This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 4074, EID 4107
Network Working Group                                        K. Zeilenga
Request for Comments: 4523                           OpenLDAP Foundation
Obsoletes: 2252, 2256, 2587                                    June 2006
Category: Standards Track


             Lightweight Directory Access Protocol (LDAP)
               Schema Definitions for X.509 Certificates

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2006).

   Abstract

   This document describes schema for representing X.509 certificates,
   X.521 security information, and related elements in directories
   accessible using the Lightweight Directory Access Protocol (LDAP).
   The LDAP definitions for these X.509 and X.521 schema elements
   replace those provided in RFCs 2252 and 2256.

1.  Introduction

   This document provides LDAP [RFC4510] schema definitions [RFC4512]
   for a subset of elements specified in X.509 [X.509] and X.521
   [X.521], including attribute types for certificates, cross
   certificate pairs, and certificate revocation lists; matching rules
   to be used with these attribute types; and related object classes.
   LDAP syntax definitions are also provided for associated assertion
   and attribute values.

   As the semantics of these elements are as defined in X.509 and X.521,
   knowledge of X.509 and X.521 is necessary to make use of the LDAP
   schema definitions provided herein.

   This document, together with [RFC4510], obsoletes RFCs 2252 and 2256
   in their entirety.  The changes (in this document) made since RFC
   2252 and RFC 2256 include:

      -  addition of pkiUser, pkiCA, and deltaCRL classes;

      -  update of attribute types to include equality matching rules in
         accordance with their X.500 specifications;

      -  addition of certificate, certificate pair, certificate list,
         and algorithm identifier matching rules; and

      -  addition of LDAP syntax for assertion syntaxes for these
         matching rules.

   This document obsoletes RFC 2587.  The X.509 schema descriptions for
   LDAPv2 [RFC1777] are Historic, as is LDAPv2 [RFC3494].

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14 [RFC2119].

   Schema definitions are provided using LDAP description formats
   [RFC4512].  Definitions provided here are formatted (line wrapped)
   for readability.

2.  Syntaxes

   This section describes various syntaxes used in LDAP to transfer
   certificates and related data types.

2.1.  Certificate

      ( 1.3.6.1.4.1.1466.115.121.1.8 DESC 'X.509 Certificate' )

   A value of this syntax is an X.509 Certificate [X.509, clause 7].

   Due to changes made to the definition of a Certificate through time,
   no LDAP-specific encoding is defined for this syntax.  Values of this
   syntax SHOULD be encoded using Distinguished Encoding Rules (DER)
   [X.690] and MUST only be transferred using the ;binary transfer
   option [RFC4522]; that is, by requesting and returning values using
   attribute descriptions such as "userCertificate;binary".

   As values of this syntax contain digitally signed data, values of
   this syntax and the form of each value MUST be preserved as
   presented.

2.2.  CertificateList

      ( 1.3.6.1.4.1.1466.115.121.1.9 DESC 'X.509 Certificate List' )

   A value of this syntax is an X.509 CertificateList [X.509, clause
   7.3].

   Due to changes made to the definition of a CertificateList through
   time, no LDAP-specific encoding is defined for this syntax.  Values
   of this syntax SHOULD be encoded using DER [X.690] and MUST only be
   transferred using the ;binary transfer option [RFC4522]; that is, by
   requesting and returning values using attribute descriptions such as
   "certificateRevocationList;binary".

   As values of this syntax contain digitally signed data, values of
   this syntax and the form of each value MUST be preserved as
   presented.

2.3.  CertificatePair

      ( 1.3.6.1.4.1.1466.115.121.1.10 DESC 'X.509 Certificate Pair' )

   A value of this syntax is an X.509 CertificatePair [X.509, clause
   11.2.3].

   Due to changes made to the definition of an X.509 CertificatePair
   through time, no LDAP-specific encoding is defined for this syntax.
   Values of this syntax SHOULD be encoded using DER [X.690] and MUST
   only be transferred using the ;binary transfer option [RFC4522]; that
   is, by requesting and returning values using attribute descriptions
   such as "crossCertificatePair;binary".

   As values of this syntax contain digitally signed data, values of
   this syntax and the form of each value MUST be preserved as
   presented.

2.4.  SupportedAlgorithm

      ( 1.3.6.1.4.1.1466.115.121.1.49
           DESC 'X.509 Supported Algorithm' )

   A value of this syntax is an X.509 SupportedAlgorithm [X.509, clause
   11.2.7].

