Internet-Draft | RPKI signed object for TAL | March 2022 |
Martinez, et al. | Expires 8 September 2022 | [Page] |
A Trust Anchor Locator (TAL) is used by Relying Parties (RPs) in the Resource Public Key Infrastructure (RPKI) to locate and validate a Trust Anchor (TA) Certification Authority (CA) certificate used in RPKI validation. This document defines an RPKI signed object for a Trust Anchor Key (TAK), that can be used by a TA to signal the location(s) of the accompanying CA certificate for the current key to RPs, as well as the successor key and the location(s) of its CA certificate. This object helps to support planned key rolls without impacting RPKI validation.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 8 September 2022.¶
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
A TAL [RFC8630] is used by an RP in the RPKI to locate and validate TA CA certificates used in RPKI validation. However, until now there has been no in-band way of notifying RPs of updates to a TAL. In-band notification means that TAs can be more confident of RPs being aware of key roll operations.¶
This document defines a new RPKI signed object that can be used to document the location(s) of the TA CA certificate for the current TA key, as well as the value of the successor key and the location(s) of its TA CA certificate. This allows RPs to be notified automatically of such changes, and enables TAs to stage a successor key so that planned key rolls can be performed without risking the invalidation of the RPKI tree under the TA. We call this object the Trust Anchor Key (TAK) object.¶
When RPs are first bootstrapped, they use a TAL to discover the key and location(s) of the CA certificate for a TA. The RP can then retrieve and validate the CA certificate, and subsequently validate the manifest [RFC6486] and CRL published by that TA (section 5 of [RFC6487]). However, before processing any other objects it will first validate the TAK object, if present. If the TAK object lists only the current key, then the RP continues processing as per normal. If the TAK object includes a successor key, the RP starts an acceptance timer, and then continues processing as per normal. If, during the following validation runs up until the expiry of the acceptance timer, the RP has not observed any changes to the keys and certificate URLs listed in the TAK object, then the RP will fetch the successor key, update its local state with that key and its associated certification location(s), and continue processing using that key.¶
The primary motivation for this work is being able to migrate from a Hardware Security Module (HSM) produced by one vendor to one produced by another, where the first vendor does not support exporting keys for use by the second. There may be other scenarios in which key rollover is useful, though.¶
The TAK object makes use of the template for RPKI digitally signed objects [RFC6488], which defines a Cryptographic Message Syntax (CMS) [RFC5652] wrapper for the content as well as a generic validation procedure for RPKI signed objects. Therefore, to complete the specification of the TAK object (see Section 4 of [RFC6488]), this document defines:¶
This document requests an OID for the TAK object as follows:¶
id-ct-signed-Tal OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) id-smime ct(1) TBD }¶
This OID MUST appear both within the eContentType in the encapContentInfo object, as well as the content-type signed attribute in the signerInfo object (see [RFC6488]).¶
The content of a TAK object is ASN.1 encoded using the Distinguished Encoding Rules (DER) [X.690], and is defined per the module in Appendix A.¶
This structure defines a TA key, similarly to [RFC8630]. It contains a sequence of one or more URIs and a SubjectPublicKeyInfo.¶
This field is equivalent to the URI section defined in section 2.2 of [RFC8630]. It MUST contain at least one CertificateURI element. Each CertificateURI element contains the IA5String representation of either an rsync URI [RFC5781], or an HTTPS URI [RFC7230].¶
This field contains a SubjectPublicKeyInfo (section 4.1.2.7 of [RFC5280]) in DER format [X.690].¶
To determine whether a TAK object is valid, the RP MUST perform the following checks in addition to those specified in [RFC6488]:¶
If any of these checks does not succeed, the RP MUST ignore the TAK object, and proceed as though it were not listed on the manifest.¶
The RP is not required to compare its current set of certificateURIs for the current key with those listed in the TAK object. The RP MAY alert the user that these sets of certificateURIs do not match, with a view to the user manually updating the set of certificateURIs in their configuration. The RP MUST NOT automatically update its configuration to use these certificateURIs in the event of inconsistency, though, because migration of users to new certificateURIs should happen by way of the successor key process.¶
A TA MAY choose to use TAK objects to communicate its current, predecessor, and successor keys. If a TA chooses to use TAK objects, then it SHOULD generate and publish TAK objects under each of its keys.¶
A non-normative guideline for naming this object is that the filename chosen for the TAK object in the publication repository be a value derived from the public key part of the entity's key pair, using the algorithm described for CRLs in section 2.2 of [RFC6481] for generation of filenames. The filename extension of ".tak" MUST be used to denote the object as a TAK.¶
In order to generate a TAK object, the TA MUST perform the following actions:¶
Relying Parties MUST keep a record of the current key for each configured TA, as well as the URI(s) where the CA certificate for this key may be retrieved. This record is typically bootstrapped by the use of a pre-configured (and unsigned) TAL file [RFC8630].¶
When performing top-down validation, RPs MUST first validate and process the TAK object for its current known key, by performing the following steps:¶
If the TAK object includes a successor key, then the RP must verify the successor key by doing the following:¶
