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OpenPGP:SDK

m New open source library for
OpenPGP

m Developed from scratch
m Apache/BSD licence
m C

m Portable
m BSD/Linux/Solaris known to work

m http://openpgp.nominet.org.uk




What PGP does

m “OpenPGP software uses a combination of strong public-
key and symmetric cryptography to provide security
services for electronic communications and data storage”.
[Source: RFC 2440]

= Provides:
= Confidentiality via Encryption
= Authentication via Digital Signatures
s Key Management

s Common Usages:
= Public-key Email Encryption and Signing
= Secure Disk storage
= Software Signing
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PGP not just for email

m Main use is email
m Secondary use is secure disk storage
m Software signing




Other Applications

m Authorisation for use of automated
services

m X.509 Client certification using PGP

m Notarisation
m Medical research
m Copyright




Example: Automated Authenticated Services

s Network Solutions use PGP tor
authentication of DNS changes

s Also Nominet (who have funded the
OpenPGP:SDK) and RIPE

s Apache Software Foundation trialling
PGP in their new CA project




DNS

m Network Solutions, Nominet

s Simple system:
= Domain owner registers key

= Domain changes sent by PGP-signed
email

m Registrar checks request is signed by
registered key




Apache CA

m A signs “B owns
project Q"

subproject ot

project Q"

O m B signs “User X
has access to
project P”

O
O 35




Validation steps

To check that user X has subversion access to project P:

Validate that A is ASF board member
= Build keyring, check signature

Validate that A has signed B’s right to control project Q
m Build keyring, check signature

Validate that B has signed project P as subproject of project Q
= Build keyring, check signature

Validate that B has signed user X as member of project P
= Build keyring, check signature

8 invocations of command line tool for 1 user
validation

SDK gives you the ability to do fine-grain operations within a
single process




Example: X.509/PGP certificates for
online authentication

s What’'s wrong with X.509 certificates?
» Hierachical structure
» Command line tool complicated
= Long-winded process to get certificate

s What's right with X.509 certiticates?

m [.everage existing browser/server
infrastructure

m Solution: combine X.509 with PGP web of
trust




X.509 /PGP — how it would work

Server wants access control with Public Key cryptography
Setup:
s User sends PGP key to server for signing

= Utility to create X.509 client cert with PGP public key
embedded (New)

= (X.509 cert can be self-signed, signature is irrelevant)
s User installs X.509 cert in browser
Usage:
s Browser provides cert to server
s Server ignores X.509 signature and checks PGP key
= [s PGP key valid and signed by server?
= If yes, access granted
Benetfit of this approach:
= Usability: Uses existing browser/server auth mechanism
= Uses PGP “web of trust”
= X.509 certificate merely conduit for PGP key exchange




Example: Notarisation

m “Real World” example: copyright
protection

m Online equivalent: can do today with
existing tools with manual process

s Automated online process would
benefit from library

m Applications: copyright, medical
research

m Blind Notarisation




The OpenPGP:SDK

m A low-level C API for OpenPGP

m Based around C structures for each
OpenPGP data structure

s Can parse OpenPGP packets to produce
structures...

m ...0r, use structures to construct packets




The Parser

= You provide:

= A Reader: A function that will read data (e.g. from a file,
a socket or some memory)

= A Callback: which consumes parsed packets

s We provide:

= Some standard readers (e.g. from file desciptor, from
memory)

= Stackable readers (e.g. read armoured data or
compressed packets)

= A basic parser
s Stackable parsers (e.g. accumulate a keyring)




The Reader

s Trivial interface — given a buffer and a
length, reads as much as it can

= Is not expected to...
= Buffer
= Seek
= Skip data

s Can stack on top of another reader




The Callback

m Called for each parsed packet

= Handed the structure corresponding to the
packet

m Also called for errors

m Indefinite length packets are chunked (e.g.
signed cleartext)

m Callbacks can be stacked (e.g. chunked

packets could be consolidated in a stacked
callback)




Support Library

s Low-level functions
= Hashes
= Encryption
» Signatures
s Compression
= Big Number operations
= Mostly provided by OpenSSL, but pluggable




Support Library

s High-level tunctions (using OpenPGP:SDK
data structures)

s Check OpenPGP signature
x On key, subkey, data, cleartext...

s Generate OpenPGP signature
= Decrypt encrypted packets

= Generate encrypted packets
= Etc...




Packet Construction

m (At least) one API per packet type

s Completely freedom to construct all valid
packets in any order

m Packets are constructed from C data
structures

m Packets are constructed in memory — then
you do what you want with them

» We may provide higher-level APIs to
construct standard sequences of packets




Example — Read a Keyring

nmenset (&keyring,'\0', sizeof keyring),;
Ops_parse_options_init(&opt);

arg. f d=open(keyfil e, O RDONLY) ;
1f(arg.fd < 0)
[/ Error handling...
opt . reader _ar g=&ar g;
opt . reader =ops_reader fd;

ops_parse_and_accunul at e( &eyri ng, &opt ) ;

cl ose(arg.fd);




Example — Verify Cleartext Sig I

case OPS PTAG CT_SI GNED CLEARTEXT HEADER:
free(si gned data);
Si gned_dat a=NULL,;
| engt h=0;
br eak;

case OPS PTAG CT_SI GNED CLEARTEXT BCDY:
si gned_dat a=real | oc(si gned_dat a,
| engt h+cont ent - >si gned_cl eart ext body. | engt h);

nencpy(si gned_dat a+l engt h,

cont ent - >si gned_cl eart ext body. dat a,

cont ent - >si gned_cl eart ext body. | engt h) ;
| engt h+=cont ent - >si gned_cl eart ext body. | engt h;
br eak;

case OPS PTAG CT_SI GNED CLEARTEXT TRAI LER:
Si gned_hash=cont ent - >si gned_cl eartext trail er. hash;
return OPS KEEP MEMORY,




Example — Verifty Cleartext Sig 11

case OPS PTAG CT_SI GNATURE
si gner =ops_keyri ng_find_key by id(&eyring,
cont ent - >si gnature. signer_id);
I f(!signer)
{
fprintf(stderr,"SI GNER UNKNOM '\ n");
exit(2);
}

| f (ops_check_hash_si gnat ur e(si gned_hash, &ont ent - >si gnat ur e,
ops_get public_key from data(signer)))
{

puts(" Good signature...\n");
f put s(si gned_dat a, st dout ) ;
free(signed_data);
| engt h=0;
}
el se
{
fprintf(stderr,"BAD SI GNATURE! I I'\ n");
exit(1);
}

br eak;







Example — Write Self-Signed Key

ops wite struct public _key(&skey. public _key, &pt);

ops_fast create user id(& d,user _id);
ops wite struct user i1d(& d, &pt);

ops_signature_start (&si g, &key. public_key, & d,
OPS CERT_PGCSI Tl VE) ;
ops_signature_add creation_tine(&sig,tine(NULL));

ops_keyi d( keyi d, &key. publ i c_key) ;
ops_signature_add i ssuer _key id(&sig, keyid);

ops_signature_add primary user id(&sig,ops true),;
ops_si gnat ur e_hashed_subpacket s _end( &si g) ;

ops wWite signature(&sig, &key. public_key, &key, &opt ) ;




The OpenPGP:SDK




