (lines) obtained by calling \ior_get :NN until reaching the end of the file,
stores the (lines) in the (¢ var) then applies the (code). The (code) will usually make use
of the (variable), but this is not enforced. The assignments to the (variable) are local.
Its value after the loop is the last set of (lines), or its original value if the (stream) is
empty. TEX ignores any trailing new-line marker from the file it reads. This function is
typically faster than \ior_map_inline:Nn.

\ior_str_map_variable:NNn (stream) (variable) {(code)}

For each (line) in the (stream), stores the (line) in the (variable) then applies the (code).
The material is read from the (stream) as a series of tokens with category code 12 (other),
with the exception of space characters which are given category code 10 (space). The
(code) will usually make use of the (variable), but this is not enforced. The assignments to
the (variable) are local. Its value after the loop is the last (line), or its original value if the
(stream) is empty. Note that TEX removes trailing space and tab characters (character
codes 32 and 9) from every line upon input. TEX also ignores any trailing new-line marker
from the file it reads. This function is typically faster than \ior_str_map_inline:Nn.

\ior_map_break:

Used to terminate a \ior_map_. .. function before all lines from the (stream) have been
processed. This normally takes place within a conditional statement, for example

\ior_map_inline:Nn \1l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TgXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

94

\ior_map_break:n

New: 2012-06-29

\ior_if_eof_p:N *
\ior_if_eof :NTF *

Updated: 2012-02-10

\ior_get_term:nN
\ior_str_get_term:nN

New: 2019-03-23

\iow_now:Nn
\iow_now: (NV|Ne|cn|cV|ce)

Updated: 2012-06-05

\iow_log:n
\iow_log:e

\ior_map_break:n {({code)}

Used to terminate a \ior_map_... function before all lines in the (stream) have been
processed, inserting the (code) after the mapping has ended. This normally takes place
within a conditional statement, for example

\ior_map_inline:Nn \1l_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\ior_if_eof_p:N (stream)
\ior_if_eof:NTF (stream) {(true code)} {(false code)}

Tests if the end of a file (stream) has been reached during a reading operation. The test
also returns a true value if the (stream) is not open.

12.1.2 Reading from the terminal

\ior_get_term:nN (prompt) (token list variable)

Function that reads one or more lines (until an equal number of left and right braces
are found) from the terminal and stores the result locally in the (token list) variable.
Tokenization occurs as described for \ior_get:NN or \ior_str_get:NN, respectively.
When the (prompt) is empty, TEX will wait for input without any other indication:
typically the programmer will have provided a suitable text using e.g. \iow_term:n.
Where the (prompt) is given, it will appear in the terminal followed by an =, e.g.

prompt=

12.1.3 Writing to files

\iow_now:Nn (stream) {(tokens)}

This function writes (tokens) to the specified (stream) immediately (i.e. the write oper-
ation is called on expansion of \iow_now:Nn).

\iow_log:n {(tokens)}

This function writes the given (tokens) to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

95

\iow_term:n \iow_term:n {(tokens)}
\iow_term:e

\iow_shipout:Nn

\iow_shipout:(Ne|cn|ce)

\iow_shipout_e:Nn

\iow_shipout_e:(Ne|cn|ce)

Updated: 2023-09-17

\iow_char:N *

\iow_newline:

*

This function writes the given (tokens) to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

\iow_shipout:Nn (stream) {(tokens)}

This function writes (tokens) to the specified ({strearn) when the current page is finalised
(i.e. at shipout). The x-type variants expand the (tokens) at the point where the function
is used but not when the resulting tokens are written to the (stream) (cf. \1ow_shipout_-
e:Nn).

TEXhackers note: When using expl3 with a format other than KTEX, new line char-
acters inserted using \iow_newline: or using the line-wrapping code \iow_wrap:nnnN are not
recognized in the argument of \iow_shipout:Nn. This may lead to the insertion of additional
unwanted line-breaks.

\iow_shipout_e:Nn (stream) {(tokens)}

This function writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The (tokens) are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalised during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write. When using expl3
with a format other than IXTEX, new line characters inserted using \iow_newline: or using the
line-wrapping code \iow_wrap:nnnN are not recognized in the argument of \iow_shipout:Nn.
This may lead to the insertion of additional unwanted line-breaks.

\iow_char:N \(char)
Inserts (char) into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Ne \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_newline:

Function to add a new line within the (tokens) written to a file. The function has no
effect if writing is taking place without expansion (e.g. in the second argument of \iow_-
now:Nn).

TEXhackers note: When using expl3 with a format other than ETEX, the character in-
serted by \iow_newline: is not recognized by TEX, which may lead to the insertion of additional
unwanted line-breaks. This issue only affects \iow_shipout:Nn, \iow_shipout_e:Nn and direct
uses of primitive operations.

96

\iow_wrap:nnnN
\iow_wrap:nenN

New: 2012-06-28

Updated: 2017-12-04

\iow_wrap_allow_break:

New: 2023-04-25

\iow_indent:n

New: 2011-09-21

12.1.4 Wrapping lines in output

\iow_wrap:nnnN {(text)} {(run-on text)} {(set up)} (function)

This function wraps the (text) to a fixed number of characters per line. At the start
of each line which is wrapped, the (run-on text) is inserted. The line character count
targeted is the value of \1_iow_line_count_int minus the number of characters in the
(run-on text) for all lines except the first, for which the target number of characters is
simply \1_iow_line_count_int since there is no run-on text. The (text) and (run-on
text) are exhaustively expanded by the function, with the following substitutions:

e \\ or \iow_newline: may be used to force a new line,
o \U may be used to represent a forced space (for example after a control sequence),
o \#, \%, \{, \}, \~ may be used to represent the corresponding character,

e \iow_wrap_allow_break: may be used to allow a line-break without inserting a
space,

e \iow_indent:n may be used to indent a part of the (text) (not the (run-on text)).

Additional functions may be added to the wrapping by using the (set up), which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the (text) which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
(function), which is typically a wrapper around a write operation. The output of \iow_-
wrap:nnnN (7.e. the argument passed to the (function)) consists of characters of category
“other” (category code 12), with the exception of spaces which have category “space”
(category code 10). This means that the output does not expand further when written
to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an x-type expansion on the
(text) to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the (text).

\iow_wrap_allow_break:

In the first argument of \iow_wrap:nnnN (for instance in messages), inserts a break-point
that allows a line break. If no break occurs, this function adds nothing to the output.

\iow_indent:n {(text)}

In the first argument of \iow_wrap:nnnN (for instance in messages), indents (text) by
four spaces. This function does not cause a line break, and only affects lines which start
within the scope of the (text). In case the indented (text) should appear on separate lines
from the surrounding text, use \\ to force line breaks.

97

\1l_iow_line_count_int

New: 2012-06-24

\g_tmpa_ior
\g_tmpb_ior

New: 2017-12-11

\c_log_iow
\c_term_iow

\g_tmpa_iow
\g_tmpb_iow

New: 2017-12-11

\if_eof:w *

\g_file_curr_dir_str
\g_file_curr_name_str
\g_file_curr_ext_str

New: 2017-06-21

The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TEX Live and MiKTEX systems.

12.1.5 Constant input—output streams, and variables

Scratch input stream for global use. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Constant output streams for writing to the log and to the terminal (plus the log), respec-
tively.

Scratch output stream for global use. These are never used by the kernel code, and so
are safe for use with any I¥TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

12.1.6 Primitive conditionals

\if_eof:w (stream)
(true code)
\else:
(false code)
\fi:
Tests if the (stream) returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

12.2 File operation functions

Contain the directory, name and extension of the current file. The directory is empty if
the file was loaded without an explicit path (7.e. if it is in the TEX search path), and does
not end in / other than the case that it is exactly equal to the root directory. The (name)
and (ext) parts together make up the file name, thus the (name) part may be thought of
as the “job name” for the current file. Note that TEX does not provide information on
the (ext) part for the main (top level) file and that this file always has an empty (dir)
component. Also, the (name) here will be equal to \c_sys_jobname_str, which may be
different from the real file name (if set using --jobname, for example).

98

\1_file_search_path_seq

New: 2017-06-18
Updated: 2023-06-15

\file_if_exist_p:n %
\file_if_exist_p:V =
\file_if_exist:nTF x
\file_if_exist:V *

Updated: 2023-09-18

\file_get:nnN
\file_get:VnN
\file_get :nnNTF
\file_get:VnN

New: 2019-01-16
Updated: 2019-02-16

\file_get_full_name:nN
\file_get_full_name:VN
\file_get_full_name:nNTF
\file_get_full_name:VN

Updated: 2019-02-16

\file_full_name:n ¥
\file_full name:V 3%

New: 2019-09-03

Each entry is the path to a directory which should be searched when seeking a file. Each
path can be relative or absolute, and need not include the trailing slash. Spaces need not
be quoted.

TEXhackers note: When working as a package in KXTEX 2¢, expl3 will automatically
append the current \input@path to the set of values from \1_file_search_path_seq

\file_if_exist_p:n {(file name)}

\file_if_exist:nTF {(file name)} {(true code)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq.

\file_get:nnN {(filename)} {(setup)} (tl)
\file_get:nnNTF {(filename)} {(setup)} (t1) {(true code)} {(false code)}

Defines (tl) to the contents of (filename). Category codes may need to be set appropri-
ately via the (setup) argument. The non-branching version sets the (¢/) to \q_no_value
if the file is not found. The branching version runs the (true code) after the assignment
to (¢l) if the file is found, and (false code) otherwise.

\file_get_full_name:nN {(file name)} (t1)

\file_get_full_name:nNTF {(file name)} (tl) {(true code)} {(false code)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
sets the (¢l var) the fully-qualified name of the file, i.e. the path and file name. This
includes an extension .tex when the given (file name) has no extension but the file found
has that extension. In the non-branching version, the (¢l var) will be set to \q_no_value
in the case that the file does not exist.

\file_full_name:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
leaves the fully-qualified name of the file, i.e. the path and file name, in the input stream.
This includes an extension .tex when the given (file name) has no extension but the file
found has that extension. If the file is not found on the path, the expansion is empty.

99

\file_parse_full_name:nNNN \file_parse_full_name:nNNN {(full name)} (dir) (name) (ext)

fil full : el e . . .
\file parse_full _name:VNNN Parses the (full name) and splits it into three parts, each of which is returned by setting

New: 2017-06-23 the appropriate local string variable:
Updated: 2020-06-24

o The (dir): everything up to the last / (path separator) in the (file path). As with
system PATH variables and related functions, the (dir) does not include the trailing
/ unless it points to the root directory. If there is no path (only a file name), (dir)
is empty.

e The (name): everything after the last / up to the last ., where both of those
characters are optional. The (name) may contain multiple . characters. It is
empty if (full name) consists only of a directory name.

o The (ext): everything after the last . (including the dot). The (ext) is empty if
there is no . after the last /.

Before parsing, the (full name) is expanded until only non-expandable tokens remain,
except that active characters are also not expanded. Quotes (") are invalid in file names
and are discarded from the input.

\file_parse_full_name:n x \file_parse_full_name:n {(full name)}

fil full : . .
\ile_parse_full name:V * p, oo the (full name) as described for \file_parse_full_name:nNNN, and leaves (dir),

New: 2020-06-24 (name), and (ext) in the input stream, each inside a pair of braces.

\file_parse_full_name_apply:nN * \file_parse_full_name_apply:nN {(full name)} (function)
\file_parse_full_name_apply:VN x

New: 2020-06-24

Parses the (full name) as described for \file_parse_full_name:nNNN, and passes (dir),
(name), and (ext) as arguments to (function), as an n-type argument each, in this order.

\file_hex_dump:n % \file_hex_dump:n {(file name)}
\file_hex_dump:V % \file_hex_dump:nnn {(file name)} {(start index)} {(end index)}
\file_hex_dump:nnn 5¢

\file hex dunp:Vmm % Searches for (file name) using the current TEX search path and the additional paths

controlled by \1_file_search_path_seq. It then expands to leave the hexadecimal
New: 2019-11-19 dump of the file content in the input stream. The file is read as bytes, which means
that in contrast to most TEX behaviour there will be a difference in result depending on
the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty. The {(start index)} and {(end indezx)} values work as
described for \str_range:nnn.

100

\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:
\file_get_hex_dump:

nN

VN
nNTF
VN
nnnN
VnnN
nnnNTF
VnnN

New: 2019-11-19

\file_mdfive_hash:n 3
\file mdfive_hash:V ¥

New: 2019-09-03

\file_get_mdfive_hash:nN
\file_get_mdfive_hash:VN
\file_get_mdfive_hash:nNTF
\file_get_mdfive_hash:VN

New: 2017-07-11
Updated: 2019-02-16

\file_size:n ¥
\file_size:V w

New: 2019-09-03

\file_get_size:nN
\file_get_size:VN
\file_get_size:nNTF
\file_get_size:VN

New: 2017-07-09
Updated: 2019-02-16

\file_timestamp:n ¥
\file_timestamp:V %

New: 2019-09-03

\file_get_hex_dump:nN {(file name)} (tl var)

\file_get_hex_dump:nnnN {(file name)} {(start index)} {(end index)} (tl var)

Sets the (tl var) to the result of applying \file_hex_dump:n/\file_hex_dump:nnn to
the (file). If the file is not found, the (¢ var) will be set to \q_no_value.

\file_mdfive_hash:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths con-
trolled by \1_file_search_path_seq. It then expands to leave the MD5 sum generated
from the contents of the file in the input stream. The file is read as bytes, which means
that in contrast to most TEX behaviour there will be a difference in result depending on
the line endings used in text files. The same file will produce the same result between
different engines: the algorithm used is the same in all cases. When the file is not found,
the result of expansion is empty.

\file_get_mdfive_hash:nN {(file name)} (tl var)

Sets the (¢l var) to the result of applying \file_mdfive_hash:n to the (file). If the file
is not found, the (¢ var) will be set to \q_no_value.

\file_size:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the size of the file in
bytes in the input stream. When the file is not found, the result of expansion is empty.

\file_get_size:nN {(file name)} (t1 var)

Sets the (tl var) to the result of applying \file_size:n to the (file). If the file is not
found, the (¢l var) will be set to \q_no_value. This is not available in older versions of

XATEX.

\file_timestamp:n {(file name)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \1_file_search_path_seq. It then expands to leave the modifica-
tion timestamp of the file in the input stream. The timestamp is of the form
D: (year)(month)(day) (hour) (minute)(second)(offset), where the latter may be Z (UTC)
or (plus-minus)(hours)’ (minutes)’. When the file is not found, the result of expansion
is empty. This is not available in older versions of XHTEX.

101

\file_get_timestamp:nN
\file_get_timestamp:VN
\file_get_timestamp:nNTF
\file_get_timestamp:VN

New: 2017-07-09
Updated: 2019-02-16

\file_get_timestamp:nN {(file name)} (t1 var)

Sets the (tl var) to the result of applying \file_timestamp:n to the (file). If the file is
not found, the (¢l var) will be set to \q_no_value. This is not available in older versions

of XHTEX.

\file_compare_timestamp_p:nNn * \file_compare_timestamp_p:nNn {(file-1)} (comparator)
\file_compare_timestamp_p:(nNV|VNn|VNV) x {(file-2)}
\file_compare_timestamp:nNnTF * \file_compare_timestamp:nNnTF {(file-1)} (comparator)

\file_compare_timestamp:(nNV|VNn|VNV)TF x {(file-2)} {(true code)} {(false code)}

New: 2019-05-13
Updated: 2019-09-20

\file_input:n
\file_input:V

Updated: 2017-06-26

\file_input_raw:n *
\file_input_raw:V *

New: 2023-05-18

\file_if_exist_input:n
\file_if_exist_input:V
\file_if_exist_input:nF
\file_if_exist_input:VF

New: 2014-07-02

Compares the file stamps on the two (files) as indicated by the (comparator), and inserts
either the (true code) or (false case) as required. A file which is not found is treated as
older than any file which is found. This allows for example the construct

\file_compare_timestamp:nNnT { source-file } > { derived-file }
{
% Code to regenerate derived file

}

to work when the derived file is entirely absent. The timestamp of two absent files is
regarded as different. This is not available in older versions of XHTEX.

