This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 1678
Network Working Group                                          F. Cusack
Request for Comments: 4256                                  savecore.net
Category: Standards Track                                     M. Forssen
                                             AppGate Network Security AB
                                                            January 2006


              Generic Message Exchange Authentication for
                    the Secure Shell Protocol (SSH)

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

Abstract

   The Secure Shell Protocol (SSH) is a protocol for secure remote login
   and other secure network services over an insecure network.  This
   document describes a general purpose authentication method for the
   SSH protocol, suitable for interactive authentications where the
   authentication data should be entered via a keyboard (or equivalent
   alphanumeric input device).  The major goal of this method is to
   allow the SSH client to support a whole class of authentication
   mechanism(s) without knowing the specifics of the actual
   authentication mechanism(s).

1.  Introduction

   The SSH authentication protocol [SSH-USERAUTH] is a general-purpose
   user authentication protocol.  It is intended to be run over the SSH
   transport layer protocol [SSH-TRANS].  The authentication protocol
   assumes that the underlying protocols provide integrity and
   confidentiality protection.

   This document describes a general purpose authentication method for
   the SSH authentication protocol.  This method is suitable for
   interactive authentication methods that do not need any special
   software support on the client side.  Instead, all authentication
   data should be entered via the keyboard.  The major goal of this
   method is to allow the SSH client to have little or no knowledge of

   the specifics of the underlying authentication mechanism(s) used by
   the SSH server.  This will allow the server to arbitrarily select or
   change the underlying authentication mechanism(s) without having to
   update client code.

   The name for this authentication method is "keyboard-interactive".

   This document should be read only after reading the SSH architecture
   document [SSH-ARCH] and the SSH authentication document
   [SSH-USERAUTH].  This document freely uses terminology and notation
   from both documents without reference or further explanation.

   This document also describes some of the client interaction with the
   user in obtaining the authentication information.  While this is
   somewhat out of the scope of a protocol specification, it is
   described here anyway because some aspects of the protocol are
   specifically designed based on user interface issues, and omitting
   this information may lead to incompatible or awkward implementations.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC-2119].

2.  Rationale

   Currently defined authentication methods for SSH are tightly coupled
   with the underlying authentication mechanism.  This makes it
   difficult to add new mechanisms for authentication as all clients
   must be updated to support the new mechanism.  With the generic
   method defined here, clients will not require code changes to support
   new authentication mechanisms, and if a separate authentication layer
   is used, such as [PAM], then the server may not need any code changes
   either.

   This presents a significant advantage to other methods, such as the
   "password" method (defined in [SSH-USERAUTH]), as new (presumably
   stronger) methods may be added "at will" and system security can be
   transparently enhanced.

   Challenge-response and One Time Password mechanisms are also easily
   supported with this authentication method.

   However, this authentication method is limited to authentication
   mechanisms that do not require any special code, such as hardware
   drivers or password mangling, on the client.

3.  Protocol Exchanges

   The client initiates the authentication with an
   SSH_MSG_USERAUTH_REQUEST message.  The server then requests
   authentication information from the client with an
   SSH_MSG_USERAUTH_INFO_REQUEST message.  The client obtains the
   information from the user and then responds with an
   SSM_MSG_USERAUTH_INFO_RESPONSE message.  The server MUST NOT send
   another SSH_MSG_USERAUTH_INFO_REQUEST before it has received the
   answer from the client.

3.1.  Initial Exchange

   The authentication starts with the client sending the following
   packet:

      byte      SSH_MSG_USERAUTH_REQUEST
      string    user name (ISO-10646 UTF-8, as defined in [RFC-3629])
      string    service name (US-ASCII)
      string    "keyboard-interactive" (US-ASCII)
      string    language tag (as defined in [RFC-3066])
      string    submethods (ISO-10646 UTF-8)

   The language tag is deprecated and SHOULD be the empty string.  It
   may be removed in a future revision of this specification.  Instead,
   the server SHOULD select the language to be used based on the tags
   communicated during key exchange [SSH-TRANS].

   If the language tag is not the empty string, the server SHOULD use
   the specified language for any messages sent to the client as part of
   this protocol.  The language tag SHOULD NOT be used for language
   selection for messages outside of this protocol.  If the server does
   not support the requested language, the language to be used is
   implementation-dependent.

