
RFC 9202
Datagram Transport Layer Security (DTLS) Profile
for Authentication and Authorization for
Constrained Environments (ACE)

Abstract
This specification defines a profile of the Authentication and Authorization for Constrained
Environments (ACE) framework that allows constrained servers to delegate client authentication
and authorization. The protocol relies on DTLS version 1.2 for communication security between
entities in a constrained network using either raw public keys or pre-shared keys. A resource-
constrained server can use this protocol to delegate management of authorization information
to a trusted host with less-severe limitations regarding processing power and memory.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9202
Standards Track
March 2022
2070-1721

S. Gerdes
Universität Bremen TZI

O. Bergmann
Universität Bremen TZI

C. Bormann
Universität Bremen TZI

G. Selander
Ericsson AB

L. Seitz
Combitech

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9202

Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Gerdes, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9202
https://www.rfc-editor.org/info/rfc9202

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Terminology

2. Protocol Overview

3. Protocol Flow

3.1. Communication between the Client and the Authorization Server

3.2. Raw Public Key Mode

3.2.1. Access Token Retrieval from the Authorization Server

3.2.2. DTLS Channel Setup between the Client and Resource Server

3.3. PreSharedKey Mode

3.3.1. Access Token Retrieval from the Authorization Server

3.3.2. DTLS Channel Setup between the Client and Resource Server

3.4. Resource Access

4. Dynamic Update of Authorization Information

5. Token Expiration

6. Secure Communication with an Authorization Server

7. Security Considerations

7.1. Reuse of Existing Sessions

7.2. Multiple Access Tokens

7.3. Out-of-Band Configuration

8. Privacy Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

Acknowledgments

Authors' Addresses

1. Introduction
This specification defines a profile of the ACE framework . In this profile, a client (C) and
a resource server (RS) use the Constrained Application Protocol (CoAP) over DTLS
version 1.2 to communicate. This specification uses DTLS 1.2 terminology, but later
versions such as DTLS 1.3 can be used instead. The client obtains an access token bound to a key
(the proof-of-possession (PoP) key) from an authorization server (AS) to prove its authorization
to access protected resources hosted by the resource server. Also, the client and the resource
server are provided by the authorization server with the necessary keying material to establish a
DTLS session. The communication between the client and authorization server may also be
secured with DTLS. This specification supports DTLS with raw public keys (RPKs) and
with pre-shared keys (PSKs) . How token introspection is performed between
the RS and AS is out of scope for this specification.

The ACE framework requires that the client and server mutually authenticate each other before
any application data is exchanged. DTLS enables mutual authentication if both the client and
server prove their ability to use certain keying material in the DTLS handshake. The authorization
server assists in this process on the server side by incorporating keying material (or information
about keying material) into the access token, which is considered a "proof-of-possession" token.

In the RPK mode, the client proves that it can use the RPK bound to the token and the server
shows that it can use a certain RPK.

The resource server needs access to the token in order to complete this exchange. For the RPK
mode, the client must upload the access token to the resource server before initiating the
handshake, as described in .

In the PSK mode, the client and server show with the DTLS handshake that they can use the keying
material that is bound to the access token. To transfer the access token from the client to the
resource server, the psk_identity parameter in the DTLS PSK handshake may be used instead of
uploading the token prior to the handshake.

As recommended in , this specification uses Concise Binary Object
Representation (CBOR) web tokens to convey claims within an access token issued by the server.
While other formats could be used as well, those are out of scope for this document.

[RFC9200]
[RFC7252]

[RFC6347]

[RFC7250]
[RFC4279] [RFC7662]

Section 5.10.1 of the ACE framework [RFC9200]

Section 5.8 of [RFC9200]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.8

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14 when, and only when, they appear in all
capitals, as shown here.

Readers are expected to be familiar with the terms and concepts described in and
.

The authorization information (authz-info) resource refers to the authorization information
endpoint, as specified in . The term claim is used in this document with the same
semantics as in , i.e., it denotes information carried in the access token or returned
from introspection.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC9200]
[RFC9201]

[RFC9200]
[RFC9200]

2. Protocol Overview
The CoAP-DTLS profile for ACE specifies the transfer of authentication information and, if
necessary, authorization information between the client (C) and the resource server (RS) during
setup of a DTLS session for CoAP messaging. It also specifies how the client can use CoAP over
DTLS to retrieve an access token from the authorization server (AS) for a protected resource
hosted on the resource server. As specified in , use of DTLS for one or both
of these interactions is completely independent.

This profile requires the client to retrieve an access token for the protected resource(s) it wants to
access on the resource server, as specified in . Figure 1 shows the typical message flow
in this scenario (messages in square brackets are optional):

To determine the authorization server in charge of a resource hosted at the resource server, the
client can send an initial Unauthorized Resource Request message to the resource server. The
resource server then denies the request and sends an AS Request Creation Hints message
containing the address of its authorization server back to the client, as specified in

.

Section 6.7 of [RFC9200]

[RFC9200]

Figure 1: Retrieving an Access Token

-->
 C RS AS
[---- Resource Request ------>]	
[<-AS Request Creation Hints-]	
------- Token Request ---------------------------->	
<---------------------------- Access Token ---------	
+ Access Information	

Section 5.3 of
[RFC9200]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc9200#section-6.7
https://www.rfc-editor.org/rfc/rfc9200#section-5.3

Once the client knows the authorization server's address, it can send an access token request to
the token endpoint at the authorization server, as specified in . As the access token
request and the response may contain confidential data, the communication between the client
and the authorization server must be confidentiality protected and ensure authenticity. The
client is expected to have been registered at the authorization server, as outlined in

.