\file_input:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional I¥TEX source. All files read are recorded for information
and the file name stack is updated by this function. An error is raised if the file is not
found.

\file_input_raw:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional TEX source. No data concerning the file is tracked. If the
file is not found, no action is taken.

TEXhackers note: This function is intended only for contexts where files must be read
purely by expansion, for example at the start of a table cell in an \halign.

\file_if_exist_input:n {(file name)}

\file_if_exist_input:nF {(file name)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
included in \1_file_search_path_seq. If found then reads in the file as additional
KTEX source as described for \file_input:n, otherwise inserts the (false code). Note
that these functions do not raise an error if the file is not found, in contrast to \file_-
input:n.

102

\file_input_stop:

\file_input_stop:

New: 2017-07-07 Ends the reading of a file started by \file_input:n or similar before the end of the

\file_show_list:
\file_log_list:

file is reached. Where the file reading is being terminated due to an error, \msg_-
critical:nn(nn) should be preferred.

TEXhackers note: This function must be used on a line on its own: TEX reads files
line-by-line and so any additional tokens in the “current” line will still be read.

This is also true if the function is hidden inside another function (which will be the normal
case), i.e., all tokens on the same line in the source file are still processed. Putting it on a line
by itself in the definition doesn’t help as it is the line where it is used that counts!

\file_show_list:
\file_log_list:

These functions list all files loaded by IXTEX 2¢ commands that populate \@filelist or
by \file_input:n. While \file_show_list: displays the list in the terminal, \file_-
log_list: outputs it to the log file only.

103

\lua_now:n *
\lua_now:e *

New: 2018-06-18

\lua_shipout_e:n
\lua_shipout:n

New: 2018-06-18

Chapter 13

The 13luatex package:
LuaTgX-specific functions

The LuaTgX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX, pIEX, uplEX or XHIEX these
raise an error: use \sys_if_engine_luatex:T to avoid this. Details on using Lua with
the LuaTgEX engine are given in the LualTEX manual.

13.1 Breaking out to Lua

\lua_now:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to spaces in
the usual TEX manner and which respects currently-applicable TEX category codes. The
resulting (Lua input) is passed to the Lua interpreter for processing. Each \lua_now:n
block is treated by Lua as a separate chunk. The Lua interpreter executes the (Lua
input) immediately, and in an expandable manner.

TEXhackers note: \lua_now:e is a macro wrapper around \directlua: when LuaTgX is
in use two expansions are required to yield the result of the Lua code.

\lua_shipout:n {(token list)}

The (token list) is first tokenized by TEX, which includes converting line ends to spaces in
the usual TEX manner and which respects currently-applicable TEX category codes. The
resulting (Lua input) is passed to the Lua interpreter when the current page is finalised
(i.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate chunk.
The Lua interpreter will execute the (Lua input) during the page-building routine: no
TEX expansion of the (Lua input) will occur at this stage.

In the case of the \1lua_shipout_e:n version the input is fully expanded by TEX in
an e-type manner during the shipout operation.

TEXhackers note: At a TpX level, the (Lua input) is stored as a “whatsit”.

104

\lua_escape:n *
\lua_escape:e *

New: 2015-06-29

\lua_load_module:n

New: 2022-05-14

1tx.utils

ltx.utils.filedump

ltx.utils.filemd5sum

ltx.utils.filemoddate

\lua_escape:n {(token list)}

Converts the (token list) such that it can safely be passed to Lua: embedded backslashes,
double and single quotes, and newlines and carriage returns are escaped. This is done by
prepending an extra token consisting of a backslash with category code 12, and for the
line endings, converting them to \n and \r, respectively.

TEXhackers note: \lua_escape:e is a macro wrapper around \luaescapestring: when
LuaTgX is in use two expansions are required to yield the result of the Lua code.

\lua_load_module:n {(Lua module name)}

Loads a Lua module into the Lua interpreter.

\lua_now:n passes its {(token list)} argument to the Lua interpreter as a single line,
with characters interpreted under the current catcode regime. These two facts mean that
\lua_now:n rarely behaves as expected for larger pieces of code. Therefore, package
authors should not write significant amounts of Lua code in the arguments to \lua_-
now:n. Instead, it is strongly recommended that they write the majorty of their Lua
code in a separate file, and then load it using \lua_load_module:n.

TgXhackers note: This is a wrapper around the Lua call require ’(module)’.

13.2 Lua interfaces

As well as interfaces for TEX, there are a small number of Lua functions provided here.

Most public interfaces provided by the module are stored within the 1tx.utils table.

(dump) = ltx.utils.filedump((file),({offset),(length))

Returns the uppercase hexadecimal representation of the content of the (file) read as
bytes. If the (length) is given, only this part of the file is returned; similarly, one may
specify the (offset) from the start of the file. If the (length) is not given, the entire file is
read starting at the (offset).

(hash) = ltx.utils.filemd5sum((file))

Returns the MD5 sum of the file contents read as bytes; note that the result will depend
on the nature of the line endings used in the file, in contrast to normal TEX behaviour.
If the (file) is not found, nothing is returned with no error raised.

(date) = ltx.utils.filemoddate({file))
Returns the date/time of last modification of the (file) in the format

D: (year)(month){day)(hour){minute)(second) offset)

where the latter may be Z (UTC) or (plus-minus)(hours)’ (minutes)’. If the (file) is not
found, nothing is returned with no error raised.

105

ltx.utils.filesize size = ltx.utils.filesize((file))

Returns the size of the (file) in bytes. If the (file) is not found, nothing is returned with
no error raised.

106

Chapter 14

The 13legacy package
Interfaces to legacy concepts

There are a small number of TEX or I'TEX 2¢ concepts which are not used in expl3 code
but which need to be manipulated when working as a BTEX 2¢ package. To allow these
to be integrated cleanly into expl3 code, a set of legacy interfaces are provided here.

\legacy_if_p:n * \legacy_if_p:n {(name)}
\legacy_if:nTF * \legacy_if:nTF {(name)} {(true code)} {(false code)}

Tests if the ITEX 22 /plain TEX conditional (generated by \newif) if true or false and
branches accordingly. The (name) of the conditional should omit the leading if.

\legacy_if_set_true:n \legacy_if_set_true:n {(name)}
\legacy_if_set_false:n \legacy_if_set_false:n {(name)}

ti::ig:i:::i:::;:{:enn (S)Sftfsatlhsee BTEX 2¢ /plain TEX conditional \if(name) (generated by \newif) to be true

New: 2021-05-10

\legacy_if_set:nn \legacy_if_set:nn {(name)} {(boolexpr)}

\Megacy_if_gsetinn g o e KTEX 2¢ /plain TEX conditional \if(name) (generated by \newif) to the result
New: 2021-05-10 of evaluating the (boolean expression).

107

Part IV
Data types

108

\tl_new:N
\tl_new:c

Chapter 15

The 13tl package
Token lists

TEX works with tokens, and I TEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix t1: a token
list variable can also be used as the argument to a function, for example

\foo:N \1_some_t1l

In both cases, functions are available to test and manipulate the lists of tokens, and these
have the module prefix t1. In many cases, functions which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or ., {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, }, ., w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

15.1 Creating and initialising token list variables

\tl_new:N (tl1 var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (tl var) is initially empty.

109

\tl_const:Nn \tl_const:Nn (tl1 var) {(token list)}

tl t:(N . . .
\t1_const: (Nefen|ce) Creates a new constant (¢l var) or raises an error if the name is already taken. The value

of the (¢l var) is set globally to the (token list).

\tl_clear:N \tl_clear:N (tl var)
\tl_clear:c

\tl_gclear:N
\tl_gclear:c

Clears all entries from the (¢ var).

\tl_clear_new:N \tl_clear_new:N (tl var)
\tl_clear_new:c
\tl_gclear_new:N
\tl_gclear_new:c

Ensures that the (¢ var) exists globally by applying \t1_new:N if necessary, then applies
\tl_(g)clear:N to leave the (¢ var) empty.

\tl_set_eq:NN \tl_set_eq:NN (t1 var;) (tl varo)
\tl_set_eq:(cN|Nc|cc)
\tl_gset_eq:NN

\tl_gset_eq:(cN|[Nc|ec)

Sets the content of (¢l var;) equal to that of (tl vars).

\tl_concat:NNN \tl_concat:NNN (tl vari) (tl vars) (tl vars)
\tl_concat:ccc

\tl_gconcat :NNN
\tl_gconcat:ccc

Concatenates the content of (tl vary) and (¢l vars) together and saves the result in
(tl vary). The (#l vary) is placed at the left side of the new token list.

New: 2012-05-18

\tl_if_exist_p:N x
\tl_if_exist_p:c *
\tl_if_exist:NTF x
\tl_if_exist:c *

\tl_if_exist_p:N (t1 var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (¢l var) is currently defined. This does not check that the (¢l var)
really is a token list variable.

New: 2012-03-03

15.2 Adding data to token list variables

\tl_set:Nn \tl_set:Nn (t1 var) {(tokens)}
\tl_set:(NV|Nv|No|Ne|Nf|cn|cV|cv|co|ce|ct)

\tl_gset:Nn

\tl_gset:(NV|Nv|No|Ne|Nf|cn|cV|cv|co|ce|ct)

Sets (tl var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn \tl_put_left:Nn (t1 var) {(tokens)}
\tl_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

\tl_gput_left:Nn

\tl_gput_left:(NV|Nv|Ne|No|cn|cV|cv)

\tl_gput_left:ce \tl_gput_left:co

Appends (tokens) to the left side of the current content of (¢ var).

110

\tl_put_right:Nn

\tl_put_right:Nn (tl1 var) {(tokens)}

\tl_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

\tl_gput_right:Nn

\tl_gput_right:(NV|Nv|Ne|No|cn|cV|cv)

\tl_gput_right:ce

\tl_gput_right:co

\tl_if_blank_p:n *
\tl_if_blank_p:(e|V|o) =
\tl_if_blank:nTF *
\tl_if_blank:(e|V|o)TF *

Updated: 2019-09-04

\tl_if_empty_p:N =*
\tl_if_empty_p:c *
\tl_if_empty:NTF *
\tl_if_empty:c *

\tl_if_empty_p:n *
\tl_if_empty_p:(V]ole) *
\tl_if_empty:nTF *
\tl_if_empty:(V]o|e)TF *

New: 2012-05-24
Updated: 2012-06-05

\tl_if_eq_p:NN
\tl_if_eq_p:(Nc|cN|ec)
\tl_if_eq:NNTF
\tl_if_eq:(Nc|cN|cc)TE

\tl_if_eq:NnE
\tl_if_eq:cn

New: 2020-07-14

Appends (tokens) to the right side of the current content of (tl var).

15.3 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test is
true if (token list) is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

\tl_if_empty_p:N (t1 var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN (t1 vari) (tl vars)

\tl_if_eq:NNTF (t1 vari) (tl vars) {(true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Ne \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_t1l \1_tmpb_tl { true } { false }

yields false. See also \str_if_eq:nnTF for a comparison that ignores category codes.

\tl_if_eq:NnTF (t1 vari) {(token lists)} {(true code)} {(false code)}

Tests if the (token list variable;) and the (token listy) contain the same list of tokens, both
in respect of character codes and category codes. This conditional is not expandable: see
\tl_if_eq:NNTF for an expandable version when both token lists are stored in variables,
or \str_if_eq:nnTF if category codes are not important.

111

\tl_if_eq:nnTF
\tl_if_eq:(nV|ne|Vn|en|ee)TF

\tl_if_in:NnTF
\tl_if_in:(NV|cn|cV)TF

\tl_if_in:nnTF
\tl_if_in:(Vn|nV|on|no)TF

\tl_if_novalue_p:n *
\tl_if_novalue:nTF x

New: 2017-11-14

\tl_if_single_p:N
\tl_if_single_p:c
\tl_if_single:NTF

*
*
*
\tl_if_single:c *

Updated: 2011-08-13

\tl_if_single_p:n *
\tl_if_single:nTF *

Updated: 2011-08-13

\tl_if_single_token_p:n %
\tl_if_single_token:nTF *

\tl_if_eq:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token list;) and (token listy) contain the same list of tokens, both in respect of
character codes and category codes. This conditional is not expandable: see \t1l_if_-
eq:NNTF for an expandable version when token lists are stored in variables, or \str_-
if_eq:nnTF if category codes are not important.

\tl_if_in:NnTF (t1 var) {(token list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (¢l var). The (token list) cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF {(token listi)} {(token lists)} {(true code)} {(false code)}

Tests if (token listy) is found inside (token list;). The (token listy) cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6). The search does not enter
brace (category code 1/2) groups.

\tl_if_novalue_p:n {(token list)}
\tl_if_novalue:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is exactly equal to the special \c_novalue_t1l marker. This
function is intended to allow construction of flexible document interface structures in
which missing optional arguments are detected.

\tl_if_single_p:N (tl1 var)

\tl_if_single:NTF (tl var) {(true code)} {(false code)}

Tests if the content of the (¢l var) consists of a single (item), i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \t1l_count:N.

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) has exactly one (item), i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_if_single_token_p:n {(token list)}
\tl_if_single_token:nTF {(token list)} {(true code)} {(false code)}

Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single normal token. Token groups ({...}) are not single tokens.

112

15.3.1 Testing the first token

\tl_if_head_eq_catcode_p:nN x \tl_if_head_eq_catcode_p:nN {(token list)
\tl_if_head_eq_catcode_p:oN * \tl_if_head_eq_catcode:nNTF {(token list)
\tl_if_head_eq_catcode:nNTF x {(true code)} {(false code)}
\tl_if_head_eq_catcode:oN *

(test token)

}
} (test token)

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_charcode_p:nN x \tl_if_head_eq_charcode_p:nN {(token list)} (test token)
\tl_if_head_eq_charcode_p:fN * \tl_if_head_eq_charcode:nNTF {(token list)} (test token)
\tl_if_head_eq_charcode:nNTF x {(true code)} {(false code)}
\tl_if_head_eq_charcode:fN *

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where the (token list) is empty, the test is always false.

\tl_if_head_eq_meaning_p:nN x \tl_if_head_eq_meaning p:nN {(token list)
\tl_if_head_eq_meaning:nNTF * \tl_if_head_eq_meaning:nNTF {(token list)
{(true code)} {(false code)}

(test token)

}
} (test token)

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, the test is always false.

\tl_if_head_is_group_p:n = \tl_if_head_is_group_p:n {(token list)}
\tl_if_head_is_group:nTF x \tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

New: 2012-07-08 Lests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

\tl_if_head_is_N_type_p:n % \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF % \tl_if_head_is_N_type:nTF {(token list)} {(true code)} {(false code)}

New: 2012-07-08

Tests if the first (token) in the (token list) is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a normal first token. This
function is useful to implement actions on token lists on a token by token basis.

113

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF *

Updated: 2012-07-08

\tl_to_str:n *
\tl_to_str:(o|V|v|e) *

\tl_to_str:N *
\tl_to_str:c *

\tl_use:N *
\tl_use:c *

\tl_if_head_is_space_p:n {(token list)}

\tl_if_head_is_space:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (explicit token
with character code 32 and category code 10). In particular, the test is false if the
(token list) starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

15.4 Working with token lists as a whole

15.4.1 Using token lists

\tl_to_str:n {(token list)}

Converts the (token list) to a (string), leaving the resulting character tokens in the input
stream. A (string) is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space). The base function requires only a single
expansion. Its argument must be braced.