   The submethods field is included so the user can give a hint of which
   actual methods he wants to use.  It is a comma-separated list of
   authentication submethods (software or hardware) that the user
   prefers.  If the client has knowledge of the submethods preferred by
   the user, presumably through a configuration setting, it MAY use the
   submethods field to pass this information to the server.  Otherwise,
   it MUST send the empty string.

   The actual names of the submethods is something the user and the
   server need to agree upon.

   Server interpretation of the submethods field is implementation-
   dependent.

   One possible implementation strategy of the submethods field on the
   server is that, unless the user may use multiple different
   submethods, the server ignores this field.  If the user may
   authenticate using one of several different submethods, the server
   should treat the submethods field as a hint on which submethod the
   user wants to use this time.

   Note that when this message is sent to the server, the client has not
   yet prompted the user for a password, and so that information is NOT
   included with this initial message (unlike the "password" method).

   The server MUST reply with an SSH_MSG_USERAUTH_SUCCESS,
   SSH_MSG_USERAUTH_FAILURE, or SSH_MSG_USERAUTH_INFO_REQUEST message.

   The server SHOULD NOT reply with the SSH_MSG_USERAUTH_FAILURE message
   if the failure is based on the user name or service name; instead, it
   SHOULD send SSH_MSG_USERAUTH_INFO_REQUEST message(s), which look just
   like the one(s) that would have been sent in cases where
   authentication should proceed, and then send the failure message
   (after a suitable delay, as described below).  The goal is to make it
   impossible to find valid usernames by comparing the results when
   authenticating as different users.

   The server MAY reply with an SSH_MSG_USERAUTH_SUCCESS message if no
   authentication is required for the user in question.  However, a
   better approach, for reasons discussed above, might be to reply with
   an SSH_MSG_USERAUTH_INFO_REQUEST message and ignore (don't validate)
   the response.

3.2.  Information Requests

   Requests are generated from the server using the
   SSH_MSG_USERAUTH_INFO_REQUEST message.

   The server may send as many requests as are necessary to authenticate
   the client; the client MUST be prepared to handle multiple exchanges.
   However, the server MUST NOT ever have more than one
   SSH_MSG_USERAUTH_INFO_REQUEST message outstanding.  That is, it may
   not send another request before the client has answered.

   The SSH_MSG_USERAUTH_INFO_REQUEST message is defined as follows:

      byte      SSH_MSG_USERAUTH_INFO_REQUEST
      string    name (ISO-10646 UTF-8)
      string    instruction (ISO-10646 UTF-8)
      string    language tag (as defined in [RFC-3066])
      int       num-prompts
      string    prompt[1] (ISO-10646 UTF-8)
      boolean   echo[1]
      ...
      string    prompt[num-prompts] (ISO-10646 UTF-8)
      boolean   echo[num-prompts]

      The language tag MAY be the empty string.  If acceptable/preferable 
   languages were communicated during key exchange [SSH-TRANS], or in
   the SSH_MSG_USERAUTH_REQUEST message, the language tag SHOULD be the
   language selected by the server for the SSH_MSG_USERAUTH_INFO_REQUEST
   message.
EID 1678 (Verified) is as follows:

Section: 3.2

Original Text:

   The language tag is deprecated and SHOULD be the empty string.  It
   may be removed in a future revision of this specification.  Instead,
   the server SHOULD select the language used based on the tags
   communicated during key exchange [SSH-TRANS].

   If the language tag is not the empty string, the server SHOULD use
   the specified language for any messages sent to the client as part of
   this protocol.  The language tag SHOULD NOT be used for language
   selection for messages outside of this protocol.  If the server does
   not support the requested language, the language to be used is
   implementation-dependent.

Corrected Text:

   The language tag MAY be the empty string.  If acceptable/preferable
   languages were communicated during key exchange [SSH-TRANS], or in
   the SSH_MSG_USERAUTH_REQUEST message, the language tag SHOULD be the
   language selected by the server for the SSH_MSG_USERAUTH_INFO_REQUEST
   message.
Notes:
As originally pointed out by Alfred Hoenes (errata ID 758), this text
was incorrectly copy-pasted from Section 3.1.