The access token returned by the authorization server can then be used by the client to establish
a new DTLS session with the resource server. When the client intends to use an asymmetric proof-
of-possession key in the DTLS handshake with the resource server, the client upload the
access token to the authz-info resource, i.e., the authz-info endpoint, on the resource server before
starting the DTLS handshake, as described in . In case the client uses a
symmetric proof-of-possession key in the DTLS handshake, the procedure above be used, or
alternatively the access token instead be transferred in the DTLS ClientKeyExchange
message (see Section 3.3.2). In any case, DTLS be used in a mode that provides replay
protection.

Figure 2 depicts the common protocol flow for the DTLS profile after the client has retrieved the
access token from the authorization server (AS).

[RFC9200]

Section 4 of
[RFC9200]

MUST

Section 5.10.1 of [RFC9200]
MAY

MAY
MUST

Figure 2: Protocol Overview

 C RS AS
[--- Access Token ------>]	
<== DTLS channel setup ==>	
== Authorized Request ===>	
<=== Protected Resource ==	

3. Protocol Flow
The following sections specify how CoAP is used to interchange access-related data between the
resource server, the client, and the authorization server so that the authorization server can
provide the client and the resource server with sufficient information to establish a secure
channel and convey authorization information specific for this communication relationship to
the resource server.

Section 3.1 describes how the communication between the client (C) and the authorization server
(AS) must be secured. Depending on the used CoAP security mode (see also),
the client-to-AS request, AS-to-client response, and DTLS session establishment carry slightly
different information. Section 3.2 addresses the use of raw public keys, while Section 3.3 defines
how pre-shared keys are used in this profile.

Section 9 of [RFC7252]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc9200#section-4
https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1
https://www.rfc-editor.org/rfc/rfc7252#section-9

3.1. Communication between the Client and the Authorization Server
To retrieve an access token for the resource that the client wants to access, the client requests an
access token from the authorization server. Before the client can request the access token, the
client and the authorization server establish a secure communication channel. This profile
assumes that the keying material to secure this communication channel has securely been
obtained either by manual configuration or in an automated provisioning process. The following
requirements, in alignment with , therefore must be met:

The client securely have obtained keying material to communicate with the
authorization server.
Furthermore, the client verify that the authorization server is authorized to provide
access tokens (including authorization information) about the resource server to the client
and that this authorization information about the authorization server is still valid.
Also, the authorization server securely have obtained keying material for the client and
obtained authorization rules approved by the resource owner (RO) concerning the client and
the resource server that relate to this keying material.

The client and the authorization server use their respective keying material for all
exchanged messages. How the security association between the client and the authorization
server is bootstrapped is not part of this document. The client and the authorization server must
ensure the confidentiality, integrity, and authenticity of all exchanged messages within the ACE
protocol.

Section 6 specifies how communication with the authorization server is secured.

MUST

Section 6.5 of [RFC9200]

• MUST

• MUST

• MUST

MUST

3.2. Raw Public Key Mode
When the client uses raw public key authentication, the procedure is as described in the following.

3.2.1. Access Token Retrieval from the Authorization Server

After the client and the authorization server mutually authenticated each other and validated
each other's authorization, the client sends a token request to the authorization server's token
endpoint. The client add a req_cnf object carrying either its raw public key or a unique
identifier for a public key that it has previously made known to the authorization server. It is

 that the client uses DTLS with the same keying material to secure the
communication with the authorization server, proving possession of the key as part of the token
request. Other mechanisms for proving possession of the key may be defined in the future.

An example access token request from the client to the authorization server is depicted in Figure
3.

MUST

RECOMMENDED

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc9200#section-6.5

The example shows an access token request for the resource identified by the string
"tempSensor4711" on the authorization server using a raw public key.

The authorization server check if the client that it communicates with is associated with the
RPK in the req_cnf parameter before issuing an access token to it. If the authorization server
determines that the request is to be authorized according to the respective authorization rules, it
generates an access token response for the client. The access token be bound to the RPK of
the client by means of the cnf claim.

The response contain an ace_profile parameter if the ace_profile parameter in the
request is empty and contain this parameter otherwise (see). This
parameter is set to coap_dtls to indicate that this profile be used for communication
between the client and the resource server. The response also contains an access token with
information for the resource server about the client's public key. The authorization server
return in its response the parameter rs_cnf unless it is certain that the client already knows the
public key of the resource server. The authorization server ascertain that the RPK specified
in rs_cnf belongs to the resource server that the client wants to communicate with. The
authorization server protect the integrity of the access token such that the resource server
can detect unauthorized changes. If the access token contains confidential data, the
authorization server also protect the confidentiality of the access token.

The client ascertain that the access token response belongs to a certain, previously sent
access token request, as the request may specify the resource server with which the client wants
to communicate.

Figure 3: Access Token Request Example for RPK Mode

 POST coaps://as.example.com/token
 Content-Format: application/ace+cbor
 Payload:
 {
 grant_type : client_credentials,
 audience : "tempSensor4711",
 req_cnf : {
 COSE_Key : {
 kty : EC2,
 crv : P-256,
 x : h'e866c35f4c3c81bb96a1...',
 y : h'2e25556be097c8778a20...'
 }
 }
 }

MUST

MUST

MUST
MAY Section 5.8.2 of [RFC9200]

MUST

MUST

MUST

MUST

MUST

MUST

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc9200#section-5.8.2

An example access token response from the authorization server to the client is depicted in
Figure 4. Here, the contents of the access_token claim have been truncated to improve
readability. For the client, the response comprises Access Information that contains the server's
public key in the rs_cnf parameter. Caching proxies process the Max-Age option in the CoAP
response, which has a default value of 60 seconds (). The authorization
server adjust the Max-Age option such that it does not exceed the expires_in
parameter to avoid stale responses.