TgXhackers note: This is the e-TEX primitive \detokenize. Converting a (token list) to
a (string) yields a concatenation of the string representations of every token in the (token list).
The string representation of a control sequence is

e an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative or greater than the largest character code;

e the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \t1l_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:N (tl var)

Converts the content of the (tl var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream. For low-level details, see the notes given for \t1l_to_-
str:n.

\tl_use:N (tl1 var)

Recovers the content of a (¢ var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(tl var) directly without an accessor function.

114

\tl_count:n *
\tl_count:(V|o) =

New: 2012-05-13

\tl_count:N *
\tl_count:c %

New: 2012-05-13

\tl_count_tokens:n *

New: 2019-02-25

\tl_reverse:n *
\tl_reverse:(V|o|f|e) *

Updated: 2012-01-08

\tl_reverse:N
\tl_reverse:c
\tl_greverse:N
\tl_greverse:c

Updated: 2012-01-08

\tl_reverse_items:n *

New: 2012-01-08

15.4.2 Counting and reversing token lists

\tl_count:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...}). This process
ignores any unprotected spaces within (tokens). See also \tl_count:N. This function
requires three expansions, giving an (integer denotation,).

\tl_count:N (tl var)

Counts the number of (items) in the (¢l var) and leaves this information in the input
stream. Unbraced tokens count as one element as do each token group ({...3}). This
process ignores any unprotected spaces within the (¢ var). See also \t1_count:n. This
function requires three expansions, giving an (integer denotation).

\tl_count_tokens:n {(tokens)}

Counts the number of TEX tokens in the (tokens) and leaves this information in the input
stream. Every token, including spaces and braces, contributes one to the total; thus for
instance, the token count of a~{bc} is 6.

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token list), so that (item;)(items) (items)
... (item,) becomes (itemy,). .. (itemg)(items)(itemy). This process preserves unprotected
space within the (token list). Tokens are not reversed within braced token groups, which
keep their outer set of braces. In situations where performance is important, consider
\tl_reverse_items:n. See also \tl_reverse:N.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type or e-type argument expansion.

\tl_reverse:N (tl1 var)

Sets the (#l var) to contain the result of reversing the order of its (items), so that
(itemy) (itemsa) (items) ... (item,) becomes (item,,). .. (items){itema)(item;). This process
preserves unprotected spaces within the (token list variable). Braced token groups are
copied without reversing the order of tokens, but keep the outer set of braces. This
is equivalent to a combination of an assignment and \tl_reverse:V. See also \tl_-
reverse_items:n for improved performance.

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (¢l var), so that {(item;)}{(items)H{ (items)}
... {(itemy,)} becomes {(item,)} ... {{items)}{(items)}{(item;)}. This process removes
any unprotected space within the (token list). Braced token groups are copied without
reversing the order of tokens, and keep the outer set of braces. Items which are initially
not braced are copied with braces in the result. In cases where preserving spaces is
important, consider the slower function \t1l_reverse:n.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type or e-type argument expansion.

115

\tl_trim_spaces:n *
\tl_trim_spaces:(V|v]e|o) *

New: 2011-07-09
Updated: 2012-06-25

\tl_trim_spaces_apply:nN %
\tl_trim_spaces_apply:oN x*

New: 2018-04-12

\tl_trim_spaces:N
\tl_trim_spaces:c
\tl_gtrim_spaces:N
\tl_gtrim_spaces:c

New: 2011-07-09

\t1l_show:N
\tl_show:c

Updated: 2021-04-29

\tl_show:n
\tl_show:e

Updated: 2015-08-07

\tl_log:N
\tl_log:c

New: 2014-08-22

Updated: 2021-04-29

\tl_log:n

\tl_log:(e|x)

New: 2014-08-22

Updated: 2015-08-07

\tl_trim_spaces:n {(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and leaves the result in the input
stream.

TEXhackers note: The result is returned within \unexpanded, which means that the
token list does not expand further when appearing in an x-type or e-type argument expansion.

\tl_trim_spaces_apply:nN {(token 1ist)} (function)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and passes the result to the (function)
as an n-type argument.

\tl_trim_spaces:N (tl1 var)

Sets the (¢ var) to contain the result of removing any leading and trailing explicit space
characters (explicit tokens with character code 32 and category code 10) from its contents.

15.4.3 Viewing token lists

\tl_show:N (tl var)

Displays the content of the (¢ var) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:n {(token list)}

Displays the (token list) on the terminal.

TEXhackers note: This is similar to the e-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

\tl_log:N (tl1 var)

Writes the content of the (¢ var) in the log file. See also \t1_show:N which displays the
result in the terminal.

\tl_log:n {(token list)}

Writes the (token list) in the log file. See also \t1l_show:n which displays the result in
the terminal.

116

\tl_map_function:NN %
\tl_map_function:cN ¥

Updated: 2012-06-29

\tl_map_function:nN %

Updated: 2012-06-29

\tl_map_inline:Nn
\tl_map_inline:cn

Updated: 2012-06-29

\tl_map_inline:nn

Updated: 2012-06-29

\t1l_map_tokens:Nn 7
\tl_map_tokens:cn ¥
\tl_map_tokens:nn ¥

New: 2019-09-02

\tl_map_variable:NNn
\tl_map_variable:cNn

Updated: 2012-06-29

15.5 Manipulating items in token lists

15.5.1 Mapping over token lists

All mappings are done at the current group level, 7.e. any local assignments made by the
(function) or (code) discussed below remain in effect after the loop.

\tl_map_function:NN (tl1 var) (function)

Applies (function) to every (item) in the (¢l var). The (function) receives one argument
for each iteration. This may be a number of tokens if the (item) was stored within
braces. Hence the (function) should anticipate receiving n-type arguments. See also
\tl_map_function:nN.

\tl_map_function:nN {(token list)} (function)

Applies (function) to every (item) in the (token list), The (function) receives one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:NN.

\tl_map_inline:Nn (tl1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (¢l var). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:NN.

\tl_map_inline:nn {(token list)} {(inline function)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which receives the (item) as #1. See also \t1l_map_-
function:nN.

\tl_map_tokens:Nn (t1 var) {(code)}

\tl_map_tokens:nn {(tokens)} {(code)}

Analogue of \t1l_map_function:NN which maps several tokens instead of a single func-
tion. The (code) receives each (item) in the (tl var) or in (tokens) as a trailing brace
group. For instance,

\tl_map_tokens:Nn \1_my_tl { \prg_replicate:nn { 2 } }

expands to twice each (item) in the (¢l var): for each (item) in \1_my_t1 the function
\prg_replicate:nn receives 2 and (item) as its two arguments. The function \tl_-
map_inline:Nn is typically faster but is not expandable.

\tl_map_variable:NNn (tl var) (variable) {{code)}

Stores each (item) of the (¢l var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(tl var), or its original value if the (¢ var) is blank. See also \t1_map_inline:Nn.

117

\tl_map_variable:nNn

Updated: 2012-06-29

\tl_map_break: v

Updated: 2012-06-29

\tl_map_break:n w

Updated: 2012-06-29

\tl_map_variable:nNn {(token list)} (variable) {(code)}

Stores each (item) of the (token list) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(tl var), or its original value if the (¢l var) is blank. See also \t1_map_inline:nn.

\t1l_map_break:

Used to terminate a \tl_map_... function before all entries in the (token list variable)
have been processed. This normally takes place within a conditional statement, for
example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

}

See also \tl_map_break:n. Use outside of a \t1l_map_... scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (tokens) are inserted into the input stream. This depends on the design of the mapping
function.

\tl_map_break:n {(code)}

Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed, inserting the (code) after the mapping has ended. This normally
takes place within a conditional statement, for example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <code> } }
% Do something useful

}
Use outside of a \t1_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

15.5.2 Head and tail of token lists

Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

118

\tl_head:N *
\tl_head:n *
\tl_head:(V|v|f) =

Updated: 2012-09-09

\tl_head:w *

\tl_tail:N *
\tl_tail:n *
\tl_tail:(V|v|f) =

Updated: 2012-09-01

\tl_head:n {(token list)}

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces are removed, and so

\tl_head:n { ~ { ~ab } c }

yields ab. A blank (token list) (see \t1_if_blank:nTF) results in \t1_head:n leaving
nothing in the input stream.

TgXhackers note: The result is returned within \exp_not :n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

\tl_head:w (token list) { } \q_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded. A blank (token list) (which consists only of space
characters) results in a low-level TEX error, which may be avoided by the inclusion of an
empty group in the input (as shown), without the need for an explicit test. Alternatively,
\tl_if_blank:nF may be used to avoid using the function with a “blank” argument. This
function requires only a single expansion, and thus is suitable for use within an o-type
expansion. In general, \t1l_head:n should be preferred if the number of expansions is
not critical.

\tl_tail:n {(token list)}

Discards all leading explicit space characters (explicit tokens with character code 32 and
category code 10) and the first (item) in the (token list), and leaves the remaining tokens
in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }
and
\tl_tail:n { ~ a ~ {bc} d }

both leave _{bc}d in the input stream. A blank (token list) (see \t1l_if_blank:nTF)
results in \t1l_tail:n leaving nothing in the input stream.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

If you wish to handle token lists where the first token may be a space, and this

119

\tl_item:nn *
\tl_item:Nn *
\tl_item:cn *

New: 2014-07-17

\tl_rand_item:N *
\tl_rand_item:c x
\tl_rand_item:n *

New: 2016-12-06

needs to be treated as the head/tail, this can be accomplished using \t1_if_head_is_-
space:nTF, for example

\exp_last_unbraced:NNo
\cs_new:Npn __mypkg_gobble_space:w \c_space_tl { }
\cs_new:Npn \mypkg_tl_head_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{~1
{ \tl_head:n {#1} }
}
\cs_new:Npn \mypkg_tl_tail_keep_space:n #1
{
\tl_if_head_is_space:nTF {#1}
{ \exp_not:o { __mypkg_gobble_space:w #1 } }
{ \tl_tail:n {#1} }

15.5.3 Items and ranges in token lists

\tl_item:nn {(token list)} {(integer expression)}

Indexing items in the (token list) from 1 on the left, this function evaluates the (integer
expression) and leaves the appropriate item from the (token list) in the input stream.
If the (integer expression) is negative, indexing occurs from the right of the token list,
starting at —1 for the right-most item. If the index is out of bounds, then the function
expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

\tl_rand_item:N (tl1 var)
\tl_rand_item:n {(token list)}

Selects a pseudo-random item of the (token list). If the (token list) is blank, the result
is empty. This is not available in older versions of XHTEX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

120

\tl_range:Nnn *
\tl_range:nnn *

New: 2017-02-17
Updated: 2017-07-15

\tl_range:Nnn (tl1 var) {(start index)} {(end index)}
\tl_range:nnn {(token list)} {(start index)} {(end index)}

Leaves in the input stream the items from the (start index) to the {(end index) inclusive.
Spaces and braces are preserved between the items returned (but never at either end
of the list). Here (start index) and (end indezx) should be (integer expressions). For
describing in detail the functions’ behavior, let m and n be the start and end index
respectively. If either is 0, the result is empty. A positive index means ‘start counting
from the left end’, and a negative index means ‘from the right end’. Let [be the count
of the token list.

The actual start point is determined as M = mif m >0andas M =1+ m+ 1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1if n <0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [.

Spaces in between items in the actual range are preserved. Spaces at either end
of the token list will be removed anyway (think to the token list being passed to
\tl_trim_spaces:n to begin with.

Thus, with [= 7 as in the examples below, all of the following are equivalent and
result in the whole token list

\tl_range:nnn { abcd~{e{}}fg } { 1
{1

B e
-~ A
=~

-

\tl_range:nnn { abcd~{e{}}fg 2}
\tl_range:nnn { abcd~{e{}}fg } { -7 } { 7 }
\tl_range:nnn { abcd~{e{}}fg } { -12 } { 7 }

Here are some more interesting examples. The calls

\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { 2} {56} }

\iow_term:e { \tl_range:nnn { abcd{e{}}g } {2} { -3} }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg +} { -6 > { 51} }
\iow_term:e { \tl_range:nnn { abcd{e{}}fg } { -6 > { -3 } }

are all equivalent and will print becd{e{}} on the terminal; similarly

\iow_term:e { \tl_range:nnn { abcd~{e{}}fg >} {23+ {51} }

\iow_term:e { \tl_range:nnn { abcd~{e{}}fg >} {23} { -3} 1}
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { -6 } {56} }
\iow_term:e { \tl_range:nnn { abcd~{e{}}fg } { -6 } { -3} }

are all equivalent and will print bed {e{}} on the terminal (note the space in the middle).
To the contrary,

\tl_range:nnn { abcd~{e{}}f } {2} {4}

will discard the space after ‘d’.

If we want to get the items from, say, the third to the last in a token list <t1>, the
call is \t1l_range:nnn { <t1> } { 3 } { -1 }. Similarly, for discarding the last item,
we can do \tl_range:nnn { <t1> } {1 } { -2 }.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

121

\tl_sort:Nn
\tl_sort:cn
\tl_gsort:Nn
\tl_gsort:cn

New: 2017-02-06

\tl_sort:nN x*

New: 2017-02-06

15.5.4 Sorting token lists

\tl_sort:Nn (tl1 var) {(comparison code)}

Sorts the items in the (¢ var) according to the (comparison code), and assigns the result
to (¢l var). The details of sorting comparison are described in Section 6.1.

\tl_sort:nN {(token 1ist)} (conditional)

Sorts the items in the (token list), using the (conditional) to compare items, and leaves
the result in the input stream. The (conditional) should have signature :nnTF, and return
true if the two items being compared should be left in the same order, and false if the
items should be swapped. The details of sorting comparison are described in Section 6.1.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list does not expand further when appearing in an x-type or e-type argument expansion.

15.6 Manipulating tokens in token lists

15.6.1 Replacing tokens

Within token lists, replacement takes place at the top level: there is no recursion into
brace groups (more precisely, within a group defined by a categroy code 1/2 pair).

\tl_replace_once:Nnn

\tl_replace_once:(NVn|
cne|

\tl_greplace_once:Nnn

\tl_replace_once:Nnn (tl var) {(old tokens)} {(new
NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen| tokens)}
cee)

\tl_greplace_once:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|
cne|cee)

Updated: 2011-08-11

Replaces the first (leftmost) occurrence of (old tokens) in the (tl var) with (new tokens).
(Old tokens) cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn

\tl_replace_all:Nnn (tl1 var) {({old tokens)} {(new

\tl_replace_all:(NVn|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen| tokens)}
cnelcee)

\tl_greplace_all:Nnn
\tl_greplace_all:(NVn
cne

|NnV|Nen|Nne|Nee|cnn|cVn|cnV|cen|
|cee)

Updated: 2011-08-11

Replaces all occurrences of (old tokens) in the (tl var) with (new tokens). (Old tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (old tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

122

\tl_remove_once:Nn \tl_remove_once:Nn (t1 var) {(tokens)}
\tl_remove_once:(NV|Ne|cn|cV|ce)

\tl_gremove_once:Nn

\tl_gremove_once:(NV|Ne|cn|cV|ce)

Updated: 2011-08-11

Removes the first (leftmost) occurrence of (tokens) from the (¢l var). (Tokens) cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_remove_all:Nn \tl_remove_all:Nn (tl var) {(tokens)}
\tl_remove_all:(NV|Ne|cn|cV|ce)

\tl_gremove_all:Nn

\tl_gremove_all:(NV|Ne|cn|cV|ce)

Updated: 2011-08-11

Removes all occurrences of (tokens) from the (¢ var). (Tokens) cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_tl {abbccd} \tl_remove_all:Nn \1_tmpa_tl {bc}

results in \1_tmpa_t1 containing abcd.