The Information Request is sent from the server to the client, and it
already contains strings that make use of the particular
language/locale. The language tag in this message specifies the
language/locale used for building the 'instruction' and 'prompt'
strings in the request. This parallels the use of the language tag
in, e.g., the Disconnection Message of the SSH Transport Layer
Protocol.
The server SHOULD take into consideration that some clients may not be able to properly display a long name or prompt field (see next section), and limit the lengths of those fields if possible. For example, instead of an instruction field of "Enter Password" and a prompt field of "Password for user23@host.domain: ", a better choice might be an instruction field of "Password authentication for user23@host.domain" and a prompt field of "Password: ". It is expected that this authentication method would typically be backended by [PAM] and so such choices would not be possible. The name and instruction fields MAY be empty strings; the client MUST be prepared to handle this correctly. The prompt field(s) MUST NOT be empty strings. The num-prompts field may be `0', in which case there will be no prompt/echo fields in the message, but the client SHOULD still display the name and instruction fields (as described below). 3.3. User Interface Upon receiving a request message, the client SHOULD prompt the user as follows: A command line interface (CLI) client SHOULD print the name and instruction (if non-empty), adding newlines. Then, for each prompt in turn, the client SHOULD display the prompt and read the user input. A graphical user interface (GUI) client has many choices on how to prompt the user. One possibility is to use the name field (possibly prefixed with the application's name) as the title of a dialog window in which the prompt(s) are presented. In that dialog window, the instruction field would be a text message, and the prompts would be labels for text entry fields. All fields SHOULD be presented to the user. For example, an implementation SHOULD NOT discard the name field because its windows lack titles; instead, it SHOULD find another way to display this information. If prompts are presented in a dialog window, then the client SHOULD NOT present each prompt in a separate window. All clients MUST properly handle an instruction field with embedded newlines. They SHOULD also be able to display at least 30 characters for the name and prompts. If the server presents names or prompts longer than 30 characters, the client MAY truncate these fields to the length it can display. If the client does truncate any fields, there MUST be an obvious indication that such truncation has occurred. The instruction field SHOULD NOT be truncated. Clients SHOULD use control character filtering, as discussed in [SSH-ARCH], to avoid attacks by including terminal control characters in the fields to be displayed. For each prompt, the corresponding echo field indicates whether the user input should be echoed as characters are typed. Clients SHOULD correctly echo/mask user input for each prompt independently of other prompts in the request message. If a client does not honor the echo field for whatever reason, then the client MUST err on the side of masking input. A GUI client might like to have a checkbox toggling echo/mask. Clients SHOULD NOT add any additional characters to the prompt, such as ": " (colon-space); the server is responsible for supplying all text to be displayed to the user. Clients MUST also accept empty responses from the user and pass them on as empty strings. 3.4. Information Responses After obtaining the requested information from the user, the client MUST respond with an SSH_MSG_USERAUTH_INFO_RESPONSE message. The format of the SSH_MSG_USERAUTH_INFO_RESPONSE message is as follows: byte SSH_MSG_USERAUTH_INFO_RESPONSE int num-responses string response[1] (ISO-10646 UTF-8) ... string response[num-responses] (ISO-10646 UTF-8) Note that the responses are encoded in ISO-10646 UTF-8. It is up to the server how it interprets the responses and validates them. However, if the client reads the responses in some other encoding (e.g., ISO 8859-1), it MUST convert the responses to ISO-10646 UTF-8 before transmitting. From an internationalization standpoint, it is desired that if a user enters responses, the authentication process will work regardless of what OS and client software they are using. Doing so requires normalization. Systems supporting non-ASCII passwords SHOULD always normalize passwords and usernames whenever they are added to the database, or compare them (with or without hashing) to existing entries in the database. SSH implementations that both store the passwords and compare them SHOULD use [SASLPREP] for normalization. If the num-responses field does not match the num-prompts field in the request message, the server MUST send a failure message. In the case that the server sends a `0' num-prompts field in the request message, the client MUST send a response message