Section 5.6.1 of [RFC7252]
SHOULD

Figure 4: Access Token Response Example for RPK Mode

 2.01 Created
 Content-Format: application/ace+cbor
 Max-Age: 3560
 Payload:
 {
 access_token : b64'SlAV32hkKG...
 (remainder of CWT omitted for brevity;
 CWT contains the client's RPK in the cnf claim)',
 expires_in : 3600,
 rs_cnf : {
 COSE_Key : {
 kty : EC2,
 crv : P-256,
 x : h'd7cc072de2205bdc1537...',
 y : h'f95e1d4b851a2cc80fff...'
 }
 }
 }

3.2.2. DTLS Channel Setup between the Client and Resource Server

Before the client initiates the DTLS handshake with the resource server, the client send a
POST request containing the obtained access token to the authz-info resource hosted by the
resource server. After the client receives a confirmation that the resource server has accepted the
access token, it proceeds to establish a new DTLS channel with the resource server. The client

 use its correct public key in the DTLS handshake. If the authorization server has specified a
cnf field in the access token response, the client use this key. Otherwise, the client use
the public key that it specified in the req_cnf of the access token request. The client specify
this public key in the SubjectPublicKeyInfo structure of the DTLS handshake, as described in

.

If the client does not have the keying material belonging to the public key, the client try to
send an access token request to the AS, where it specifies its public key in the req_cnf parameter.
If the AS still specifies a public key in the response that the client does not have, the client
re-register with the authorization server to establish a new client public key. This process is out of
scope for this document.

To be consistent with , which allows for shortened MAC tags in constrained
environments, an implementation that supports the RPK mode of this profile at least
support the cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 . As discussed in

MUST

MUST
MUST MUST

MUST

[RFC7250]

MAY

SHOULD

[RFC7252]
MUST

[RFC7251]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc7252#section-5.6.1

, new Elliptic Curve Cryptography (ECC) curves have been defined recently that are
considered superior to the so-called NIST curves. Implementations of this profile therefore
implement support for curve25519 (cf. ,), as this curve is said to be efficient
and less dangerous, regarding implementation errors, than the secp256r1 curve mandated in

.

The resource server check if the access token is still valid, if the resource server is the
intended destination (i.e., the audience) of the token, and if the token was issued by an authorized
authorization server (see also). The access token is constructed by
the authorization server such that the resource server can associate the access token with the
client's public key. The cnf claim contain either the client's RPK or, if the key is already
known by the resource server (e.g., from previous communication), a reference to this key. If the
authorization server has no certain knowledge that the client's key is already known to the
resource server, the client's public key be included in the access token's cnf parameter. If
CBOR web tokens are used (as recommended in), keys be encoded, as
specified in . A resource server have the capacity to store one access token for
every proof-of-possession key of every authorized client.

The raw public key used in the DTLS handshake with the client belong to the resource
server. If the resource server has several raw public keys, it needs to determine which key to use.
The authorization server can help with this decision by including a cnf parameter in the access
token that is associated with this communication. In this case, the resource server use the
information from the cnf field to select the proper keying material.

Thus, the handshake only finishes if the client and the resource server are able to use their
respective keying material.

[RFC7748]
MUST

[RFC8032] [RFC8422]

[RFC7252]

MUST

Section 5.10.1.1 of [RFC9200]

MUST

MUST
[RFC8392] [RFC9200] MUST

[RFC8747] MUST

MUST

MUST

3.3. PreSharedKey Mode
When the client uses pre-shared key authentication, the procedure is as described in the
following.

3.3.1. Access Token Retrieval from the Authorization Server

To retrieve an access token for the resource that the client wants to access, the client include
a cnf object carrying an identifier for a symmetric key in its access token request to the
authorization server. This identifier can be used by the authorization server to determine the
shared secret to construct the proof-of-possession token. The authorization server check if
the identifier refers to a symmetric key that was previously generated by the authorization server
as a shared secret for the communication between this client and the resource server. If no such
symmetric key was found, the authorization server generate a new symmetric key that is
returned in its response to the client.

The authorization server determine the authorization rules for the client it communicates
with, as defined by the resource owner, and generate the access token accordingly. If the
authorization server authorizes the client, it returns an AS-to-client response. If the ace_profile
parameter is present, it is set to coap_dtls. The authorization server ascertain that the
access token is generated for the resource server that the client wants to communicate with. Also,

MAY

MUST

MUST

MUST

MUST

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1.1

the authorization server protect the integrity of the access token to ensure that the resource
server can detect unauthorized changes. If the token contains confidential data, such as the
symmetric key, the confidentiality of the token also be protected. Depending on the
requested token type and algorithm in the access token request, the authorization server adds
Access Information to the response that provides the client with sufficient information to set up a
DTLS channel with the resource server. The authorization server adds a cnf parameter to the
Access Information carrying a COSE_Key object that informs the client about the shared secret
that is to be used between the client and the resource server. To convey the same secret to the
resource server, the authorization server can include it directly in the access token by means of
the cnf claim or provide sufficient information to enable the resource server to derive the shared
secret from the access token. As an alternative, the resource server use token introspection
to retrieve the keying material for this access token directly from the authorization server.

An example access token request for an access token with a symmetric proof-of-possession key is
illustrated in Figure 5.

A corresponding example access token response is illustrated in Figure 6. In this example, the
authorization server returns a 2.01 response containing a new access token (truncated to
improve readability) and information for the client, including the symmetric key in the cnf
claim. The information is transferred as a CBOR data structure as specified in .

MUST

MUST

MAY

Figure 5: Example Access Token Request, (Implicit) Symmetric PoP Key

 POST coaps://as.example.com/token
 Content-Format: application/ace+cbor
 Payload:
 {
 audience : "smokeSensor1807",
 }

[RFC9200]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 10

The access token also comprises a cnf claim. This claim usually contains a COSE_Key object
 that carries either the symmetric key itself or a key identifier that can be used by the

resource server to determine the secret key it shares with the client. If the access token carries a
symmetric key, the access token be encrypted using a COSE_Encrypt0 structure (see

). The authorization server use the keying material shared with the
resource server to encrypt the token.