15.6.2 Reassigning category codes

These functions allow the rescanning of tokens: re-apply TEX’s tokenization process to
apply category codes different from those in force when the tokens were absorbed. Whilst
this functionality is supported, it is often preferable to find alternative approaches to
achieving outcomes rather than rescanning tokens (for example construction of token lists
token-by-token with intervening category code changes or using \char_generate:nn).

123

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (t1 var) {(setup)} {(tokens)}

\tl_set_rescan:(NnV|Nne|Nno|cnn|cnV|cne|cno)

\tl_gset_rescan:Nnn

\tl_gset_rescan:(NnV|Nne|Nno|cnn|cnV|cne|cno)

Updated: 2015-08-11

\tl_rescan:nn

\tl_rescan:nV

Updated: 2015-08-11

\c_empty_tl

Sets (tl var) to contain (tokens), applying the category code régime specified in the (setup)
before carrying out the assignment. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \t1l_set_rescan:Nnn.)
This allows the (# var) to contain material with category codes other than those that
apply when (tokens) are absorbed. The (setup) is run within a group and may contain any
valid input, although only changes in category codes, such as uses of \cctab_select:N,
are relevant. See also \t1l_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. (Category codes applied to tokens not explicitly
covered by the (setup) are those in force at the point of use of \tl_rescan:nn.) The
(setup) is run within a group and may contain any valid input, although only changes
in category codes, such as uses of \cctab_select:N, are relevant. See also \tl_set_-
rescan:Nnn, which is more robust than using \t1l_set:Nn in the (tokens) argument of
\tl_rescan:nn.

TEXhackers note: The (tokens) are first turned into a string (using \tl_to_str:n). If
the string contains one or more characters with character code \newlinechar (set equal to
\endlinechar unless that is equal to 32, before the user (setup)), then it is split into lines at
these characters, then read as if reading multiple lines from a file, ignoring spaces (catcode 10) at
the beginning and spaces and tabs (character code 32 or 9) at the end of every line. Otherwise,
spaces (and tabs) are retained at both ends of the single-line string, as if it appeared in the
middle of a line read from a file.

Contrarily to the \scantokens primitive, \t1_rescan:nn tokenizes the whole string in the
same category code regime rather than one token at a time, so that directives such as \verb
that rely on changing category codes will not function properly.

15.7 Constant token lists

Constant that is always empty.

124

\c_novalue_t1

New: 2017-11-14

\c_space_tl

\1_tmpa_tl

\1_tmpb_tl

\g_tmpa_t1l
\g_tmpb_t1

A marker for the absence of an argument. This constant t1 can safely be typeset (¢f. \q_-
nil), with the result being -NoValue-. It is important to note that \c_novalue_t1 is
constructed such that it will not match the simple text input -NoValue-, i.e. that

\tl_if_eq:NnTF \c_novalue_tl { -NoValue- }

is logically false. The \c_novalue_t1 marker is intended for use in creating document-
level interfaces, where it serves as an indicator that an (optional) argument was omitted.
In particular, it is distinct from a simple empty t1.

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

15.8 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

125

Chapter 16

The I13str package: Strings

TEX associates each character with a category code: as such, there is no concept of
a “string” as commonly understood in many other programming languages. However,
there are places where we wish to manipulate token lists while in some sense “ignoring”
category codes: this is done by treating token lists as strings in a TEX sense.

A TgX string (and thus an expl3 string) is a series of characters which have category
code 12 (“other”) with the exception of space characters which have category code 10
(“space”). Thus at a technical level, a TEX string is a token list with the appropriate
category codes. In this documentation, these are simply referred to as strings.

String variables are simply specialised token lists, but by convention should be named
with the suffix ...str. Such variables should contain characters with category code 12
(other), except spaces, which have category code 10 (blank space). All the functions in
this module which accept a token list argument first convert it to a string using \t1_to_-
str:n for internal processing, and do not treat a token list or the corresponding string
representation differently.

As a string is a subset of the more general token list, it is sometimes unclear when
one should be used over the other. Use a string variable for data that isn’t primarily
intended for typesetting and for which a level of protection from unwanted expansion is
suitable. This data type simplifies comparison of variables since there are no concerns
about expansion of their contents.

The functions \cs_to_str:N, \tl_to_str:n, \tl_to_str:N and \token_to_str:N
(and variants) generate strings from the appropriate input: these are documented in
I3basics, 13tl and I3token, respectively.

Most expandable functions in this module come in three flavours:

e \str_...:N, which expect a token list or string variable as their argument;
e \str_...:n, taking any token list (or string) as an argument;
e \str_..._ignore_spaces:n, which ignores any space encountered during the op-

eration: these functions are typically faster than those which take care of escaping
spaces appropriately.

126

\str_new:N
\str_new:c

New: 2015-09-18

\str_const:Nn
\str_const:(NV|Ne|cn|cV|ce)

New: 2015-09-18
Updated: 2018-07-28

\str_clear:N
\str_clear:c
\str_gclear:N
\str_gclear:c

New: 2015-09-18

\str_clear_new:N
\str_clear_new:c

New: 2015-09-18

\str_set_eq:NN
\str_set_eq:(cN|Nc|cc)
\str_gset_eq:NN
\str_gset_eq:(cN|Nc|cc)

New: 2015-09-18

\str_concat :NNN
\str_concat:ccc
\str_gconcat :NNN
\str_gconcat:ccc

New: 2017-10-08

\str_if_exist_p:N *
\str_if_exist_p:c *
\str_if_exist:NTF x
\str_if_exist:c *

New: 2015-09-18

16.1 Creating and initialising string variables

\str_new:N (str var)

Creates a new (str var) or raises an error if the name is already taken. The declaration
is global. The (str var) is initially empty.

\str_const:Nn (str var) {(token list)}

Creates a new constant (str var) or raises an error if the name is already taken. The
value of the (str var) is set globally to the (token list), converted to a string.

\str_clear:N (str var)

Clears the content of the (str var).

\str_clear_new:N (str var)

Ensures that the (str var) exists globally by applying \str_new:N if necessary, then
applies \str_(g)clear:N to leave the (str var) empty.

\str_set_eq:NN (str vari) (str vars)

Sets the content of (str var;) equal to that of (str vary).

\str_concat:NNN (str vari) (str varp) (str vars)

Concatenates the content of (str vare) and (str vars) together and saves the result in
(str vary). The (str vary) is placed at the left side of the new string variable. The
(str vary) and (str vars) must indeed be strings, as this function does not convert their
contents to a string.

\str_if_exist_p:N (str var)
\str_if_exist:NTF (str var) {(true code)} {(false code)}

Tests whether the (str var) is currently defined. This does not check that the (str var)
really is a string.

127

16.2 Adding data to string variables

\str_set:Nn \str_set:Nn (str var) {(token list)}
\str_set:(NV|Ne|cn|cV|ce)
\str_gset:Nn

\str_gset: (NV|Ne|cn|cV|ce)

Converts the (token list) to a (string), and stores the result in (str var).

New: 2015-09-18
Updated: 2018-07-28

\str_put_left:Nn \str_put_left:Nn (str var) {(token list)}
\str_put_left:(NV|Ne|cn|cV|ce)

\str_gput_left:Nn

\str_gput_left:(NV|Ne|cn|cV|ce)

New: 2015-09-18
Updated: 2018-07-28

Converts the (token list) to a (string), and prepends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

\str_put_right:Nn \str_put_right:Nn (str var) {(token list)}
\str_put_right:(NV|Ne|cn|cV|Ne)

\str_gput_right:Nn

\str_gput_right:(NV|Ne|cn|cV|ce)

New: 2015-09-18
Updated: 2018-07-28

Converts the (token list) to a (string), and appends the result to (str var). The current
contents of the (str var) are not automatically converted to a string.

16.3 String conditionals

\str_if_empty_p:N * \str_if_empty_p:N (str var)

*
\str_if_empty_p:c * \str_if_empty:NTF (str var) {(true code)} {(false code)}
\Str-}f-empty:NE * Tests if the (string variable) is entirely empty (i.e. contains no characters at all).
\str_if_empty:c *
\str_if_empty_p:n *

*

\str_if_empty:nTF

New: 2015-09-18
Updated: 2022-03-21

\str_if_eq_p:NN
\str_if_eq_p:(Nc|cN|cc)
\str_if_eq:NNTF
\str_if_eq:(Nc|cN|cc)TF

* \str_if_eq_p:NN (str vari) (str var)

* \str_if_eq:NNTF (str vari) (str vars) {(true code)} {(false code)}

: Compares the content of two (str variables) and is logically true if the two contain the
same characters in the same order. See \tl_if_eq:NNTF to compare tokens (including

New: 2015-09-18 their category codes) rather than characters.

128

(t12)}
(t12)} {(true code)} {(false code)}

\str_if_eq p:nn * \str_if_eq_p:nn {(tl1)
\str_if_eq_p:(Vn|on|no|nV|VV|vn|nv|ee) x \str_if_eq:nnTF {(t1i)
\str_if_eq:nnTF *
\str_if_eq:(Vn|on|no|nV|VV|vn|nv|ee)TF *

}{
P {

Updated: 2018-06-18

Compares the two (token lists) on a character by character basis (namely after converting
them to strings), and is true if the two (strings) contain the same characters in the same
order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }

is logically true. See \t1_if_eq:nnTF to compare tokens (including their category codes)
rather than characters.

\str_if_in:NnTF \str_if_in:NnTF (str var) {(token list)} {(true code)} {(false code)}

ASERAf AR o verts the (token list) to a (string) and tests if that (string) is found in the content of

New: 2017-10-08 the <str f[)ayf').

\str_if_in:nnTF \str_if_in:nnTF {(t1:1)} {(t12)} {(true code)} {(false code)}

New: 2017-10-08 Converts both (token lists) to (strings) and tests whether (strings) is found inside
(string;).

\str_case:nnTF {(test string)}
{
{(string casei1)} {{code casei)}
{(string case2)} {{code case:)}

\str_case:nn *
\str_case:(Vn|on|en|nV|nv) *
\str_case:nnTF *
\str_case:(Vn|on|en|nV|nv)TF *
\str_case:Nn * -
\str_case:NnTF * {(string case,)} {{code case,)}
}

{(true code)}

{(false code)}

New: 2013-07-24
Updated: 2022-03-21

Compares the (test string) in turn with each of the (string cases) (all token lists are
converted to strings). If the two are equal (as described for \str_if_eq:nnTF) then the
associated (code) is left in the input stream and other cases are discarded. If any of
the cases are matched, the (true code) is also inserted into the input stream (after the
code for the appropriate case), while if none match then the (false code) is inserted. The
function \str_case:nn, which does nothing if there is no match, is also available.

This set of functions performs no expansion on each (string case) argument, so any
variable in there will be compared as a string. If expansion is needed in the (string cases),
then \str_case_e:nn(TF) should be used instead.

129

\str_case_e:nn *
\str_case_e:nnTF *

New: 2018-06-19

\str_compare_p:nNn
\str_compare_p:eNe
\str_compare:nNnTF

*
*
*
\str_compare:eNe *

New: 2021-05-17

\str_map_function:nN w
\str_map_function:NN
\str_map_function:cN w

New: 2017-11-14

\str_case_e:nnTF {(test string)}

{
{(string casei)} {(code case:i)}
{(string cases)} {{code cases)}

{(string case,)} {(code case,)}

}

{(true code)}

{(false code)}
Compares the full expansion of the (test string) in turn with the full expansion of the
(string cases) (all token lists are converted to strings). If the two full expansions are
equal (as described for \str_if_eq:nnTF) then the associated (code) is left in the input
stream and other cases are discarded. If any of the cases are matched, the (true code)
is also inserted into the input stream (after the code for the appropriate case), while
if none match then the (false code) is inserted. The function \str_case_e:nn, which
does nothing if there is no match, is also available. The (test string) is expanded in each
comparison, and must always yield the same result: for example, random numbers must
not be used within this string.

\str_compare_p:nNn {(tl1)} (relation) {(tl2)}
\str_compare:nNnTF {(tl1)} (relation) {(tl:)} {(true code)} {(false code)}

Compares the two (token lists) on a character by character basis (namely after convert-
ing them to strings) in a lexicographic order according to the character codes of the
characters. The (relation) can be <, =, or > and the test is true under the following
conditions:

o for <, if the first string is earlier than the second in lexicographic order;
o for =, if the two strings have exactly the same characters;
o for >, if the first string is later than the second in lexicographic order.
Thus for example the following is logically true:
\str_compare_p:nNn { ab } < { abc }
TEXhackers note: This is a wrapper around the TEX primitive \ (pdf) strcmp. It is meant for

programming and not for sorting textual contents, as it simply considers character codes and
not more elaborate considerations of grapheme clusters, locale, etc.

16.4 Mapping over strings

All mappings are done at the current group level, i.e. any local assignments made by the
(function) or (code) discussed below remain in effect after the loop.

\str_map_function:nN {(token 1list)} (function)
\str_map_function:NN (str var) (function)

Converts the (token list) to a (string) then applies (function) to every (character) in the
(string) including spaces.

130

\str_map_inline:nn
\str_map_inline:Nn
\str_map_inline:cn

New: 2017-11-14

\str_map_tokens:nn 5
\str_map_tokens:Nn 5
\str_map_tokens:cn 5¥¢

New: 2021-05-05

\str_map_variable:nNn
\str_map_variable:NNn
\str_map_variable:cNn

New: 2017-11-14

\str_map_break: w

New: 2017-10-08

\str_map_inline:nn {(token list)} {(inline functiomn)}
\str_map_inline:Nn (str var) {(inline function)}

Converts the (token list) to a (string) then applies the (inline function) to every
(character) in the (str var) including spaces. The (inline function) should consist of
code which receives the (character) as #1.

\str_map_tokens:nn {(token list)} {(code)}
\str_map_tokens:Nn (str var) {(code)}

Converts the (token list) to a (string) then applies {code) to every (character) in the
(string) including spaces. The (code) receives each character as a trailing brace group.
This is equivalent to \str_map_function:nN if the {code) consists of a single function.

\str_map_variable:nNn {(token list)} (variable) {(code)}
\str_map_variable:NNn (str var) (variable) {(code)}

Converts the (token list) to a (string) then stores each (character) in the (string) (in-
cluding spaces) in turn in the (string or token list) (variable) and applies the (code). The
{code) will usually make use of the (variable), but this is not enforced. The assignments
to the (variable) are local. Its value after the loop is the last {character) in the (string),
or its original value if the (string) is empty. See also \str_map_inline:Nn.

\str_map_break:

Used to terminate a \str_map_... function before all characters in the (string) have
been processed. This normally takes place within a conditional statement, for example

\str_map_inline:Nn \1l_my_str
{
\str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
% Do something useful

}

See also \str_map_break:n. Use outside of a \str_map_. .. scenario leads to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
continuing with the code that follows the loop. This depends on the design of the mapping
function.

131

\str_map_break:n 5¢

New: 2017-10-08

\str_use:N *
\str_use:c x

New: 2015-09-18

\str_map_break:n {({code)}

Used to terminate a \str_map_... function before all characters in the (string) have
been processed, inserting the (code) after the mapping has ended. This normally takes
place within a conditional statement, for example

\str_map_inline:Nn \1l_my_str
{
\str_if_eq:nnT { #1 } { bingo }
{ \str_map_break:n { <code> } }
% Do something useful

}
Use outside of a \str_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

16.5 Working with the content of strings

\str_use:N (str var)

Recovers the content of a (str var) and places it directly in the input stream. An error
is raised if the variable does not exist or if it is invalid. Note that it is possible to use a
(stry directly without an accessor function.