with a `0' num-responses field to complete the exchange. The responses MUST be ordered as the prompts were ordered. That is, response[n] MUST be the answer to prompt[n]. After receiving the response, the server MUST send either an SSH_MSG_USERAUTH_SUCCESS, SSH_MSG_USERAUTH_FAILURE, or another SSH_MSG_USERAUTH_INFO_REQUEST message. If the server fails to authenticate the user (through the underlying authentication mechanism(s)), it SHOULD NOT send another request message(s) in an attempt to obtain new authentication data; instead, it SHOULD send a failure message. The only time the server should send multiple request messages is if additional authentication data is needed (i.e., because there are multiple underlying authentication mechanisms that must be used to authenticate the user). If the server intends to respond with a failure message, it MAY delay for an implementation-dependent time before sending it to the client. It is suspected that implementations are likely to make the time delay configurable; a suggested default is 2 seconds. 4. Authentication Examples Here are two example exchanges between a client and server. The first is an example of challenge/response with a handheld token. This is an authentication that is not otherwise possible with other authentication methods. C: byte SSH_MSG_USERAUTH_REQUEST C: string "user23" C: string "ssh-userauth" C: string "keyboard-interactive" C: string "" C: string "" S: byte SSH_MSG_USERAUTH_INFO_REQUEST S: string "CRYPTOCard Authentication" S: string "The challenge is '14315716'" S: string "en-US" S: int 1 S: string "Response: " S: boolean TRUE [Client prompts user for password] C: byte SSH_MSG_USERAUTH_INFO_RESPONSE C: int 1 C: string "6d757575" S: byte SSH_MSG_USERAUTH_SUCCESS The second example is a standard password authentication; in this case, the user's password is expired. C: byte SSH_MSG_USERAUTH_REQUEST C: string "user23" C: string "ssh-userauth" C: string "keyboard-interactive" C: string "en-US" C: string "" S: byte SSH_MSG_USERAUTH_INFO_REQUEST S: string "Password Authentication" S: string "" S: string "en-US" S: int 1 S: string "Password: " S: boolean FALSE [Client prompts user for password] C: byte SSH_MSG_USERAUTH_INFO_RESPONSE C: int 1 C: string "password" S: byte SSH_MSG_USERAUTH_INFO_REQUEST S: string "Password Expired" S: string "Your password has expired." S: string "en-US" S: int 2 S: string "Enter new password: " S: boolean FALSE S: string "Enter it again: " S: boolean FALSE [Client prompts user for new password] C: byte SSH_MSG_USERAUTH_INFO_RESPONSE C: int 2 C: string "newpass" C: string "newpass" S: byte SSH_MSG_USERAUTH_INFO_REQUEST S: string "Password changed" S: string "Password successfully changed for user23." S: string "en-US" S: int 0 [Client displays message to user] C: byte SSH_MSG_USERAUTH_INFO_RESPONSE C: int 0 S: byte SSH_MSG_USERAUTH_SUCCESS 5. IANA Considerations The userauth type "keyboard-interactive" is used for this authentication method. The following method-specific constants are used with this authentication method: SSH_MSG_USERAUTH_INFO_REQUEST 60 SSH_MSG_USERAUTH_INFO_RESPONSE 61 6. Security Considerations The authentication protocol and this authentication method depend on the security of the underlying SSH transport layer. Without the confidentiality provided therein, any authentication data passed with this method is subject to interception. The number of client-server exchanges required to complete an authentication using this method may be variable. It is possible that an observer may gain valuable information simply by counting that number. For example, an observer may guess that a user's password has expired, and with further observation may be able to determine the password lifetime imposed by a site's password expiration policy. 7. References 7.1. Normative References [RFC-2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC-3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003. [RFC-3066] Alvestrand, H., "Tags for the Identification of Languages", BCP 47, RFC 3066, January 2001. [SSH-ARCH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH) Protocol Architecture", RFC 4251, January 2006. [SSH-USERAUTH] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH) Authentication Protocol", RFC 4252, January 2006. [SSH-TRANS] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH) Transport Layer Protocol", RFC 4253, January 2006. [SASLPREP] Zeilenga, K., "SASLprep: Stringprep Profile for User Names and Passwords", RFC 4013, February 2005. 7.2. Informative References [PAM] Samar, V., Schemers, R., "Unified Login With Pluggable Authentication Modules (PAM)", OSF RFC 86.0, October 1995. Authors' Addresses Frank Cusack savecore.net EMail: frank@savecore.net Martin Forssen AppGate Network Security AB Otterhallegatan 2 SE-411 18 Gothenburg SWEDEN EMail: maf@appgate.com Full Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Acknowledgement Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).

mirror server hosted at Truenetwork, Russian Federation.