The cnf structure in the access token is provided in Figure 7.

A response that declines any operation on the requested resource is constructed according to
 (cf.). Figure 8 shows an example for a request

that has been rejected due to invalid request parameters.

Figure 6: Example Access Token Response, Symmetric PoP Key

 2.01 Created
 Content-Format: application/ace+cbor
 Max-Age: 85800
 Payload:
 {
 access_token : h'd08343a10...
 (remainder of CWT omitted for brevity)
 token_type : PoP,
 expires_in : 86400,
 profile : coap_dtls,
 cnf : {
 COSE_Key : {
 kty : symmetric,
 kid : h'3d027833fc6267ce',
 k : h'73657373696f6e6b6579'
 }
 }
 }

[RFC8152]

MUST
Section 7.1 of [RFC8392] MUST

Figure 7: Access Token without Keying Material

cnf : {
 COSE_Key : {
 kty : symmetric,
 kid : h'3d027833fc6267ce'
 }
}

Section 5.2 of [RFC6749] Section 5.8.3 of [RFC9200]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc8392#section-7.1
https://www.rfc-editor.org/rfc/rfc6749#section-5.2
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.3

The method for how the resource server determines the symmetric key from an access token
containing only a key identifier is application specific; the remainder of this section provides one
example.

The authorization server and the resource server are assumed to share a key derivation key used
to derive the symmetric key shared with the client from the key identifier in the access token. The
key derivation key may be derived from some other secret key shared between the authorization
server and the resource server. This key needs to be securely stored and processed in the same
way as the key used to protect the communication between the authorization server and the
resource server.

Knowledge of the symmetric key shared with the client must not reveal any information about
the key derivation key or other secret keys shared between the authorization server and resource
server.

In order to generate a new symmetric key to be used by the client and resource server, the
authorization server generates a new key identifier that be unique among all key
identifiers used by the authorization server for this resource server. The authorization server then
uses the key derivation key shared with the resource server to derive the symmetric key, as
specified below. Instead of providing the keying material in the access token, the authorization
server includes the key identifier in the kid parameter (see Figure 7). This key identifier enables
the resource server to calculate the symmetric key used for the communication with the client
using the key derivation key and a key derivation function (KDF) to be defined by the
application, for example, HKDF-SHA-256. The key identifier picked by the authorization server

 be unique for each access token where a unique symmetric key is required.

In this example, the HMAC-based key derivation function (HKDF) consists of the composition of
the HKDF-Extract and HKDF-Expand steps . The symmetric key is derived from the key
identifier, the key derivation key, and other data:

OKM = HKDF(salt, IKM, info, L),

where:

OKM, the output keying material, is the derived symmetric key
salt is the empty byte string
IKM, the input keying material, is the key derivation key, as defined above
info is the serialization of a CBOR array consisting of :

Figure 8: Example Access Token Response with Reject

 4.00 Bad Request
 Content-Format: application/ace+cbor
 Payload:
 {
 error : invalid_request
 }

MUST

MUST

[RFC5869]

•
•
•
• [RFC8610]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 12

where:
type is set to the constant text string "ACE-CoAP-DTLS-key-derivation"
L is the size of the symmetric key in bytes
access_token is the content of the access_token field, as transferred from the
authorization server to the resource server.

All CBOR data types are encoded in CBOR using preferred serialization and deterministic
encoding, as specified in . In particular, this implies that the type and L
components use the minimum length encoding. The content of the access_token field is treated
as opaque data for the purpose of key derivation.

Use of a unique (per-resource-server) kid and the use of a key derivation IKM that be
unique per AS/RS pair, as specified above, will ensure that the derived key is not shared across
multiple clients. However, to provide variation in the derived key across different tokens used by
the same client, it is additionally to include the "iat" claim and either the "exp" or
"exi" claims in the access token.

 info = [
 type : tstr,
 L : uint,
 access_token: bytes
]

◦
◦
◦

Section 4 of [RFC8949]

MUST

RECOMMENDED

3.3.2. DTLS Channel Setup between the Client and Resource Server

When a client receives an access token response from an authorization server, the client
check if the access token response is bound to a certain, previously sent access token request, as
the request may specify the resource server with which the client wants to communicate.

The client checks if the payload of the access token response contains an access_token
parameter and a cnf parameter. With this information, the client can initiate the establishment
of a new DTLS channel with a resource server. To use DTLS with pre-shared keys, the client follows
the PSK key exchange algorithm specified in , using the key conveyed in the
cnf parameter of the AS response as a PSK when constructing the premaster secret. To be
consistent with the recommendations in , a client in the PSK mode support the
cipher suite TLS_PSK_WITH_AES_128_CCM_8 .

In PreSharedKey mode, the knowledge of the shared secret by the client and the resource server is
used for mutual authentication between both peers. Therefore, the resource server must be able
to determine the shared secret from the access token. Following the general ACE authorization
framework, the client can upload the access token to the resource server's authz-info resource
before starting the DTLS handshake. The client then needs to indicate during the DTLS handshake
which previously uploaded access token it intends to use. To do so, it create a COSE_Key
structure with the kid that was conveyed in the rs_cnf claim in the token response from the
authorization server and the key type symmetric. This structure then is included as the only
element in the cnf structure whose CBOR serialization is used as value for psk_identity, as
shown in Figure 9.

MUST

Section 2 of [RFC4279]

[RFC7252] MUST
[RFC6655]

MUST

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 13

https://www.rfc-editor.org/rfc/rfc8949#section-4
https://www.rfc-editor.org/rfc/rfc4279#section-2

The actual CBOR serialization for the data structure from Figure 9 as a sequence of bytes in
hexadecimal notation will be:

As an alternative to the access token upload, the client can provide the most recent access token
in the psk_identity field of the ClientKeyExchange message. To do so, the client treat the
contents of the access_token field from the AS-to-client response as opaque data, as specified in

, and not perform any recoding. This allows the resource server to retrieve
the shared secret directly from the cnf claim of the access token.

