OpenPGP.SDK

“PGP is not just for email”

Ben Laurie and Rachel Willmer
Nominet Ltd
EuroOSCON 2005

Overview

m The OpenPGP:SDK

m What PGP does

m History

m Current state of play
m PGP not just tor email

m Other applications
m The OpenPGP:SDK

OpenPGP:SDK

m New open source library for
OpenPGP

m Developed from scratch
m Apache/BSD licence
m C

m Portable
m BSD/Linux/Solaris known to work

m http://openpgp.nominet.org.uk

What PGP does

m “OpenPGP software uses a combination of strong public-
key and symmetric cryptography to provide security
services for electronic communications and data storage”.
[Source: RFC 2440]

= Provides:
= Confidentiality via Encryption
= Authentication via Digital Signatures
s Key Management

s Common Usages:
= Public-key Email Encryption and Signing
= Secure Disk storage
= Software Signing

History

=2 93 =1 PGP 5.0i
PGP "Munitions Export" PGP goes '
created investigation commercial

591 PGP timeline 00 01 B
96 97 NA stops PZ
PGP Inc NA acquires Source code leaves 02
formed PGP Inc distribution NAI PGP Corp
Commercial PGP timeline
1991 2005
01
o7 NAI puts 05
PGP Inc PGP Submit _
proposes 08 up for sale (015 RFC2440bis
OpenPGP std REC 2440 OpenPGP as Proposed
to IETF SDK Standard

OpenPGP timeline
1991 2006

PGP not just for email

m Main use is email
m Secondary use is secure disk storage
m Software signing

Other Applications

m Authorisation for use of automated
services

m X.509 Client certification using PGP

m Notarisation
m Medical research
m Copyright

Example: Automated Authenticated Services

s Network Solutions use PGP tor
authentication of DNS changes

s Also Nominet (who have funded the
OpenPGP:SDK) and RIPE

s Apache Software Foundation trialling
PGP in their new CA project

DNS

m Network Solutions, Nominet

s Simple system:
= Domain owner registers key

= Domain changes sent by PGP-signed
email

m Registrar checks request is signed by
registered key

Apache CA

m A signs “B owns
project Q"

subproject ot

project Q"

O m B signs “User X
has access to
project P”

O
O 35

Validation steps

To check that user X has subversion access to project P:

Validate that A is ASF board member
= Build keyring, check signature

Validate that A has signed B’s right to control project Q
m Build keyring, check signature

Validate that B has signed project P as subproject of project Q
= Build keyring, check signature

Validate that B has signed user X as member of project P
= Build keyring, check signature

8 invocations of command line tool for 1 user
validation

SDK gives you the ability to do fine-grain operations within a
single process

Example: X.509/PGP certificates for
online authentication

s What’'s wrong with X.509 certificates?
» Hierachical structure
» Command line tool complicated
= Long-winded process to get certificate

s What's right with X.509 certiticates?

m [.everage existing browser/server
infrastructure

m Solution: combine X.509 with PGP web of
trust

X.509 /PGP — how it would work

Server wants access control with Public Key cryptography
Setup:
s User sends PGP key to server for signing

= Utility to create X.509 client cert with PGP public key
embedded (New)

= (X.509 cert can be self-signed, signature is irrelevant)
s User installs X.509 cert in browser
Usage:
s Browser provides cert to server
s Server ignores X.509 signature and checks PGP key
= [s PGP key valid and signed by server?
= If yes, access granted
Benetfit of this approach:
= Usability: Uses existing browser/server auth mechanism
= Uses PGP “web of trust”
= X.509 certificate merely conduit for PGP key exchange

Example: Notarisation

m “Real World” example: copyright
protection

m Online equivalent: can do today with
existing tools with manual process

s Automated online process would
benefit from library

m Applications: copyright, medical
research

m Blind Notarisation

The OpenPGP:SDK

m A low-level C API for OpenPGP

m Based around C structures for each
OpenPGP data structure

s Can parse OpenPGP packets to produce
structures...

m ...0r, use structures to construct packets

The Parser

= You provide:

= A Reader: A function that will read data (e.g. from a file,
a socket or some memory)