If any of these steps fails, then the successor key has failed verification.¶
If the successor key passes verification, and the RP has not seen that successor key on the previous successful validation run for this TA, then the RP:¶
If the successor key passes verification, and the RP has seen that successor key on the previous successful validation run for this TA:¶
If the successor key does not pass verification, or if the TAK object does not include a successor key, the RP cancels the existing acceptance timer for this TA (if applicable).¶
An RP MUST NOT use a successor key for top-down validation outside of the process described above, except for the purpose of testing that the new key is working correctly. This allows a TA to publish a successor key for a period of time, allowing RPs to test it, while still being able to rely on RPs using the current key for their production RPKI operations.¶
A successor key may have the same SubjectPublicKeyInfo value as the current key: this will be the case where a TA is updating the certificateURIs for that key.¶
Although an RP that can process TAK objects will only ever use one key for validation (either the current key, or the successor key, once the relevant acceptance timer has expired), an RP that cannot process TAK objects will continue to use the key details per its TAL (or equivalent manual configuration) indefinitely. As a result, even when a TA is using a TAK object in order to migrate clients to a new key, the TA may have to maintain the previous key for a period of time alongside the new key in order to ensure continuity of service for older clients.¶
For each TA key that a TA is maintaining, the signed material for these keys MUST be published under different directories in the context of the 'id-ad-caRepository' and 'id-ad-rpkiManifest' Subject Information Access descriptions contained on the CA certificates [RFC6487]. Publishing objects under the same directory is potentially confusing for RPs, and could lead to object invalidity in the event of file name collisions.¶
Also, the CA certificates for each maintained key, and the contents published by each key, MUST be equivalent (except for the TAK object). In other words, for the purposes of RPKI validation, it MUST NOT make a difference which of the keys is used as a starting point.¶
This means that the IP and AS resources contained on all current CA certificates for the maintained TA keys MUST be the same. Furthermore, for any delegation of IP and AS resources to a child, the TA MUST have an equivalent CA certificate published under each of its keys. Any updates in delegations MUST be reflected under each of its keys. A TA SHOULD NOT publish any other objects besides a CRL, a Manifest, a single TAK object, and any number of CA certificates for delegation to child CAs.¶
If a TA uses a single remote publication server for its keys, per [RFC8181], then it MUST include all <publish/> and <withdraw/> PDUs for the products of each of its keys in a single query, in order to ensure that they will reflect the same content at all times.¶
If a TA uses multiple publication servers, then it is by definition inevitable that the content of different keys will be out of sync at times. In such cases, the TA SHOULD ensure that the duration of these moments are limited to the shortest possible time. Furthermore, the following should be observed:¶
Finally, note that the publication locations of CA certificates for delegations to child CAs under each key will be different, and therefore the Authority Information Access 'id-ad-caIssuers' values (section 4.8.7 of [RFC6487]) on certificates issued by the child CAs may not be as expected when performing top-down validation, depending on the TA key that is used. However, these values are not critical to top-down validation, so RPs performing such validation MUST NOT reject a certificate simply because this value is not as expected.¶
In this section we will describe how present-day RPKI TAs that use only one key pair, and that do not use TAK objects, can use a TAK object to perform a planned key roll.¶
Before adding a successor key, a TA may want to confirm that it can maintain a TAK object for its current key only. We will refer to this key as key 'A' throughout this section.¶
The TA can now generate a new key pair for key 'B'. This key MUST now be used to create a new CA certificate for this key, and to issue equivalent CA certificates for delegations to child CAs, as described in Section 6.¶
At this point, the TA can also construct a new TAL file [RFC8630] for key 'B', and test locally that the validation outcome for the new key is equivalent to that of the other current key(s).¶
When the TA is certain that both keys are equivalent, and wants to initiate the migration from 'A' to 'B', it issues a new TAK object under key 'A', with key 'A' as the current key for that object, key 'B' as the successor key, and no predecessor key. It also issues a TAK object under key 'B', with key 'B' as the current key for that object, key 'A' as the predecessor key, and no successor key.¶
Once this has happened, RP clients will start seeing the new key and setting acceptance timers accordingly.¶
At about the time that the TA expects clients to start setting key 'B' as the current key, the TA must release a new TAL file for key 'B'. It SHOULD use a different set of URIs in the TAL compared to the TAK file, so that the TA can learn the proportion of RPs that can successfully validate and use the updated TAK objects.¶
To support RPs that do not take account of TAK objects, the TA should continue operating key 'A' for a period of time after the expected migration of clients to 'B'. The length of that period of time is a local policy matter for that TA: it might operate the key until no clients are attempting to validate using it, for example.¶
The TA SHOULD now remove all content from the repository used by key 'A', and destroy the private key for key 'A'. RPs attempting to rely on a TAL for key 'A' from this point will not be able to perform RPKI validation for the TA, and will have to update their local state manually, by way of a new TAL file.¶