DTLS 1.3 does not use the ClientKeyExchange message; for DTLS 1.3, the access token is placed in
the identity field of a PSKIdentity within the PreSharedKeyExtension of the ClientHello.

If a resource server receives a ClientKeyExchange message that contains a psk_identity with a
length greater than zero, it parse the contents of the psk_identity field as a CBOR data
structure and process the contents as following:

If the data contains a cnf field with a COSE_Key structure with a kid, the resource server
continues the DTLS handshake with the associated key that corresponds to this kid.
If the data comprises additional CWT information, this information must be stored as an
access token for this DTLS association before continuing with the DTLS handshake.

If the contents of the psk_identity do not yield sufficient information to select a valid access
token for the requesting client, the resource server aborts the DTLS handshake with an
illegal_parameter alert.

When the resource server receives an access token, it check if the access token is still valid,
if the resource server is the intended destination (i.e., the audience of the token), and if the token
was issued by an authorized authorization server. This specification implements access tokens as
proof-of-possession tokens. Therefore, the access token is bound to a symmetric PoP key that is
used as a shared secret between the client and the resource server. A resource server have
the capacity to store one access token for every proof-of-possession key of every authorized
client. The resource server may use token introspection on the access token to retrieve
more information about the specific token. The use of introspection is out of scope for this
specification.

Figure 9: Access Token Containing a Single kid Parameter

{ cnf : {
 COSE_Key : {
 kty: symmetric,
 kid : h'3d027833fc6267ce'
 }
 }
}

A1 08 A1 01 A2 01 04 02 48 3D 02 78 33 FC 62 67 CE

MUST

Section 4.2 of [RFC7925]

MUST

•

•

MUST

MUST

[RFC7662]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc7925#section-4.2

While the client can retrieve the shared secret from the contents of the cnf parameter in the AS-
to-client response, the resource server uses the information contained in the cnf claim of the
access token to determine the actual secret when no explicit kid was provided in the
psk_identity field. If key derivation is used, the cnf claim contain a kid parameter to be
used by the server as the IKM for key derivation, as described above.

MUST

3.4. Resource Access
Once a DTLS channel has been established, as described in Sections 3.2 and 3.3, respectively, the
client is authorized to access resources covered by the access token it has uploaded to the authz-
info resource that is hosted by the resource server.

With the successful establishment of the DTLS channel, the client and the resource server have
proven that they can use their respective keying material. An access token that is bound to the
client's keying material is associated with the channel. According to ,
there should be only one access token for each client. New access tokens issued by the
authorization server replace previously issued access tokens for the respective client.
The resource server therefore needs a common understanding with the authorization server
about how access tokens are ordered. The authorization server may, e.g., specify a cti claim for
the access token (see) to employ a strict order.

Any request that the resource server receives on a DTLS channel that is tied to an access token via
its keying material be checked against the authorization rules that can be determined with
the access token. The resource server check for every request if the access token is still
valid. If the token has expired, the resource server remove it. Incoming CoAP requests that
are not authorized with respect to any access token that is associated with the client be
rejected by the resource server with a 4.01 response. The response include AS Request
Creation Hints, as described in .

The resource server accept an incoming CoAP request as authorized if any of the
following fails:

The message was received on a secure channel that has been established using the procedure
defined in this document.
The authorization information tied to the sending client is valid.
The request is destined for the resource server.
The resource URI specified in the request is covered by the authorization information.
The request method is an authorized action on the resource with respect to the authorization
information.

Incoming CoAP requests received on a secure DTLS channel that are not thus authorized be
rejected according to :

with response code 4.03 (Forbidden) when the resource URI specified in the request is not
covered by the authorization information and

Section 5.10.1 of [RFC9200]

SHOULD

Section 5.9.4 of [RFC9200]

MUST
MUST

MUST
MUST

SHOULD
Section 5.2 of [RFC9200]

MUST NOT

1.

2.
3.
4.
5.

MUST
Section 5.10.1.1 of [RFC9200]

1.

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1
https://www.rfc-editor.org/rfc/rfc9200#section-5.9.4
https://www.rfc-editor.org/rfc/rfc9200#section-5.2
https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1.1

with response code 4.05 (Method Not Allowed) when the resource URI specified in the request
is covered by the authorization information but not the requested action.

The client ascertain that its keying material is still valid before sending a request or
processing a response. If the client recently has updated the access token (see Section 4), it must
be prepared that its request is still handled according to the previous authorization rules, as there
is no strict ordering between access token uploads and resource access messages. See also Section
7.2 for a discussion of access token processing.

If the client gets an error response containing AS Request Creation Hints (cf.
) as a response to its requests, it request a new access token from the

authorization server in order to continue communication with the resource server.

Unauthorized requests that have been received over a DTLS session be treated as
nonfatal by the resource server, i.e., the DTLS session be kept alive until the associated
access token has expired.

2.

MUST

Section 5.3 of
[RFC9200] SHOULD

SHOULD
SHOULD

4. Dynamic Update of Authorization Information
Resource servers must only use a new access token to update the authorization information for a
DTLS session if the keying material that is bound to the token is the same that was used in the
DTLS handshake. By associating the access tokens with the identifier of an existing DTLS session,
the authorization information can be updated without changing the cryptographic keys for the
DTLS communication between the client and the resource server, i.e., an existing session can be
used with updated permissions.

The client can therefore update the authorization information stored at the resource server at
any time without changing an established DTLS session. To do so, the client requests a new access
token from the authorization server for the intended action on the respective resource and
uploads this access token to the authz-info resource on the resource server.