\str_count:N
\str_count:c
\str_count:n

* \str_count:n {(token list)}
*
*

\str_count_ignore_spaces:n *

New: 2015-09-18

\str_count_spaces:N *
\str_count_spaces:c *
\str_count_spaces:n *

New: 2015-09-18

Leaves in the input stream the number of characters in the string representation of (token
list), as an integer denotation. The functions differ in their treatment of spaces. In the
case of \str_count:N and \str_count:n, all characters including spaces are counted.
The \str_count_ignore_spaces:n function leaves the number of non-space characters
in the input stream.

\str_count_spaces:n {(token list)}

Leaves in the input stream the number of space characters in the string representation of
(token list), as an integer denotation. Of course, this function has no _ignore_spaces
variant.

132

\str_head:N
\str_head:c
\str_head:n

* \str_head:n {(token list)}
*
*

\str_head_ignore_spaces:n x

New: 2015-09-18

Converts the (token list) into a (string). The first character in the (string) is then left in
the input stream, with category code “other”. The functions differ if the first character is a
space: \str_head:N and \str_head:n return a space token with category code 10 (blank
space), while the \str_head_ignore_spaces:n function ignores this space character and
leaves the first non-space character in the input stream. If the (string) is empty (or only
contains spaces in the case of the _ignore_spaces function), then nothing is left on the
input stream.

\str_tail:N
\str_tail:c
\str_tail:n

* \str_tail:n {(token list)}
*
*

\str_tail_ignore_spaces:n *

New: 2015-09-18

Converts the (token list) to a (string), removes the first character, and leaves the remain-
ing characters (if any) in the input stream, with category codes 12 and 10 (for spaces).
The functions differ in the case where the first character is a space: \str_tail:N and
\str_tail:n only trim that space, while \str_tail_ignore_spaces:n removes the first
non-space character and any space before it. If the (token list) is empty (or blank in the
case of the _ignore_spaces variant), then nothing is left on the input stream.

\str_item:Nn
\str_item:nn

* \str_item:nn {(token list)} {(integer expression)}
*

\str_item_ignore_spaces:nn x

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the character
in position (integer expression) of the (string), starting at 1 for the first (left-most)
character. In the case of \str_item:Nn and \str_item:nn, all characters including
spaces are taken into account. The \str_item_ignore_spaces:nn function skips spaces
when counting characters. If the (integer expression) is negative, characters are counted
from the end of the (string). Hence, —1 is the right-most character, etc.

133

\str_range:Nnn
\str_range:cnn
\str_range:nnn

* \str_range:nnn {(token list)} {(start index)} {(end index)}
*
*

\str_range_ignore_spaces:nnn x

New: 2015-09-18

Converts the (token list) to a (string), and leaves in the input stream the characters
from the (start indez) to the (end indez) inclusive. Spaces are preserved and counted as
items (contrast this with \t1_range:nnn where spaces are not counted as items and are
possibly discarded from the output).

Here (start indezr) and (end index) should be integer denotations. For describing in
detail the functions’ behavior, let m and n be the start and end index respectively. If
either is 0, the result is empty. A positive index means ‘start counting from the left end’,
a negative index means ‘start counting from the right end’. Let [be the count of the
token list.

The actual start point is determined as M = mif m > 0andas M =1+ m +1
if m < 0. Similarly the actual end point is N =nifn >0and N =1+n+1ifn <O0.
If M > N, the result is empty. Otherwise it consists of all items from position M to
position N inclusive; for the purpose of this rule, we can imagine that the token list
extends at infinity on either side, with void items at positions s for s < 0 or s > [. For
instance,

\iow_term:e { \str_range:nnn { abcdef } { 2} {5 } }

\iow_term:e { \str_range:nnn { abcdef } { -4 } { -1 } }
\iow_term:e { \str_range:nnn { abcdef } { -2} { -1 %} }
\iow_term:e { \str_range:nnn { abcdef } { 0 } { -1} }

prints bcde, cdef, ef, and an empty line to the terminal. The (start index) must always
be smaller than or equal to the (end index): if this is not the case then no output is
generated. Thus

\iow_term:e { \str_range:nnn { abcdef } { 5} {2} }
\iow_term:e { \str_range:nnn { abcdef } { -1 } { -4 } }

both yield empty strings.
The behavior of \str_range_ignore_spaces:nnn is similar, but spaces are removed
before starting the job. The input

\iow_term:e { \str_range:nnn { abcdefg } { 2} {5} }

\iow_term:e { \str_range:nnn { abcdefg } { 2} { -3 } }

\iow_term:e { \str_range:nnn { abcdefg } { -6 >} { 5 } }

\iow_term:e { \str_range:nnn { abcdefg } { -6 > { -3 } }

\iow_term:e { \str_range:nnn { abc~efg } {2} {51} }

\iow_term:e { \str_range:nnn { abc~efg } {2} { -3} }

\iow_term:e { \str_range:nnn { abc~efg } { -6 } { 5 } }

\iow_term:e { \str_range:nnn { abc~efg } { -6 > { -3 } 1}

\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { -3 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { 5 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { -3 } }

134

\str_replace_once:Nnn
\str_replace_once:cnn
\str_greplace_once:Nnn
\str_greplace_once:cnn

New: 2017-10-08

\str_replace_all:Nnn
\str_replace_all:cnn
\str_greplace_all:Nnn
\str_greplace_all:cnn

New: 2017-10-08

\str_remove_once:Nn
\str_remove_once:cn
\str_gremove_once:Nn
\str_gremove_once:cn

New: 2017-10-08

\str_remove_all:Nn
\str_remove_all:cn
\str_gremove_all:Nn
\str_gremove_all:cn

New: 2017-10-08

\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { 5 } }

\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { 2} { -3 } }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { 5} }
\iow_term:e { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { -3 } }

will print four instances of bcde, four instances of bc e and eight instances of bcde.

16.6 Modifying string variables

\str_replace_once:Nnn (str var) {(old)} {(new)}

Converts the (old) and (new) token lists to strings, then replaces the first (leftmost)
occurrence of (old string) in the (str var) with (new string).

\str_replace_all:Nnn (str var) {(old)} {(new)}

Converts the (old) and (new) token lists to strings, then replaces all occurrences of (old
string) in the (str var) with (new string). As this function operates from left to right,
the pattern (old string) may remain after the replacement (see \str_remove_all:Nn for
an example).

\str_remove_once:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes the first (leftmost) occurrence of
(string) from the (str var).

\str_remove_all:Nn (str var) {(token list)}

Converts the (token list) to a (string) then removes all occurrences of (string) from the
(str var). As this function operates from left to right, the pattern (string) may remain
after the removal, for instance,

\str_set:Nn \1_tmpa_str {abbccd} \str_remove_all:Nn \1_tmpa_str
{bc}

results in \1_tmpa_str containing abcd.

135

16.7 String manipulation

\str_lowercase:n x \str_lowercase:n {(tokens)}
\str_lowercase:f x \str_uppercase:n {(tokens)}
\str_uppercase:n *
. f

Converts the input (tokens) to their string representation, as described for \tl_to_-
\str_uppercase

str:n, and then to the lower or upper case representation using a one-to-one mapping
New: 2019-11-26 ag described by the Unicode Consortium file UnicodeData.txt.

These functions are intended for case changing programmatic data in places where
upper/lower case distinctions are meaningful. One example would be automatically gen-
erating a function name from user input where some case changing is needed. In this
situation the input is programmatic, not textual, case does have meaning and a language-
independent one-to-one mapping is appropriate. For example

\cs_new_protected:Npn \myfunc:nn #1#2

{
\cs_set_protected:cpn
{
user
\str_uppercase:f { \tl_head:n {#1} }
\str_lowercase:f { \tl_tail:n {#1} }
}
{#2 }
}

would be used to generate a function with an auto-generated name consisting of the
upper case equivalent of the supplied name followed by the lower case equivalent of the
rest of the input.

These functions should not be used for

o Caseless comparisons: use \str_casefold:n for this situation (case folding is dis-
tinct from lower casing).

e Case changing text for typesetting: see the \text_lowercase:n(n), \text_-
uppercase:n(n) and \text_titlecase:n(n) functions which correctly deal with
context-dependence and other factors appropriate to text case changing.

136

\str_casefold:n x
\str_casefold:V x

New: 2022-10-16

\str_mdfive_hash:n *
\str_mdfive_hash:e *

New: 2023-05-19

\str_show:N
\str_show:c
\str_show:n

New: 2015-09-18
Updated: 2021-04-29

\str_log:N
\str_log:c
\str_log:n

New: 2019-02-15
Updated: 2021-04-29

\str_casefold:n {(tokens)}

Converts the input (tokens) to their string representation, as described for \t1_to_str:n,
and then folds the case of the resulting (string) to remove case information. The result
of this process is left in the input stream.

String folding is a process used for material such as identifiers rather than for “text”.
The folding provided by \str_casefold:n follows the mappings provided by the Unicode
Consortium, who state:

Case folding is primarily used for caseless comparison of text, such as iden-
tifiers in a computer program, rather than actual text transformation. Case
folding in Unicode is based on the lowercase mapping, but includes additional
changes to the source text to help make it language-insensitive and consistent.
As a result, case-folded text should be used solely for internal processing and
generally should not be stored or displayed to the end user.

The folding approach implemented by \str_casefold:n follows the “full” scheme defined
by the Unicode Consortium (e.g. SSfolds to SS). As case-folding is a language-insensitive
process, there is no special treatment of Turkic input (é.e. I always folds to i and not to

1).

\str_mdfive_hash:n {(t1)}

Expands to the MD5 sum generated from the (¢l), which is converted to a (string) as
described for \t1_to_str:n.

16.8 Viewing strings

\str_show:N (str var)

Displays the content of the (str var) on the terminal.

\str_log:N (str var)
Writes the content of the (str var) in the log file.

137

http://www.unicode.org
http://www.unicode.org
http://www.unicode.org/faq/casemap_charprop.html#2

16.9 Constant strings

\c_ampersand_str Constant strings, containing a single character token, with category code 12.
\c_atsign_str
\c_backslash_str
\c_left_brace_str
\c_right_brace_str
\c_circumflex_str
\c_colon_str
\c_dollar_str
\c_hash_str
\c_percent_str
\c_tilde_str
\c_underscore_str
\c_zero_str

New: 2015-09-19
Updated: 2020-12-22

16.10 Scratch strings

\1_tmpa_str Scratch strings for local assignment. These are never used by the kernel code, and so
\1_tmpb_str are safe for use with any I¥TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

\g_tmpa_str Scratch strings for global assighment. These are never used by the kernel code, and so
\g_tmpb_str are safe for use with any IWTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

16.11 Deprecated functions

\str_foldcase:n x \str_foldcase:n {(tokens)}

\str_foldcase:V * A previous name for the functionally-identical \str_casefold:n.

New: 2019-11-26

138

Chapter 17

The I3str-convert package:
String encoding conversions

17.1 Encoding and escaping schemes

Traditionally, string encodings only specify how strings of characters should be stored as
bytes. However, the resulting lists of bytes are often to be used in contexts where only a
restricted subset of bytes are permitted (e.g., PDF string objects, URLs). Hence, storing
a string of characters is done in two steps.

o The code points (“character codes”) are expressed as bytes following a given “en-
coding”. This can be UTF-16, 1SO 8859-1, etc. See Table 1 for a list of supported
encodings.”

o Bytes are translated to TEX tokens through a given “escaping”. Those are defined
for the most part by the pdf file format. See Table 2 for a list of escaping methods
supported.”

"Encodings and escapings will be added as they are requested.

139

Table 1: Supported encodings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the encoding in this list.

(Encoding) description
utf8 UTF-8
utf16 UTF-16, with byte-order mark
utf16be UTF-16, big-endian
utfi6le UTF-16, little-endian
utf32 UTF-32, with byte-order mark
utf32be UTF-32, big-endian
utf32le UTF-32, little-endian
is088591, latinl ISO 8859-1
is088592, latin? ISO 8859-2
15088593, latin3 ISO 8859-3
is088594, latind ISO 8859-4
15088595 IS0 8859-5
15088596 ISO 8859-6
15088597 ISO 8859-7
15088598 ISO 8859-8
15088599, latinb ISO 8859-9
150885910, 1latin6 ISO 8859-10
is0885911 1SO 8859-11
180885913, latin7 ISO 8859-13
is0885914, latin8 ISO 8859-14
150885915, latin9 1SO 8859-15
150885916, latinl0 1SO 8859-16
clist commar-list of integers
(empty) native (Unicode) string
default like ut£8 with 8-bit engines, and like native with unicode-engines

Table 2: Supported escapings. Non-alphanumeric characters are ignored, and capital
letters are lower-cased before searching for the escaping in this list.

(FEscaping) description
bytes, or empty arbitrary bytes
hex, hexadecimal byte = two hexadecimal digits
name see \pdfescapename
string see \pdfescapestring
url encoding used in URLs

140

\str_set_convert:Nnnn
\str_gset_convert:Nnnn

\str_set_convert:NnnnTF
\str_gset_convert:NnnnTF

\str_convert_pdfname:n *

17.2 Conversion functions

\str_set_convert:Nnnn (str var) {(string)} {(name 1)} {(name 2)}

This function converts the (string) from the encoding given by (name 1) to the encoding
given by (name 2), and stores the result in the (str var). Each (name) can have the
form (encoding) or {encoding)/{escaping), where the possible values of (encoding) and
(escaping) are given in Tables 1 and 2, respectively. The default escaping is to input and
output bytes directly. The special case of an empty (name) indicates the use of “native”
strings, 8-bit for pdfTEX, and Unicode strings for the other two engines.

For example,

\str_set_convert:Nnnn \1_foo_str { Hello! } { } { utfi6/hex }

results in the variable \1_foo_str holding the string FEFF00480065006C006C006F0021.
This is obtained by converting each character in the (native) string Hello! to the UTF-16
encoding, and expressing each byte as a pair of hexadecimal digits. Note the presence of
a (big-endian) byte order mark "FEFF, which can be avoided by specifying the encoding
utf16be/hex.

An error is raised if the (string) is not valid according to the (escaping 1) and
(encoding 1), or if it cannot be reencoded in the (encoding 2) and (escaping 2) (for
instance, if a character does not exist in the (encoding 2)). Erroneous input is replaced
by the Unicode replacement character "FFFD, and characters which cannot be reencoded
are replaced by either the replacement character "FFFD if it exists in the (encoding 2),
or an encoding-specific replacement character, or the question mark character.

\str_set_convert:NnnnTF (str var) {(string)} {(name 1)} {(name 2)} {(true code)}
{(false code)}

As \str_set_convert:Nnnn, converts the (string) from the encoding given by (name 1)
to the encoding given by (name 2), and assigns the result to (str var). Contrarily to
\str_set_convert:Nnnn, the conditional variant does not raise errors in case the (string)
is not valid according to the (name 1) encoding, or cannot be expressed in the (name 2)
encoding. Instead, the (false code) is performed.

17.3 Conversion by expansion (for PDF contexts)

A small number of expandable functions are provided for use in PDF string/name con-
texts. These assume UTF-8 and no escaping in the input.

\str_convert_pdfname:n (string)

As \str_set_convert:Nnnn, converts the (string) on a byte-by-byte basis with non-
ASCII codepoints escaped using hashes.

17.4 Possibilities, and things to do

Encoding/escaping-related tasks.

141

In XHTEX/LuaTEX, would it be better to use the ~~~~.... approach to build
a string from a given list of character codes? Namely, within a group, assign
0-9a-f and all characters we want to category “other”, then assign ~ the category
superscript, and use \scantokens.

Change \str_set_convert:Nnnn to expand its last two arguments.

Describe the internal format in the code comments. Refuse code points in
["D800, "DFFF] in the internal representation?