Including TAK objects while RPs do not support this standard will result in those RPs rejecting these objects. It is not expected that this will result in the invalidation of any other object under a Trust Anchor.¶
The mechanism introduced here can only be relied on once a majority of RPs support it. Defining when that moment arrives is something that cannot be established at the time of writing this document. The use of unique URIs for keys in TAK objects, different from those used for the corresponding TAL files, should help TAs understand the proportion of RPs that support this mechanism.¶
Some RPs may purposefully not support this mechanism: for example, they may be implemented or configured such that they are unable to update local current key data. TAs should take this into consideration when planning key rollover. However, these RPs would ideally still notify their operators of planned key rollovers, so that the operator could update the relevant configuration manually.¶
A TA needs to consider the length of time for which it will maintain previously-current keys and their associated repositories. An RP that is seeded with old TAL data will run for 30 days using the previous key before migrating to the next key, due to the acceptance timer requirements, and this 30-day delay applies to each new key that has been issued since the old TAL data was initially published. It may be better in these instances to have the old publication URLs simply fail to resolve, so that the RP reports an error to its operator and the operator seeds it with up-to-date TAL data immediately.¶
Once a TA has decided not to maintain a previously-current key and its associated repository, it needs to consider how to protect against an adversary gaining access to that key and its associated publication points in order to send invalid/incorrect data to RPs seeded with the TAL data for that key. One possible mitigation here is to reuse the TA CA certificate URLs from that TAL data for newer keys.¶
The use of acceptance timers means that an adversary that gains access to a TA's current key is not able to migrate RPs to a new key without delay. Although access to that key does permit arbitrary action within the corresponding TA (assuming that the adversary has control over the relevant publication points), being unable to migrate RPs to a new key means that it is possible for the TA operator to regain control over the key and the TA itself, such that it may not be necessary for all RPs to carry out manual reconfiguration.¶
If an adversary gains access to the key listed as the successor to a TA's current key (i.e. listed as the successor, but the acceptance timer period has not yet elapsed since it was listed), the TA operator can recover from this by simply removing the successor key from the TAK object.¶
In general, the risk of key compromise can be mitigated by the use of Hardware Security Modules (HSMs) by TAs, which will guard against theft of a private key, as well as operational processes to guard against (accidental) misuse of the keys in an HSM by operators.¶
Alternate models of TAL update exist and can be complementary to this mechanism. For example, TAs can liaise directly with validation software developers to include updated and reissued TAL files in new code releases, and use existing code update mechanisms in the RP community to distribute the changes.¶
IANA is asked to add the following to the "RPKI Signed Objects" registry:¶
Decimal | Description | References --------+--------------------------------+--------------- TBD | Trust Anchor Key | [section 3.1]¶
IANA is asked to add an item for the Signed TAL file extension to the "RPKI Repository Name Scheme" created by [RFC6481] as follows:¶
Extension | RPKI Object | References -----------+------------------------------------------- .tak | Trust Anchor Key | [this document]¶
IANA is asked to register an object identifier for one module identifier in the "SMI Security for S/MIME Module Identifier (1.2.840.113549.1.9.16.0)" registry as follows:¶
Decimal | Description | References --------+--------------------------------+--------------- TBD | Trust Anchor Key | [section 3.1]¶
NOTE: Please remove this section and the reference to RFC 7942 prior to publication as an RFC.¶
This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC7942]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist.¶
According to RFC 7942, "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit".¶
03 - Last draft under Tim's authorship.¶
04 - First draft with George's authorship. No substantive revisions.¶
05 - First draft with Tom's authorship. No substantive revisions.¶
06 - Rob Kisteleki's critique.¶
07 - Switch to two-key model.¶
08 - Keepalive.¶
09 - Acceptance timers, predecessor keys, no long-lived CRL/MFT.¶
The authors wish to thank Martin Hoffmann for a thorough review of this document, and Russ Housley for reviewing the ASN.1 definitions and providing a new module for the TAK object.¶
This appendix includes the ASN.1 module for the TAK object.¶
<CODE BEGINS> RPKISignedTrustAnchorList-2021 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) mod(0) TBD } DEFINITIONS EXPLICIT TAGS ::= BEGIN IMPORTS CONTENT-TYPE FROM CryptographicMessageSyntax-2009 -- in [RFC5911] { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-2004-02(41) } SubjectPublicKeyInfo FROM PKIX1Explicit-2009 -- in [RFC5912] { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-explicit-02(51) } ; ct-signedTAL CONTENT-TYPE ::= { TYPE TAK IDENTIFIED BY id-ct-signedTAL } id-ct-signedTAL OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs9(9) smime(16) ct(1) TBD } CertificateURI ::= IA5String TAKey ::= SEQUENCE { certificateURIs SEQUENCE SIZE (1..MAX) OF CertificateURI, subjectPublicKeyInfo SubjectPublicKeyInfo } TAK ::= SEQUENCE { version INTEGER DEFAULT 0, current TAKey, predecessor TAKey OPTIONAL, successor TAKey OPTIONAL } END <CODE ENDS>¶