Figure 10 depicts the message flow where the client requests a new access token after a security
association between the client and the resource server has been established using this protocol. If
the client wants to update the authorization information, the token request specify the key
identifier of the proof-of-possession key used for the existing DTLS channel between the client
and the resource server in the kid parameter of the client-to-AS request. The authorization server

 verify that the specified kid denotes a valid verifier for a proof-of-possession token that has
previously been issued to the requesting client. Otherwise, the client-to-AS request be
declined with the error code unsupported_pop_key, as defined in .

When the authorization server issues a new access token to update existing authorization
information, it include the specified kid parameter in this access token. A resource server

 replace the authorization information of any existing DTLS session that is identified by this
key identifier with the updated authorization information.

MUST

MUST
MUST

Section 5.8.3 of [RFC9200]

MUST
MUST

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 16

https://www.rfc-editor.org/rfc/rfc9200#section-5.3
https://www.rfc-editor.org/rfc/rfc9200#section-5.8.3

Figure 10: Overview of Dynamic Update Operation

 C RS AS
<===== DTLS channel =====>	
+ Access Token	
--- Token Request ---------------------------->	
<---------------------------- New Access Token -	
+ Access Information	
--- Update /authz-info -->	
New Access Token	
== Authorized Request ===>	
<=== Protected Resource ==	

5. Token Expiration
The resource server delete access tokens that are no longer valid. DTLS associations that
have been set up in accordance with this profile are always tied to specific tokens (which may be
exchanged with a dynamic update, as described in Section 4). As tokens may become invalid at
any time (e.g., because they have expired), the association may become useless at some point. A
resource server therefore terminate existing DTLS association after the last access token
associated with this association has expired.

As specified in , the resource server notify the client with an error
response with code 4.01 (Unauthorized) for any long-running request before terminating the
association.

MUST

MUST

Section 5.10.3 of [RFC9200] MUST

6. Secure Communication with an Authorization Server
As specified in the ACE framework (Sections 5.8 and 5.9 of), the requesting entity (the
resource server and/or the client) and the authorization server communicate via the token
endpoint or introspection endpoint. The use of CoAP and DTLS for this communication is

 in this profile. Other protocols fulfilling the security requirements defined in
 be used instead.

How credentials (e.g., PSK, RPK, X.509 cert) for using DTLS with the authorization server are
established is out of scope for this profile.

If other means of securing the communication with the authorization server are used, the
communication security requirements from remain applicable.

[RFC9200]

RECOMMENDED
Section 5 of [RFC9200] MAY

Section 6.2 of [RFC9200]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.3
https://www.rfc-editor.org/rfc/rfc9200#section-5.8
https://www.rfc-editor.org/rfc/rfc9200#section-5.9
https://www.rfc-editor.org/rfc/rfc9200#section-5
https://www.rfc-editor.org/rfc/rfc9200#section-6.2

7. Security Considerations
This document specifies a profile for the Authentication and Authorization for Constrained
Environments (ACE) framework . As it follows this framework's general approach, the
general security considerations from also apply to this profile.

The authorization server must ascertain that the keying material for the client that it provides to
the resource server actually is associated with this client. Malicious clients may hand over access
tokens containing their own access permissions to other entities. This problem cannot be
completely eliminated. Nevertheless, in RPK mode, it should not be possible for clients to request
access tokens for arbitrary public keys; if the client can cause the authorization server to issue a
token for a public key without proving possession of the corresponding private key, this allows for
identity misbinding attacks, where the issued token is usable by an entity other than the intended
one. At some point, the authorization server therefore needs to validate that the client can
actually use the private key corresponding to the client's public key.

When using pre-shared keys provisioned by the authorization server, the security level depends
on the randomness of PSKs and the security of the TLS cipher suite and key exchange algorithm.
As this specification targets constrained environments, message payloads exchanged between
the client and the resource server are expected to be small and rare. CoAP mandates
the implementation of cipher suites with abbreviated, 8-byte tags for message integrity
protection. For consistency, this profile requires implementation of the same cipher suites. For
application scenarios where the cost of full-width authentication tags is low compared to the
overall amount of data being transmitted, the use of cipher suites with 16-byte integrity
protection tags is preferred.

The PSK mode of this profile offers a distribution mechanism to convey authorization tokens
together with a shared secret to a client and a server. As this specification aims at constrained
devices and uses CoAP as the transfer protocol, at least the cipher suite
TLS_PSK_WITH_AES_128_CCM_8 should be supported. The access tokens and the
corresponding shared secrets generated by the authorization server are expected to be
sufficiently short-lived to provide similar forward-secrecy properties to using ephemeral Diffie-
Hellman (DHE) key exchange mechanisms. For longer-lived access tokens, DHE cipher suites
should be used, i.e., cipher suites of the form TLS_DHE_PSK_* or TLS_ECDHE_PSK_*.

Constrained devices that use DTLS are inherently vulnerable to Denial of Service (DoS)
attacks, as the handshake protocol requires creation of an internal state within the device. This is
specifically of concern where an adversary is able to intercept the initial cookie exchange and
interject forged messages with a valid cookie to continue with the handshake. A similar issue
exists with the unprotected authorization information endpoint when the resource server needs
to keep valid access tokens for a long time. Adversaries could fill up the constrained resource
server's internal storage for a very long time with interjected or otherwise retrieved valid access
tokens. To mitigate against this, the resource server should set a time boundary until an access
token that has not been used until then will be deleted.

[RFC9200]
Section 6 of [RFC9200]

[RFC7252]

[RFC7252]
[RFC6655]

[RFC6347]

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 18

https://www.rfc-editor.org/rfc/rfc9200#section-6

The protection of access tokens that are stored in the authorization information endpoint
depends on the keying material that is used between the authorization server and the resource
server; the resource server must ensure that it processes only access tokens that are (encrypted
and) integrity-protected by an authorization server that is authorized to provide access tokens
for the resource server.