Add documentation about each encoding and escaping method, and add examples.
The hex unescaping should raise an error for odd-token count strings.

Decide what bytes should be escaped in the url escaping. Perhaps the characters
17 ()*-./0123456789_ are safe, and all other characters should be escaped?

Automate generation of 8-bit mapping files.

Change the framework for 8-bit encodings: for decoding from 8-bit to Unicode, use
256 integer registers; for encoding, use a tree-box.

More encodings (see Heiko’s stringenc). CESU?

More escapings: ASCII85, shell escapes, lua escapes, etc.?

142

Chapter 18

The 13quark package
Quarks

Two special types of constants in I TEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \q_, and scan marks start with \s_.

18.1 Quarks

Quarks are control sequences (and in fact, token lists) that expand to themselves and
should therefore never be executed directly in the code. This would result in an endless
loop!

They are meant to be used as delimiter in weird functions, the most common use
case being the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981}
one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \q_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \g_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get :NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\g_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \t1_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster.

143

18.2 Defining quarks

\quark_new:N \quark_new:N (quark)

Creates a new (quark) which expands only to (quark). The (quark) is defined globally,
and an error message is raised if the name was already taken.

\q_stop Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

\g_mark Used as a marker for delimited arguments when \q_stop is already in use.

\q_nil Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself need to be tested (in contrast to \q_stop, which is only ever used
as a delimiter).

\g_no_value A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get:NnN if there is no
data to return.

18.3 Quark tests

The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The latter should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N * \quark_if_nil_p:N (token)
\quark_if_nil:NTF * \quark_if_nil:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_nil.

\quark_if_nil_p:n {(token list)}
\quark_if_nil:nTF {(token list)} {(true code)} {(false code)}

\quark_if_nil_p:n
\quark_if nil_p:(o]|V)
\quark_if_nil:nTF

\quark_if mil: (o[V)IF Tests if the (token list) contains only \q_nil (distinct from (token list) being empty or

containing \g_nil plus one or more other tokens).

\quark_if_no_value_p:N (token)
\quark_if_no_value:NTF (token) {(true code)} {(false code)}

\quark_if_no_value_p:N *
\quark_if_no_value_p:c *
\quark_if_no_value:NTF *

*

T if th i 1 lue.
\quazk_if_no_value:c ests if the (token) is equal to \q_no_value

\quark_if_no_value_p:n * \quark_if_no_value_p:n {(token list)}
\quark_if_no_value:nTF * \quark_if_no_value:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_no_value (distinct from (token list) being empty
or containing \q_no_value plus one or more other tokens).

144

18.4 Recursion

This module provides a uniform interface to intercepting and terminating loops as when
one is doing tail recursion. The building blocks follow below and an example is shown in
Section 18.4.1.

\q_recursion_tail This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

\q_recursion_stop This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N x \quark_if_recursion_tail_stop:N (token)

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop:n x \quark_if_recursion_tail_stop:n {(token list)}
\quark_if_recursion_tail_stop:o *

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so uses \use_-
none_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs
to. The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items.

\quark_if_recursion_tail_stop_do:Nn * \quark_if_recursion_tail_stop_do:Nn (token) {(insertion)}

Tests if (token) contains only the marker \q_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \q_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

\quark_if_recursion_tail_stop_do:nn * \quark_if_recursion_tail_stop_do:nn {(token list)} {(insertiom)}
\quark_if_recursion_tail_stop_do:on =*

Updated: 2011-09-06

Tests if the (token list) contains only \g_recursion_tail, and if so uses \use_-
i_delimit_by_q_recursion_stop:w to terminate the recursion that this belongs to.
The recursion input must include the marker tokens \q_recursion_tail and \g_-
recursion_stop as the last two items. The (insertion) code is then added to the input
stream after the recursion has ended.

145

\quark_if_recursion_tail_break:NN % \quark_if_recursion_tail_break:nN {(token list)}
\quark_if_recursion_tail_break:nN x \(type)_map_break:

New: 2018-04-10

Tests if (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion using \(type)_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \(type)_map_break:.

18.4.1 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]1~} would produce “[-a-b-] [-c-d-] 7. Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

Here’s the definition of \my_map_dbl:nn. First of all, define the function that does
the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \gq_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.

\cs_new:Npn \my_map_dbl:nn #1#2

{
\cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}
__my_map_dbl:nn #1 \q_recursion_tail \g_recursion_tail
\g_recursion_stop

}

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.

\cs_new:Nn __my_map_dbl:nn

{
\quark_if_recursion_tail_stop:n {#1}
\quark_if_recursion_tail_stop:n {#2}
__my_map_dbl_fn:nn {#1} {#2}

Finally, recurse:

__my_map_dbl:nn
}

Note that contrarily to I¥TEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map would overwrite the definition of __my_map_dbl_fn:nn.

146

18.5 Scan marks

Scan marks are control sequences set equal to \scan_stop:, hence never expand in an
expansion context and are (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see I3regex).

\scan_new:N \scan_new:N (scan mark)

New: 2018-04-01 Creates a new (scan mark) which is set equal to \scan_stop:. The (scan mark) is defined
globally, and an error message is raised if the name was already taken by another scan
mark.

\s_stop Used at the end of a set of instructions, as a marker that can be jumped to using \use_-
New: 2018-04-01 none_delimit_by_s_stop:w.

\use_none_delimit_by_s_stop:w x \use_none_delimit_by_s_stop:w (tokens) \s_stop

New: 2018-04-01

Removes the (tokens) and \s_stop from the input stream. This leads to a low-level TEX
error if \s_stop is absent.

147

\seq_new:N

\seq_new:c

\seq_clear:N

\seq_clear:c
\seq_gclear:N

\seq_gclear:c

\seq_clear_new:N
\seq_clear_new:c
\seq_gclear_new:N
\seq_gclear_new:c

\seq_set_eq:NN
\seq_set_eq:(cN|Nc|cc)
\seq_gset_eq:NN
\seq_gset_eq:(cN|Nc|cc)

Chapter 19

The 13seq package
Sequences and stacks

IXTEX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any (balanced text). It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in IXTEX3. This is achieved
using a number of dedicated stack functions.

19.1 Creating and initialising sequences

\seq_new:N (seq var)

Creates a new (seq var) or raises an error if the name is already taken. The declaration
is global. The (seq var) initially contains no items.

\seq_clear:N (seq var)

Clears all items from the (seq var).

\seq_clear_new:N (seq var)

Ensures that the (seq var) exists globally by applying \seq_new:N if necessary, then
applies \seq_(g)clear:N to leave the (seq var) empty.

\seq_set_eq:NN (seq vari) (seq varsz)

Sets the content of (seq var;) equal to that of (seq vars).

148

\seq_set_from_clist:NN \seq_set_from_clist:NN (seq var) (comma-list)

\seq_set_from_clist:

(cN|N¢|ec)

\seq_set_from_clist:Nn
\seq_set_from_clist:cn

\seq_gset_from_clist
\seq_gset_from_clist
\seq_gset_from_clist
\seq_gset_from_clist

:NN
: (cN|Nc|cc)
:Nn
:cn

New: 2014-07-17

\seq_const_from_clist:Nn
\seq_const_from_clist:cn

New: 2017-11-28

Converts the data in the (comma list) into a (seq var): the original (comma list) is
unchanged.

\seq_const_from_clist:Nn (seq var) {(comma-list)}

Creates a new constant (seq var) or raises an error if the name is already taken. The
(seq var) is set globally to contain the items in the (comma list).

\seq_set_split:Nnn

\seq_set_split:Nnn (seq var) {(delimiter)} {(token list)}

\seq_set_split:(NVn|NnV|NVV|Nne|Nee)

\seq_gset_split:Nnn

\seq_gset_split:(NVn|NnV|NVV|Nne|Nee)

New: 2011-08-15
Updated: 2012-07-02

Splits the (token list) into (items) separated by (delimiter), and assigns the result to the
(seq var). Spaces on both sides of each (item) are ignored, then one set of outer braces is
removed (if any); this space trimming behaviour is identical to that of [3clist functions.
Empty (items) are preserved by \seq_set_split:Nnn, and can be removed afterwards
using \seq_remove_all:Nn (seq var) {}. The (delimiter) may not contain {, } or #
(assuming TEX’s normal category code régime). If the (delimiter) is empty, the (token
list) is split into (items) as a (token list). See also \seq_set_split_keep_spaces:Nnn,
which omits space stripping.

\seq_set_split_keep_spaces:Nnn \seq_set_split_keep_spaces:Nnn (seq var) {(delimiter)} {(token list)}
\seq_set_split_keep_spaces:NnV
\seq_gset_split_keep_spaces:Nnn

\seq_gset_split_keep

_spaces:NnV

New: 2021-03-24

Splits the (token list) into (items) separated by (delimiter), and assigns the result to
the (seq var). One set of outer braces is removed (if any) but any surrounding spaces
are retained: any braces inside one or more spaces are therefore kept. Empty (items)
are preserved by \seq_set_split_keep_spaces:Nnn, and can be removed afterwards
using \seq_remove_all:Nn (seq var) {}. The (delimiter) may not contain {, } or #
(assuming TEX’s normal category code régime). If the (delimiter) is empty, the (token
list) is split into (items) as a (token list). See also \seq_set_split:Nnn, which removes
spaces around the delimiters.

149

\seq_concat :NNN
\seq_concat:ccc
\seq_gconcat :NNN
\seq_gconcat:ccc

\seq_if_exist_p:N
\seq_if_exist_p:c
\seq_if_exist:NTF

*
*
*
\seq_if_exist:c *

New: 2012-03-03

\seq_concat:NNN (seq vari) (seq vars) (seq vars)

Concatenates the content of (seq vary) and (seq vars) together and saves the result in
(seq vary). The items in (seq vary) are placed at the left side of the new sequence.

\seq_if_exist_p:N (seq var)
\seq_if_exist:NTF (seq var) {(true code)} {(false code)}

Tests whether the (seq var) is currently defined. This does not check that the (seq var)
really is a sequence variable.

19.2 Appending data to sequences

\seq_put_left:Nn

\seq_put_left:Nn (seq var) {(item)}

\seq_put_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

\seq_gput_left:Nn

\seq_gput_left:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

Appends the (item) to the left of the (seq var).

\seq_put_right:Nn

\seq_put_right:Nn (seq var) {(item)}

\seq_put_right:(NV|Nv|Ne|No|cn|cV|cv|ce|co)

\seq_gput_right:Nn

\seq_gput_right : (NV|Nv|Ne|No|cn|cV|cv|ce|co)

\seq_get_left:NN
\seq_get_left:cN

Updated: 2012-05-14

\seq_get_right:NN
\seq_get_right:cN

Updated: 2012-05-19

Appends the (item) to the right of the (seq var).

19.3 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementa-
tion reasons, the actions at the left of the sequence are faster than those acting on the
right. These functions all assign the recovered material locally, i.e. setting the (token list
variable) used with \t1l_set:Nn and never \tl_gset:Nn.

\seq_get_left:NN (seq var) (token list variable)

Stores the left-most item from a (seq var) in the (token list variable) without removing
it from the (seq var). The (token list variable) is assigned locally. If (seq var) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_get_right:NN (seq var) (token list variable)

Stores the right-most item from a (seq var) in the (token list variable) without removing
it from the (seq var). The (token list variable) is assigned locally. If (seq var) is empty
the (token list variable) is set to the special marker \q_no_value.

150

\seq_pop_left:NN
\seq_pop_left:cN

Updated: 2012-05-14

\seq_gpop_left:NN
\seq_gpop_left:cN

Updated: 2012-05-14

\seq_pop_right:NN
\seq_pop_right:cN

Updated: 2012-05-19

\seq_gpop_right:NN
\seq_gpop_right:cN

Updated: 2012-05-19

\seq_item:Nn *
\seq_item: (NV|Ne|cn|cV|ce) *

New: 2014-07-17

\seq_rand_item:N =%
\seq_rand_item:c *

New: 2016-12-06

\seq_pop_left:NN (seq var) (token list variable)

Pops the left-most item from a (seq var) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables
are assigned locally. If (seq var) is empty the (token list variable) is set to the special
marker \g_no_value.

\seq_gpop_left:NN (seq var) (token list variable)

Pops the left-most item from a (seq var) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). The (seq var) is modified
globally, while the assignment of the (token list variable) is local. If (seq var) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_pop_right:NN (seq var) (token list variable)

Pops the right-most item from a (seq var) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables
are assigned locally. If (seq var) is empty the (token list variable) is set to the special
marker \q_no_value.

\seq_gpop_right:NN (seq var) (token list variable)

Pops the right-most item from a (seq var) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). The (seq var) is modified
globally, while the assignment of the (token list variable) is local. If (seq var) is empty
the (token list variable) is set to the special marker \q_no_value.

\seq_item:Nn (seq var) {(integer expression)}

Indexing items in the (seq var) from 1 at the top (left), this function evaluates the (integer
expression) and leaves the appropriate item from the sequence in the input stream. If the
(integer expression) is negative, indexing occurs from the bottom (right) of the sequence.
If the (integer expression) is larger than the number of items in the (seq var) (as calculated
by \seq_count:N) then the function expands to nothing.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

\seq_rand_item:N (seq var)
Selects a pseudo-random item of the (seq var). If the (seq var) is empty the result is
empty. This is not available in older versions of XHTEX.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) does not expand further when appearing in an x-type or e-type
argument expansion.

151

\seq_get_left:NNTF
\seq_get_left:cN

New: 2012-05-14
Updated: 2012-05-19

\seq_get_right :NNTF
\seq_get_right:cN

New: 2012-05-19

\seq_pop_left:NNTF
\seq_pop_left:cN

New: 2012-05-14
Updated: 2012-05-19

\seq_gpop_left:NNTF
\seq_gpop_left:cN

New: 2012-05-14
Updated: 2012-05-19

\seq_pop_right :NNTF
\seq_pop_right:cN

New: 2012-05-19

19.4 Recovering values from sequences with branch-
ing

The functions in this section combine tests for non-empty sequences with recovery of an
item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

\seq_get_left:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, stores the left-most item from the (seq var) in the (token list
variable) without removing it from the (seq var), then leaves the (true code) in the input
stream. The (token list variable) is assigned locally.

\seq_get_right:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, stores the right-most item from the (seq var) in the (token list
variable) without removing it from the (seq var), then leaves the (true code) in the input
stream. The (token list variable) is assigned locally.

\seq_pop_left:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, pops the left-most item from the (seq var) in the (token list
variable), i.e. removes the item from the (seq var), then leaves the (true code) in the
input stream. Both the (seq var) and the (token list variable) are assigned locally.

\seq_gpop_left:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (seq wvar) is non-empty, pops the left-most item from the (seq var) in the (token
list variable), i.e. removes the item from the (seq var), then leaves the (true code) in
the input stream. The (seq var) is modified globally, while the (token list variable) is
assigned locally.

\seq_pop_right:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, pops the right-most item from the (seq var) in the (token list
variable), i.e. removes the item from the (seq var), then leaves the (true code) in the
input stream. Both the (seq var) and the (token list variable) are assigned locally.

152

\seq_gpop_right :NNTF
\seq_gpop_right:cN

New: 2012-05-19

\seq_remove_duplicates:N
\seq_remove_duplicates:c
\seq_gremove_duplicates:N
\seq_gremove_duplicates:c

\seq_gpop_right:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (seq var) is non-empty, pops the right-most item from the (seq var) in the (token
list variable), i.e. removes the item from the (seq var), then leaves the (true code) in
the input stream. The (seq var) is modified globally, while the (token list variable) is
assigned locally.

19.5 Modifying sequences

While sequences are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

\seq_remove_duplicates:N (seq var)
Removes duplicate items from the (seq var), leaving the left most copy of each item in the

(seq var). The (item) comparison takes place on a token basis, as for \t1_if_eq:nnTF.