= A Callback: which consumes parsed packets

s We provide:

= Some standard readers (e.g. from file desciptor, from
memory)

= Stackable readers (e.g. read armoured data or
compressed packets)

= A basic parser
s Stackable parsers (e.g. accumulate a keyring)

The Reader

s Trivial interface — given a buffer and a
length, reads as much as it can

= Is not expected to...
= Buffer
= Seek
= Skip data

s Can stack on top of another reader

The Callback

m Called for each parsed packet

= Handed the structure corresponding to the
packet

m Also called for errors

m Indefinite length packets are chunked (e.g.
signed cleartext)

m Callbacks can be stacked (e.g. chunked

packets could be consolidated in a stacked
callback)

Support Library

s Low-level functions
= Hashes
= Encryption
» Signatures
s Compression
= Big Number operations
= Mostly provided by OpenSSL, but pluggable

Support Library

s High-level tunctions (using OpenPGP:SDK
data structures)

s Check OpenPGP signature
x On key, subkey, data, cleartext...

s Generate OpenPGP signature
= Decrypt encrypted packets

= Generate encrypted packets
= Etc...

Packet Construction

m (At least) one API per packet type

s Completely freedom to construct all valid
packets in any order

m Packets are constructed from C data
structures

m Packets are constructed in memory — then
you do what you want with them

» We may provide higher-level APIs to
construct standard sequences of packets

Example — Read a Keyring

nmenset (&keyring,'\0', sizeof keyring),;
Ops_parse_options_init(&opt);

arg. f d=open(keyfil e, O RDONLY) ;
1f(arg.fd < 0)
[/ Error handling...
opt . reader _ar g=&ar g;
opt . reader =ops_reader fd;

ops_parse_and_accunul at e(&eyri ng, &opt) ;

cl ose(arg.fd);

Example — Verify Cleartext Sig I

case OPS PTAG CT_SI GNED CLEARTEXT HEADER:
free(si gned data);
Si gned_dat a=NULL,;
| engt h=0;
br eak;

case OPS PTAG CT_SI GNED CLEARTEXT BCDY:
si gned_dat a=real | oc(si gned_dat a,
| engt h+cont ent - >si gned_cl eart ext body. | engt h);

nencpy(si gned_dat a+l engt h,

cont ent - >si gned_cl eart ext body. dat a,

cont ent - >si gned_cl eart ext body. | engt h) ;
| engt h+=cont ent - >si gned_cl eart ext body. | engt h;
br eak;

case OPS PTAG CT_SI GNED CLEARTEXT TRAI LER:
Si gned_hash=cont ent - >si gned_cl eartext trail er. hash;
return OPS KEEP MEMORY,

Example — Verifty Cleartext Sig 11

case OPS PTAG CT_SI GNATURE
si gner =ops_keyri ng_find_key by id(&eyring,
cont ent - >si gnature. signer_id);
I f(!signer)
{
fprintf(stderr,"SI GNER UNKNOM '\ n");
exit(2);
}

| f (ops_check_hash_si gnat ur e(si gned_hash, &ont ent - >si gnat ur e,
ops_get public_key from data(signer)))
{

puts(" Good signature...\n");
f put s(si gned_dat a, st dout) ;
free(signed_data);
| engt h=0;
}
el se
{
fprintf(stderr,"BAD SI GNATURE! I I'\ n");
exit(1);
}

br eak;

Example — Write Self-Signed Key

ops wite struct public _key(&skey. public _key, &pt);

ops_fast create user id(& d,user _id);
ops wite struct user i1d(& d, &pt);

ops_signature_start (&si g, &key. public_key, & d,
OPS CERT_PGCSI Tl VE) ;
ops_signature_add creation_tine(&sig,tine(NULL));

ops_keyi d(keyi d, &key. publ i c_key) ;
ops_signature_add i ssuer _key id(&sig, keyid);

ops_signature_add primary user id(&sig,ops true),;
ops_si gnat ur e_hashed_subpacket s _end(&si g) ;

ops wWite signature(&sig, &key. public_key, &key, &opt) ;

The OpenPGP:SDK