7.1. Reuse of Existing Sessions
To avoid the overhead of a repeated DTLS handshake, recommends session resumption

 to reuse session state from an earlier DTLS association and thus requires client-side
implementation. In this specification, the DTLS session is subject to the authorization rules
denoted by the access token that was used for the initial setup of the DTLS association. Enabling
session resumption would require the server to transfer the authorization information with the
session state in an encrypted SessionTicket to the client. Assuming that the server uses long-lived
keying material, this could open up attacks due to the lack of forward secrecy. Moreover, using
this mechanism, a client can resume a DTLS session without proving the possession of the PoP key
again. Therefore, session resumption should be used only in combination with reasonably short-
lived PoP keys.

Since renegotiation of DTLS associations is prone to attacks as well, requires that
clients decline any renegotiation attempt. A server that wants to initiate rekeying therefore

 periodically force a full handshake.

[RFC7925]
[RFC8446]

[RFC7925]

SHOULD

7.2. Multiple Access Tokens
Developers avoid using multiple access tokens for a client (see also

).

Even when a single access token per client is used, an attacker could compromise the dynamic
update mechanism for existing DTLS connections by delaying or reordering packets destined for
the authz-info endpoint. Thus, the order in which operations occur at the resource server (and
thus which authorization info is used to process a given client request) cannot be guaranteed.
Especially in the presence of later-issued access tokens that reduce the client's permissions from
the initial access token, it is impossible to guarantee that the reduction in authorization will take
effect prior to the expiration of the original token.

SHOULD Section 5.10.1 of
[RFC9200]

7.3. Out-of-Band Configuration
To communicate securely, the authorization server, the client, and the resource server require
certain information that must be exchanged outside the protocol flow described in this
document. The authorization server must have obtained authorization information concerning
the client and the resource server that is approved by the resource owner, as well as
corresponding keying material. The resource server must have received authorization
information approved by the resource owner concerning its authorization managers and the
respective keying material. The client must have obtained authorization information concerning
the authorization server approved by its owner, as well as the corresponding keying material.
Also, the client's owner must have approved of the client's communication with the resource

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 19

https://www.rfc-editor.org/rfc/rfc9200#section-5.10.1

[RFC2119]

10. References

10.1. Normative References

, , ,
, , March 1997,
.

server. The client and the authorization server must have obtained a common understanding
about how this resource server is identified to ensure that the client obtains access tokens and
keying material for the correct resource server. If the client is provided with a raw public key for
the resource server, it must be ascertained to which resource server (which identifier and
authorization information) the key is associated. All authorization information and keying
material must be kept up to date.

8. Privacy Considerations
This privacy considerations from apply also to this profile.

An unprotected response to an unauthorized request may disclose information about the
resource server and/or its existing relationship with the client. It is advisable to include as little
information as possible in an unencrypted response. When a DTLS session between an
authenticated client and the resource server already exists, more detailed information be
included with an error response to provide the client with sufficient information to react on that
particular error.

Also, unprotected requests to the resource server may reveal information about the client, e.g.,
which resources the client attempts to request or the data that the client wants to provide to the
resource server. The client send confidential data in an unprotected request.

Note that some information might still leak after the DTLS session is established, due to
observable message sizes, the source, and the destination addresses.

Section 7 of [RFC9200]

MAY

SHOULD NOT

Name:
Description:

CBOR Value:
Reference:

9. IANA Considerations
The following registration has been made in the "ACE Profiles" registry, following the procedure
specified in .

coap_dtls
Profile for delegating client Authentication and Authorization for Constrained

Environments by establishing a Datagram Transport Layer Security (DTLS) channel between
resource-constrained nodes.

1
RFC 9202

[RFC9200]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc9200#section-7
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC4279]

[RFC6347]

[RFC6749]

[RFC7250]

[RFC7251]

[RFC7252]

[RFC7925]

[RFC8152]

[RFC8174]

[RFC8392]

[RFC8422]

[RFC8747]

 and ,
, , , December 2005,

.

 and , ,
, , January 2012,
.

, , ,
, October 2012, .

, , , , and ,

, , , June 2014,
.

, , , and ,
, , , June

2014, .

, , and ,
, , , June 2014,

.

 and ,
, ,

, July 2016, .

, , ,
, July 2017, .

, , ,
, , May 2017,
.

, , , and ,
, , , May 2018,

.

, , and ,
,

, , August 2018,
.

, , , , and ,
, ,

, March 2020, .

Eronen, P., Ed. H. Tschofenig, Ed. "Pre-Shared Key Ciphersuites for Transport
Layer Security (TLS)" RFC 4279 DOI 10.17487/RFC4279 <https://
www.rfc-editor.org/info/rfc4279>

Rescorla, E. N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI 10.17487/
RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Wouters, P., Ed. Tschofenig, H., Ed. Gilmore, J. Weiler, S. T. Kivinen "Using
Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS)" RFC 7250 DOI 10.17487/RFC7250 <https://
www.rfc-editor.org/info/rfc7250>

McGrew, D. Bailey, D. Campagna, M. R. Dugal "AES-CCM Elliptic Curve
Cryptography (ECC) Cipher Suites for TLS" RFC 7251 DOI 10.17487/RFC7251

<https://www.rfc-editor.org/info/rfc7251>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol
(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-editor.org/
info/rfc7252>

Tschofenig, H., Ed. T. Fossati "Transport Layer Security (TLS) / Datagram
Transport Layer Security (DTLS) Profiles for the Internet of Things" RFC 7925
DOI 10.17487/RFC7925 <https://www.rfc-editor.org/info/rfc7925>

Schaad, J. "CBOR Object Signing and Encryption (COSE)" RFC 8152 DOI 10.17487/
RFC8152 <https://www.rfc-editor.org/info/rfc8152>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Jones, M. Wahlstroem, E. Erdtman, S. H. Tschofenig "CBOR Web Token
(CWT)" RFC 8392 DOI 10.17487/RFC8392 <https://www.rfc-editor.org/
info/rfc8392>