TEXhackers note: This function iterates through every item in the (seq var) and does a
comparison with the (items) already checked. It is therefore relatively slow with large sequences.

\seq_remove_all:Nn

\seq_remove_all:Nn (seq var) {(item)}

\seq_remove_all:(NV|Ne|cn|cV|ce)

\seq_gremove_all:Nn

\seq_gremove_all:(NV|Ne|cn|cV|ce)

\seq_set_item:Nnn
\seq_set_item:cnn
\seq_set_item:NnnTF
\seq_set_item:cnn
\seq_gset_item:Nnn
\seq_gset_item:cnn
\seq_gset_item:NnnTF
\seq_gset_item:cnn

New: 2021-04-29

\seq_reverse:N
\seq_reverse:c
\seq_greverse:N
\seq_greverse:c

New: 2014-07-18

Removes every occurrence of (item) from the (seq var). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nnTF.

\seq_set_item:Nnn (seq var) {(int expr)} {(item)}

\seq_set_item:NnnTF (seq var) {(int expr)} {(item)} {(true code)} {(false code)}
Removes the item of (seq var) at the position given by evaluating the (int expr) and
replaces it by (item). Items are indexed from 1 on the left/top of the (seq var), or from
—1 on the right /bottom. If the (int expr) is zero or is larger (in absolute value) than the
number of items in the sequence, the (seq var) is not modified. In these cases, \seq_-
set_item:Nnn raises an error while \seq_set_item:NnnTF runs the (false code). In cases
where the assignment was successful, (true code) is run afterwards.

\seq_reverse:N (seq var)

Reverses the order of the items stored in the (seq var).

153

\seq_sort:Nn
\seq_sort:cn
\seq_gsort:Nn
\seq_gsort:cn

New: 2017-02-06

\seq_shuffle:N
\seq_shuffle:c
\seq_gshuffle:N
\seq_gshuffle:c

New: 2018-04-29

\seq_if_empty_p:N
\seq_if_empty_p:c
\seq_if_empty:NTF
\seq_if_empty:c

b S S o

\seq_sort:Nn (seq var) {{comparison code)}

Sorts the items in the (seq var) according to the (comparison code), and assigns the result
to (seq var). The details of sorting comparison are described in Section 6.1.

\seq_shuffle:N (seq var)
Sets the (seq var) to the result of placing the items of the (seq var) in a random order.
Each item is (roughly) as likely to end up in any given position.

TEXhackers note: For sequences with more than 13 items or so, only a small proportion
of all possible permutations can be reached, because the random seed \sys_rand_seed: only
has 28-bits. The use of \toks internally means that sequences with more than 32767 or 65535
items (depending on the engine) cannot be shuffled.

19.6 Sequence conditionals

\seq_if_empty_p:N (seq var)
\seq_if_empty:NTF (seq var) {(true code)} {(false code)}

Tests if the (seq var) is empty (containing no items).

\seq_if_in:NnTF

\seq_if_in:NnTF (seq var) {(item)} {(true code)} {(false code)}

\seq_if_in:(NV|Nv|Ne|No|cn|cV|cv|ce|co)TF

\seq_map_function:NN
\seq_map_function:cN w

Updated: 2012-06-29

\seq_map_inline:Nn
\seq_map_inline:cn

Updated: 2012-06-29

Tests if the (item) is present in the (seq var).

19.7 Mapping over sequences

All mappings are done at the current group level, 7.e. any local assignments made by the
(function) or (code) discussed below remain in effect after the loop.

\seq_map_function:NN (seq var) (function)

Applies (function) to every (item) stored in the (seq var). The (function) will receive
one argument for each iteration. The (items) are returned from left to right. To pass
further arguments to the (function), see \seq_map_tokens:Nn. The function \seq_map_-
inline:Nn is faster than \seq_map_function:NN for sequences with more than about 10
items.

\seq_map_inline:Nn (seq var) {(inline function)}

Applies (inline function) to every (item) stored within the (seq var). The (inline function)
should consist of code which will receive the (item) as #1. The (items) are returned from
left to right.

154

\seq_map_tokens:Nn % \seq_map_tokens:Nn (seq var) {(code)}

\seq_map_tokens:cn ¥ Analogue of \seq_map_function:NN which maps several tokens instead of a single func-

New: 2019-08-30 tion. The (code) receives each item in the (seq war) as a trailing brace group. For
instance,

\seq_map_tokens:Nn \1_my_seq { \prg_replicate:nn { 2 } }

expands to twice each item in the (seq var): for each item in \1_my_seq the function
\prg_replicate:nn receives 2 and (item) as its two arguments. The function \seq_-
map_inline:Nn is typically faster but it is not expandable.

\seq_map_variable:NNn \seq_map_variable:NNn (seq var) (variable) {(code)}
\seq_map_variable:(Ncn|cNn|ccn)

Updated: 2012-06-29

Stores each (item) of the (seq var) in turn in the (token list) (variable) and applies the
(code). The (code) will usually make use of the (variable), but this is not enforced. The
assignments to the (variable) are local. Its value after the loop is the last (item) in the
(seq wvar), or its original value if the (seq var) is empty. The (items) are returned from
left to right.

\seq_map_indexed_function:NN * \seq_map_indexed_function:NN (seq var) (function)

New: 2018-05-03

Applies (function) to every entry in the (sequence variable). The {function) should have
signature :nn. It receives two arguments for each iteration: the (indez) (namely 1 for
the first entry, then 2 and so on) and the (item).

\seq_map_indexed_inline:Nn \seq_map_indexed_inline:Nn (seq var) {(inline function)}

New: 2018-05-03 Applies (inline function) to every entry in the (sequence variable). The (inline function)
should consist of code which receives the (index) (namely 1 for the first entry, then 2 and
so on) as #1 and the (item) as #2.

\seq_map_pairwise_function:NNN ¥¢ \seq_map_pairwise_function:NNN (seqi) (seqs) (function)
\seq_map_pairwise_function:(NcN|cNN|ccN)

New: 2023-05-10

Applies (function) to every pair of items (seq; -item)—(sego-item) from the two sequences,
returning items from both sequences from left to right. The (function) receives two n-type
arguments for each iteration. The mapping terminates when the end of either sequence is
reached (7.e. whichever sequence has fewer items determines how many iterations occur).

155

\seq_map_break: w

Updated: 2012-06-29

\seq_map_break:n w

Updated: 2012-06-29

\seq_set_map:NNn
\seq_gset_map:NNn

New: 2011-12-22
Updated: 2020-07-16

\seq_map_break:

Used to terminate a \seq_map_. .. function before all entries in the (seq var) have been
processed. This normally takes place within a conditional statement, for example

\seq_map_inline:Nn \1l_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break: }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
further items are taken from the input stream. This depends on the design of the mapping
function.

\seq_map_break:n {{code)}

Used to terminate a \seq_map_. .. function before all entries in the (seq var) have been
processed, inserting the (code) after the mapping has ended. This normally takes place
within a conditional statement, for example

\seq_map_inline:Nn \1_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break:n { <code> } }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario leads to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted before
the (code) is inserted into the input stream. This depends on the design of the mapping function.

\seq_set_map:NNn (seq var:) (seq varz) {(inline function)}

Applies (inline function) to every (item) stored within the (seq wvars). The (inline
function) should consist of code which will receive the (item) as #1. The sequence result-
ing applying (inline function) to each (item) is assigned to (seq vary).

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

156

\seq_set_map_x:NNn
\seq_gset_map_x:NNn

\seq_set_map_x:NNn (seq vari) (seq varz) {(inline function)}

Applies (inline function) to every (item) stored within the (seq wvars). The (inline

New: 2020-07-16 fynction) should consist of code which will receive the (item) as #1. The sequence result-

\seq_count:N *
\seq_count:c *

New: 2012-07-13

\seq_use:Nnnn *
\seq_use:cnnn *

New: 2013-05-26

ing from x-expanding (inline function) applied to each (item) is assigned to (seq vary).
As such, the code in (inline function) should be expandable.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and would lead to low-level TEX errors.

\seq_count:N (seq var)

Leaves the number of items in the (seq var) in the input stream as an (integer denotation).
The total number of items in a (seq var) includes those which are empty and duplicates,
i.e. every item in a (seq var) is unique.

19.8 Using the content of sequences directly

\seq_use:Nnnn (seq var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the (seq var) in the input stream, with the appropriate (separator)
between the items. Namely, if the sequence has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which
the (separator between final two) is used. If the sequence has exactly two items, then they
are placed in the input stream separated by the (separator between two). If the sequence
has a single item, it is placed in the input stream, and an empty sequence produces no
output. An error is raised if the variable does not exist or if it is invalid.
For example,

\seq_set_split:Nnn \1_tmpa_seq { | > {a |l b | c | {de} | £}
\seq_use:Nnnn \1_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

inserts “a, b, ¢, de, and f” in the input stream. The first separator argument is not
used in this case because the sequence has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type or e-type
argument expansion.

157

\seq_use:Nn *
\seq_use:cn *

New: 2013-05-26

\seq_get:NN
\seq_get:cN

Updated: 2012-05-14

\seq_pop:NN

\seq_pop:cN

Updated: 2012-05-14

\seq_gpop: NN

\seq_gpop:cN

Updated: 2012-05-14

\seq_get :NNTF
\seq_get:cN

New: 2012-05-14

Updated: 2012-05-19

\seq_use:Nn (seq var) {(separator)}

Places the contents of the (seq var) in the input stream, with the (separator) between
the items. If the sequence has a single item, it is placed in the input stream with no
(separator), and an empty sequence produces no output. An error is raised if the variable
does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \1l_tmpa_seq { | } {a | b | c | {de} | £}
\seq_use:Nn \1_tmpa_seq { ~and~ }

inserts “a and b and ¢ and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) do not expand further when appearing in an x-type or e-type
argument expansion.

19.9 Sequences as stacks

Sequences can be used as stacks, where data is pushed to and popped from the top of
the sequence. (The left of a sequence is the top, for performance reasons.) The stack
functions for sequences are not intended to be mixed with the general ordered data
functions detailed in the previous section: a sequence should either be used as an ordered
data type or as a stack, but not in both ways.

\seq_get:NN (seq var) (token list variable)

Reads the top item from a (seq var) into the (token list variable) without removing it
from the (seq var). The (token list variable) is assigned locally. If (seq var) is empty the
(token list variable) is set to the special marker \q_no_value.

\seq_pop:NN (seq var) (token list variable)

Pops the top item from a (seq var) into the (token list variable). Both of the variables
are assigned locally. If (seq var) is empty the (token list variable) is set to the special
marker \q_no_value.

\seq_gpop:NN (seq var) (token list variable)

Pops the top item from a (seq var) into the (token list variable). The (seq var) is modified
globally, while the (token list variable) is assigned locally. If (seq var) is empty the (token
list variable) is set to the special marker \q_no_value.

\seq_get:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, stores the top item from a (seq var) in the (token list variable)
without removing it from the (seq var). The (token list variable) is assigned locally.

158

\seq_pop:NNTF

\seq_pop:cN

New: 2012-05-14

Updated: 2012-05-19

\seq_gpop:NNTF
\seq_gpop:cN

New: 2012-05-14

Updated: 2012-05-19

\seq_pop:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, pops the top item from the (seq var) in the (token list variable),
i.e. removes the item from the (seq var). Both the {seq var) and the (token list variable)
are assigned locally.

\seq_gpop:NNTF (seq var) (token list variable) {(true code)} {(false code)}

If the (seq var) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(seq var) is non-empty, pops the top item from the (seq var) in the (token list variable),
i.e. removes the item from the (seq var). The (seq var) is modified globally, while the
(token list variable) is assigned locally.

\seq_push:Nn

\seq_push:Nn (seq var) {(item)}

\seq_push: (NV|Nv|Ne|No|cn|cV|cv|ce|co)

\seq_gpush:Nn

\seq_gpush: (NV|Nv|Ne|No|cn|cV|cv|ce|co)

Adds the {(item)} to the top of the (seq var).

19.10 Sequences as sets

Sequences can also be used as sets, such that all of their items are distinct. Usage of
sequences as sets is not currently widespread, hence no specific set function is provided.
Instead, it is explained here how common set operations can be performed by combining
several functions described in earlier sections. When using sequences to implement sets,
one should be careful not to rely on the order of items in the sequence representing the
set.

Sets should not contain several occurrences of a given item. To make sure that a
(sequence variable) only has distinct items, use \seq_remove_duplicates:N (sequence
variable). This function is relatively slow, and to avoid performance issues one should
only use it when necessary.

Some operations on a set (seq var) are straightforward. For instance, \seq_count:N
(seq var) expands to the number of items, while \seq_if_in:NnTF (seq var) {(item)}
tests if the (item) is in the set.

Adding an (item) to a set (seq var) can be done by appending it to the (seq var) if
it is not already in the (seq var):

\seq_if_in:NnF (seq var) {(item)}
{ \seq_put_right:Nn (seq var) {(item)} }

Removing an (item) from a set (seq var) can be done using \seq_remove_all:Nn,
\seq_remove_all:Nn (seq var) {(item)}

The intersection of two sets (seq var;) and (seq vary) can be stored into (seq vars)
by collecting items of (seq var;) which are in (seq vars).

159

\seq_clear:N (seq vars)
\seq_map_inline:Nn (seq vari)
{
\seq_if_in:NnT (seq vary) {#1}
{ \seq_put_right:Nn (seq vars) {#1} }
}

The code as written here only works if (seq vars) is different from the other two se-
quence variables. To cover all cases, items should first be collected in a sequence
\1__(pkg)_internal_seq, then (seq vars) should be set equal to this internal sequence.
The same remark applies to other set functions.

The union of two sets (seq var;) and (seq vars) can be stored into (seq vars) through

\seq_concat:NNN (seq vars) (seq vari) (seq vars)
\seq_remove_duplicates:N (seq vars)

or by adding items to (a copy of) (seq var;) one by one

\seq_set_eq:NN (seq vars) (seq vari)
\seq_map_inline:Nn (seq vars)
{
\seq_if_in:NnF (seq vars) {#1}
{ \seq_put_right:Nn (seq vars) {#1} }
}

The second approach is faster than the first when the (seq vary) is short compared to
(seq vary).

The difference of two sets (seq vary) and (seq vary) can be stored into (seq vars) by
removing items of the (seq vare) from (a copy of) the (seq vary) one by one.

\seq_set_eq:NN (seq vars) (seq vary)
\seq_map_inline:Nn (seq vars)
{ \seq_remove_all:Nn (seq vars) {#1} }

The symmetric difference of two sets (seq var;) and (seq vars) can be stored into
(seq vars) by computing the difference between (seq vari) and (seq vars) and storing the
result as \1__(pkg)_internal_seq, then the difference between (seq vary) and (seq vary),
and finally concatenating the two differences to get the symmetric differences.

\seq_set_eq:NN \1__(pkg)_internal_seq (seq varp)
\seq_map_inline:Nn (seq vars)

{ \seq_remove_all:Nn \1__(pkg)_internal_seq {#1} }
\seq_set_eq:NN (seq vars) (seq vars)
\seq_map_inline:Nn (seq varj)

{ \seq_remove_all:Nn (seq vars) {#1} }
\seq_concat:NNN (seq vars) (seq vars) \1__(pkg)_internal_seq

19.11 Constant and scratch sequences

\c_empty_seq Constant that is always empty.

New: 2012-07-02

160

\1_tmpa_seq
\1_tmpb_seq

New: 2012-04-26

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

\seq_show:N
\seq_show:c

Updated: 2021-04-29

\seq_log:N
\seq_log:c

New: 2014-08-12

Updated: 2021-04-29

Scratch sequences for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch sequences for global assignment. These are never used by the kernel code, and
so are safe for use with any I4TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

19.12 Viewing sequences

\seq_show:N (seq var)

Displays the entries in the (seq var) in the terminal.