Nir, Y. Josefsson, S. M. Pegourie-Gonnard "Elliptic Curve Cryptography (ECC)
Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier" RFC
8422 DOI 10.17487/RFC8422 <https://www.rfc-editor.org/info/
rfc8422>

Jones, M. Seitz, L. Selander, G. Erdtman, S. H. Tschofenig "Proof-of-
Possession Key Semantics for CBOR Web Tokens (CWTs)" RFC 8747 DOI 10.17487/
RFC8747 <https://www.rfc-editor.org/info/rfc8747>

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 21

https://www.rfc-editor.org/info/rfc4279
https://www.rfc-editor.org/info/rfc4279
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7251
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7925
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8747

[RFC8949]

[RFC9200]

[RFC9201]

[RFC5869]

[RFC6655]

[RFC7662]

[RFC7748]

[RFC8032]

[RFC8446]

[RFC8610]

 and , ,
, , , December 2020,

.

, , , , and ,

, , , March
2022, .

,
, , , March 2022,

.

10.2. Informative References

 and ,
, , , May 2010,

.

 and ,
, , , July 2012,

.

, , , ,
October 2015, .

, , and , , ,
, January 2016, .

 and ,
, , , January 2017,

.

, , ,
, August 2018, .

, , and ,

, ,
, June 2019, .

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Seitz, L. Selander, G. Wahlstroem, E. Erdtman, S. H. Tschofenig
"Authentication and Authorization for Constrained Environments (ACE) Using
the OAuth 2.0 Framework (ACE-OAuth)" RFC 9200 DOI 10.17487/RFC9200

<https://www.rfc-editor.org/info/rfc9200>

Seitz, L. "Additional OAuth Parameters for Authentication and Authorization for
Constrained Environments (ACE)" RFC 9201 DOI 10.17487/RFC9201
<https://www.rfc-editor.org/info/rfc9201>

Krawczyk, H. P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-
editor.org/info/rfc5869>

McGrew, D. D. Bailey "AES-CCM Cipher Suites for Transport Layer Security
(TLS)" RFC 6655 DOI 10.17487/RFC6655 <https://www.rfc-editor.org/
info/rfc6655>

Richer, J., Ed. "OAuth 2.0 Token Introspection" RFC 7662 DOI 10.17487/RFC7662
<https://www.rfc-editor.org/info/rfc7662>

Langley, A. Hamburg, M. S. Turner "Elliptic Curves for Security" RFC 7748
DOI 10.17487/RFC7748 <https://www.rfc-editor.org/info/rfc7748>

Josefsson, S. I. Liusvaara "Edwards-Curve Digital Signature Algorithm
(EdDSA)" RFC 8032 DOI 10.17487/RFC8032 <https://www.rfc-
editor.org/info/rfc8032>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Birkholz, H. Vigano, C. C. Bormann "Concise Data Definition Language
(CDDL): A Notational Convention to Express Concise Binary Object
Representation (CBOR) and JSON Data Structures" RFC 8610 DOI 10.17487/
RFC8610 <https://www.rfc-editor.org/info/rfc8610>

Acknowledgments
Special thanks to for his contributions and reviews of this document and to

 for his thorough reviews of this document. Thanks also to for his review. The
authors also would like to thank for his contributions.

 worked on this document as part of the CelticNext projects CyberWI and CRITISEC
with funding from Vinnova.

Jim Schaad Ben
Kaduk Paul Kyzivat

Marco Tiloca

Ludwig Seitz

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 22

https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc9200
https://www.rfc-editor.org/info/rfc9201
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6655
https://www.rfc-editor.org/info/rfc6655
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8610

Authors' Addresses
Stefanie Gerdes
Universität Bremen TZI
Postfach 330440

 D-28359 Bremen
Germany

 +49-421-218-63906 Phone:
 gerdes@tzi.org Email:

Olaf Bergmann
Universität Bremen TZI
Postfach 330440

 D-28359 Bremen
Germany

 +49-421-218-63904 Phone:
 bergmann@tzi.org Email:

Carsten Bormann
Universität Bremen TZI
Postfach 330440

 D-28359 Bremen
Germany

 +49-421-218-63921 Phone:
 cabo@tzi.org Email:

Göran Selander
Ericsson AB

 goran.selander@ericsson.com Email:

Ludwig Seitz
Combitech
Djäknegatan 31
SE- 211 35 Malmö
Sweden

 ludwig.seitz@combitech.com Email:

RFC 9202 CoAP over DTLS March 2022

Gerdes, et al. Standards Track Page 23

tel:+49-421-218-63906
mailto:gerdes@tzi.org
tel:+49-421-218-63904
mailto:bergmann@tzi.org
tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:goran.selander@ericsson.com
mailto:ludwig.seitz@combitech.com

	RFC 9202
	Datagram Transport Layer Security (DTLS) Profile for Authentication and Authorization for Constrained Environments (ACE)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Protocol Overview
	3. Protocol Flow
	3.1. Communication between the Client and the Authorization Server
	3.2. Raw Public Key Mode
	3.2.1. Access Token Retrieval from the Authorization Server
	3.2.2. DTLS Channel Setup between the Client and Resource Server

	3.3. PreSharedKey Mode
	3.3.1. Access Token Retrieval from the Authorization Server
	3.3.2. DTLS Channel Setup between the Client and Resource Server

	3.4. Resource Access

	4. Dynamic Update of Authorization Information
	5. Token Expiration
	6. Secure Communication with an Authorization Server
	7. Security Considerations
	7.1. Reuse of Existing Sessions
	7.2. Multiple Access Tokens
	7.3. Out-of-Band Configuration

	8. Privacy Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Authors' Addresses