\seq_log:N (seq var)
Writes the entries in the (seq var) in the log file.

161

Chapter 20

The 13int package
Integers

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators
+, =, / and * and parentheses can be used within such expressions to carry arithmetic
operations. This module carries out these functions on integer expressions (“(int expr)”).

20.1 Integer expressions

Throughout this module, (almost) all n-type argument allow for an (intezpr) argument
with the following syntax. The (integer expression) should consist, after expansion, of +,
-, *,/, (,) and of course integer operands. The result is calculated by applying standard
mathematical rules with the following peculiarities:

e / denotes division rounded to the closest integer with ties rounded away from zero;

e there is an error and the overall expression evaluates to zero whenever the absolute
value of any intermediate result exceeds 23! — 1, except in the case of scaling oper-
ations axb/c, for which a*b may be arbitrarily large (but the operands a, b, ¢ are
still constrained to an absolute value at most 23! — 1);

o parentheses may not appear after unary + or -, namely placing +(or -(at the
start of an expression or after +, —, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \int_use:N) or
an integer denotation. For example both

\int_show:n { 5+ 4 %3 - (3+4x*x5) }
and

\tl_new:N \l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \l_my_int

\int_set:Nn \1_my_int { 4 }

\int_show:n { \1_my_tl + \l_my_int * 3 - (3 +4 %5) }

162

show the same result —6 because \1_my_t1 expands to the integer denotation 5 while the
integer variable \1_my_int takes the value 4. As the (integer expression) is fully expanded
from left to right during evaluation, fully expandable and restricted-expandable functions
can both be used, and \exp_not:n and its variants have no effect while \exp_not :N may
incorrectly interrupt the expression.

TEXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an (internal integer), and therefore should be terminated by a space if used in
\int_value:w or in a TEX-style integer assignment.

As all TEX integers, integer operands can also be: \value{(BTgX 2% counter)}; dimension
or skip variables, converted to integers in sp; the character code of some character given as
“(char) or ‘\(char); octal numbers given as ’ followed by digits from 0 to 7; or hexadecimal
numbers given as " followed by digits and upper case letters from A to F.

163

\int_eval:n *

\int_eval:w *

New: 2018-03-30

\int_eval:n {(int expr)}

Evaluates the (int expr) and leaves the result in the input stream as an integer denotation:
for positive results an explicit sequence of decimal digits not starting with 0, for negative
results - followed by such a sequence, and 0 for zero. The (int expr) should consist, after
expansion, of +, - %,/ (,) and of course integer operands. The result is calculated by
applying standard mathematical rules with the following peculiarities:

e / denotes division rounded to the closest integer with ties rounded away from zero;

e there is an error and the overall expression evaluates to zero whenever the ab-
solute value of any intermediate result exceeds 23! — 1, except in the case of scaling
operations axb/c, for which a*b may be arbitrarily large;

o parentheses may not appear after unary + or -, namely placing +(or -(at the
start of an expression or after +, -, *, / or (leads to an error.

Each integer operand can be either an integer variable (with no need for \int_use:N) or
an integer denotation. For example both

\int_eval:n { 56+ 43 - (3 +4%*5)}
and

\tl_new:N \1l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \l_my_int

\int_set:Nn \1_my_int { 4 }

\int_eval:n { \1_my_tl + \l_my_int * 3 - (3 +4 %5) }

evaluate to —6 because \1_my_t1 expands to the integer denotation 5. As the (int expr)
is fully expanded from left to right during evaluation, fully expandable and restricted-
expandable functions can both be used, and \exp_not:n and its variants have no effect
while \exp_not:N may incorrectly interrupt the expression.

TgXhackers note: Exactly two expansions are needed to evaluate \int_eval:n. The
result is not an (internal integer), and therefore requires suitable termination if used in a TEX-
style integer assignment.

As all TEX integers, integer operands can also be dimension or skip variables, converted to
integers in sp, or octal numbers given as ’ followed by digits other than 8 and 9, or hexadecimal
numbers given as " followed by digits or upper case letters from A to F, or the character code of
some character or one-character control sequence, given as ‘(char).

\int_eval:w (int expr)

Evaluates the (int expr) as described for \int_eval:n. The end of the expression is
the first token encountered that cannot form part of such an expression. If that token
is \scan_stop: it is removed, otherwise not. Spaces do not terminate the expression.
However, spaces terminate explict integers, and this may terminate the expression: for
instance, \int_eval:w 1,+,1,9 (with explicit space tokens inserted using ~ in a code
setting) expands to 29 since the digit 9 is not part of the expression. Expansion details,
etc., are as given for \int_eval:n.

164

\int_sign:n *

New: 2018-11-03

\int_abs:n *

Updated: 2012-09-26

\int_div_round:nn *

Updated: 2012-09-26

\int_div_truncate:nn *

Updated: 2012-02-09

\int_max:nn *
\int_min:nn *

Updated: 2012-09-26

\int_mod:nn %

Updated: 2012-09-26

\int_new:N
\int_new:c

\int_const:Nn
\int_const:cn

Updated: 2011-10-22

\int_sign:n {(int expr)}

Evaluates the (int expr) then leaves 1 or 0 or —1 in the input stream according to the
sign of the result.

\int_abs:n {(int expr)}

Evaluates the (int expr) as described for \int_eval:n and leaves the absolute value of
the result in the input stream as an (integer denotation) after two expansions.

\int_div_round:nn {(int expri)} {(int expr:)}

Evaluates the two (int expr)s as described earlier, then divides the first value by the
second, and rounds the result to the closest integer. Ties are rounded away from zero.
Note that this is identical to using / directly in an (int expr). The result is left in the
input stream as an (integer denotation) after two expansions.

\int_div_truncate:nn {(int expri)} {(int expr:)}

Evaluates the two (int expr)s as described earlier, then divides the first value by the
second, and rounds the result towards zero. Note that division using / rounds to the
closest integer instead. The result is left in the input stream as an (integer denotation)
after two expansions.

\int_max:nn {(int expri)} {(int expr:)}
\int_min:nn {(int expri)} {(int exprs)}

Evaluates the (int expr)s as described for \int_eval:n and leaves either the larger or
smaller value in the input stream as an (integer denotation) after two expansions.

\int_mod:nn {(int expri)} {(int exprs)}

Evaluates the two (int expr)s as described earlier, then calculates the integer remainder
of dividing the first expression by the second. This is obtained by subtracting \int_-
div_truncate:nn {(int expr)} {(int exprz)} times (int exprs) from (int expry). Thus,
the result has the same sign as (int expry) and its absolute value is strictly less than that
of (int expry). The result is left in the input stream as an (integer denotation) after two
expansions.

20.2 Creating and initialising integers

\int_new:N (integer)

Creates a new (integer) or raises an error if the name is already taken. The declaration
is global. The (integer) is initially equal to 0.

\int_const:Nn (integer) {(int expr)}

Creates a new constant (integer) or raises an error if the name is already taken. The
value of the (integer) is set globally to the (int expr).

165

\int_zero:N
\int_zero:c
\int_gzero:N
\int_gzero:c

\int_zero_new:N
\int_zero_new:c
\int_gzero_new:N
\int_gzero_new:c

New: 2011-12-13

\int_set_eq:NN
\int_set_eq:(cN|Nc|cc)
\int_gset_eq:NN
\int_gset_eq:(cN|Nc|cc)

\int_if_exist_p:N «
\int_if_exist_p:c %
\int_if_exist:NTF x
\int_if_exist:c *

New: 2012-03-03

\int_add:Nn
\int_add:cn
\int_gadd:Nn
\int_gadd:cn

Updated: 2011-10-22

\int_decr:N
\int_decr:c
\int_gdecr:N
\int_gdecr:c

\int_incr:N
\int_incr:c
\int_gincr:N
\int_gincr:c

\int_set:Nn
\int_set:cn
\int_gset:Nn
\int_gset:cn

Updated: 2011-10-22

\int_zero:N (integer)

Sets (integer) to 0.

\int_zero_new:N (integer)

Ensures that the (integer) exists globally by applying \int_new:N if necessary, then
applies \int_(g)zero:N to leave the (integer) set to zero.

\int_set_eq:NN (integer;) (integers)

Sets the content of (integer;) equal to that of (integers).

\int_if_exist_p:N (int)
\int_if_exist:NTF (int) {(true code)} {(false code)}

Tests whether the (int) is currently defined. This does not check that the (int) really is
an integer variable.

20.3 Setting and incrementing integers
\int_add:Nn (integer) {(int expr)}

Adds the result of the (int expr) to the current content of the (integer).

\int_decr:N (integer)

Decreases the value stored in (integer) by 1.

\int_incr:N (integer)

Increases the value stored in (integer) by 1.

\int_set:Nn (integer) {(int expr)}

Sets (integer) to the value of (int expr), which must evaluate to an integer (as described
for \int_eval:n).

166

\int_sub:Nn \int_sub:Nn (integer) {(int expr)}
\int_sub:cn
\int_gsub:Nn
\int_gsub:cn

Subtracts the result of the (int expr) from the current content of the (integer).

Updated: 2011-10-22
20.4 Using integers

\int_use:N % \int_use:N (integer)

\mt‘us—e:c* Recovers the content of an (integer) and places it directly in the input stream. An error

Updated: 2011-10-22 ig raised if the variable does not exist or if it is invalid. Can be omitted in places where an
(integer) is required (such as in the first and third arguments of \int_compare :nNnTF).

TgXhackers note: \int_use:N is the TEX primitive \the: this is one of several ITEX3
names for this primitive.

20.5 Integer expression conditionals

\int_compare_p:nNn x \int_compare_p:nNn {(int expri)} (relation) {(int expra)}
\int_compare:nNnTF % \int_compare:nNnTF

{{int expri)} (relation) {(int exprs)}

{(true code)} {(false code)}

This function first evaluates each of the (int expr)s as described for \int_eval:n. The
two results are then compared using the (relation):

Equal
Greater than
Less than

ANV

This function is less flexible than \int_compare:nTF but around 5 times faster.

167

\int_compare_p:n *
\int_compare:nTF *

Updated: 2013-01-13

\int_compare_p:n
{

(int expri) (relation;)

(int exprn) (relationn)
(int exprn41)
}
\int_compare:nTF
{

int expri relation;
P.

(int exprn) (relationy)
(int exprn+1)

}

{(true code)} {(false code)}

This function evaluates the (int expr)s as described for \int_eval:n and compares con-
secutive result using the corresponding (relation), namely it compares (int expr;) and
(int expre) using the (relationy), then (int exprs) and (int exprs) using the (relations),
until finally comparing (int expry) and (int expryi1) using the (relationy). The test
yields true if all comparisons are true. Each (int expr) is evaluated only once, and the
evaluation is lazy, in the sense that if one comparison is false, then no other (integer
expression) is evaluated and no other comparison is performed. The (relations) can be
any of the following:

Equal =or ==
Greater than or equal to >=
Greater than >

Less than or equal to <=
Less than <

Not equal 1=

This function is more flexible than \int_compare :nNnTF but around 5 times slower.

168

\int_case:nn *

\int_case:nnTF x

New: 2013-07-24

\int_if_even_p:n
\int_if_even:nTF
\int_if_odd_p:n
\int_if_odd:nTF

X % X ot

\int_if_zero_p:n *
\int_if_zero:nTF x

New: 2023-05-17

\int_do_until:nNnn 3%

\int_case:nnTF {(test int expr)}
{
{(int expr case;)} {{code casei)}
{(int expr case:)} {(code cases)}

{(int expr case,)} {{code case,)}

}

{(true code)}

{(false code)}
This function evaluates the (test int expr) and compares this in turn to each of the (int
expr cases). If the two are equal then the associated (code) is left in the input stream and
other cases are discarded. If any of the cases are matched, the (true code) is also inserted
into the input stream (after the code for the appropriate case), while if none match then
the (false code) is inserted. The function \int_case:nn, which does nothing if there is
no match, is also available. For example

\int_case:nnF

{25}
{
{5} { Small }
{4+63} { Medium }
{ -2 * 10 } { Negative }
}
{ No idea! }

leaves “Medium” in the input stream.

\int_if_odd_p:n {(int expr)}
\int_if_odd:nTF {(int expr)}
{(true code)} {(false code)}
This function first evaluates the (int expr) as described for \int_eval:n. It then evalu-
ates if this is odd or even, as appropriate.

\int_if_zero_p:n {(int expr)}
\int_if_zero:nTF {(int expr)}
{(true code)} {(false code)}

This function first evaluates the (int ezpr) as described for \int_eval:n. It then evalu-
ates if this is zero or not.

20.6 Integer expression loops

\int_do_until:nNnn {(int expri)} (relation) {(int exprz)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (int expr)s as described for \int_compare:nNnTF. If the test
is false then the (code) is inserted into the input stream again and a loop occurs until
the (relation) is true.

169

\int_do_while:nNnn 3

\int_until_do:nNnn 3%

\int_while_do:nNnn 3

\int_do_until:nn

Updated: 2013-01-13

\int_do_while:nn 3

Updated: 2013-01-13

\int_until_do:nn %

Updated: 2013-01-13

\int_while_do:nn w

Updated: 2013-01-13

\int_do_while:nNnn {(int expri)} (relation) {(int exprz)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (int ezpr)s as described for \int_compare:nNnTF. If the test
is true then the (code) is inserted into the input stream again and a loop occurs until
the (relation) is false.

\int_until_do:nNnn {(int expri)} (relation) {(int exprz)} {(code)}

Evaluates the relationship between the two (int expr)s as described for \int_compare :nNnTF,
and then places the (code) in the input stream if the (relation) is false. After the (code)
has been processed by TEX the test is repeated, and a loop occurs until the test is true.

\int_while_do:nNnn {(int expri)} (relation) {(int exprz)} {(code)}

Evaluates the relationship between the two (int expr)s as described for \int_compare :nNnTF,
and then places the (code) in the input stream if the (relation) is true. After the (code)
has been processed by TEX the test is repeated, and a loop occurs until the test is false.

\int_do_until:nn {({integer relation)} {(code)}

Places the {code) in the input stream for TEX to process, and then evaluates the ({integer
relation) as described for \int_compare:nTF. If the test is false then the (code) is
inserted into the input stream again and a loop occurs until the (relation) is true.

\int_do_while:nn {(integer relation)} {{code)}

Places the (code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is true then the (code) is
inserted into the input stream again and a loop occurs until the (relation) is false.

\int_until_do:nn {({integer relation)} {(code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is false. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is true.

\int_while_do:nn {(integer relation)} {{code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test is repeated, and a loop occurs until the test is false.

170

\int_step_function:nN X e
\int_step_function:nnN 5%
\int_step_function:nnnN 5¢

New: 2012-06-04
Updated: 2018-04-22

\int_step_inline:nn
\int_step_inline:nnn
\int_step_inline:nnnn

New: 2012-06-04
Updated: 2018-04-22

\int_step_variable:nNn
\int_step_variable:nnNn
\int_step_variable:nnnNn

New: 2012-06-04
Updated: 2018-04-22

20.7 Integer step functions

\int_step_function:nN {(final value)} (function)
\int_step_function:nnN {(initial value)} {(final value)} (function)
\int_step_function:nnnN {(initial value)} {(step)} {(final value)} (function)

This function first evaluates the (initial value), (step) and (final value), all of which should
be integer expressions. The (function) is then placed in front of each (value) from the
(initial value) to the (final value) in turn (using (step) between each (value)). The (step)
must be non-zero. If the (step) is positive, the loop stops when the (value) becomes larger
than the (final value). I