   Due to changes made to the definition of an X.509 SupportedAlgorithm
   through time, no LDAP-specific encoding is defined for this syntax.
   Values of this syntax SHOULD be encoded using DER [X.690] and MUST
   only be transferred using the ;binary transfer option [RFC4522]; that
   is, by requesting and returning values using attribute descriptions
   such as "supportedAlgorithms;binary".

   As values of this syntax contain digitally signed data, values of
   this syntax and the form of the value MUST be preserved as presented.

2.5.  CertificateExactAssertion

      ( 1.3.6.1.1.15.1 DESC 'X.509 Certificate Exact Assertion' )

   A value of this syntax is an X.509 CertificateExactAssertion [X.509,
   clause 11.3.1].  Values of this syntax MUST be encoded using the
   Generic String Encoding Rules (GSER) [RFC3641].  Appendix A.1
   provides an equivalent Augmented Backus-Naur Form (ABNF) [RFC4234]
   grammar for this syntax.

2.6.  CertificateAssertion

      ( 1.3.6.1.1.15.2 DESC 'X.509 Certificate Assertion' )

   A value of this syntax is an X.509 CertificateAssertion [X.509,
   clause 11.3.2].  Values of this syntax MUST be encoded using GSER
   [RFC3641].  Appendix A.2 provides an equivalent ABNF [RFC4234]
   grammar for this syntax.

2.7.  CertificatePairExactAssertion

      ( 1.3.6.1.1.15.3
           DESC 'X.509 Certificate Pair Exact Assertion' )

   A value of this syntax is an X.509 CertificatePairExactAssertion
   [X.509, clause 11.3.3].  Values of this syntax MUST be encoded using
   GSER [RFC3641].  Appendix A.3 provides an equivalent ABNF [RFC4234]
   grammar for this syntax.

2.8.  CertificatePairAssertion

      ( 1.3.6.1.1.15.4 DESC 'X.509 Certificate Pair Assertion' )

   A value of this syntax is an X.509 CertificatePairAssertion [X.509,
   clause 11.3.4].  Values of this syntax MUST be encoded using GSER
   [RFC3641].  Appendix A.4 provides an equivalent ABNF [RFC4234]
   grammar for this syntax.

2.9.  CertificateListExactAssertion

      ( 1.3.6.1.1.15.5
           DESC 'X.509 Certificate List Exact Assertion' )

   A value of this syntax is an X.509 CertificateListExactAssertion
   [X.509, clause 11.3.5].  Values of this syntax MUST be encoded using
   GSER [RFC3641].  Appendix A.5 provides an equivalent ABNF grammar for
   this syntax.

2.10.  CertificateListAssertion

      ( 1.3.6.1.1.15.6 DESC 'X.509 Certificate List Assertion' )

   A value of this syntax is an X.509 CertificateListAssertion [X.509,
   clause 11.3.6].  Values of this syntax MUST be encoded using GSER
   [RFC3641].  Appendix A.6 provides an equivalent ABNF [RFC4234]
   grammar for this syntax.

2.11.  AlgorithmIdentifier

      ( 1.3.6.1.1.15.7 DESC 'X.509 Algorithm Identifier' )

   A value of this syntax is an X.509 AlgorithmIdentifier [X.509, Clause
   7].  Values of this syntax MUST be encoded using GSER [RFC3641].

   Appendix A.7 provides an equivalent ABNF [RFC4234] grammar for this
   syntax.

3.  Matching Rules

   This section introduces a set of certificate and related matching
   rules for use in LDAP.  These rules are intended to act in accordance
   with their X.500 counterparts.

3.1.  certificateExactMatch

   The certificateExactMatch matching rule compares the presented
   certificate exact assertion value with an attribute value of the
   certificate syntax as described in clause 11.3.1 of [X.509].

      ( 2.5.13.34 NAME 'certificateExactMatch'
           DESC 'X.509 Certificate Exact Match'
           SYNTAX 1.3.6.1.1.15.1 )

3.2.  certificateMatch

   The certificateMatch matching rule compares the presented certificate
   assertion value with an attribute value of the certificate syntax as
   described in clause 11.3.2 of [X.509].

      ( 2.5.13.35 NAME 'certificateMatch'
           DESC 'X.509 Certificate Match'
           SYNTAX 1.3.6.1.1.15.2 )

3.3.  certificatePairExactMatch

   The certificatePairExactMatch matching rule compares the presented
   certificate pair exact assertion value with an attribute value of the
   certificate pair syntax as described in clause 11.3.3 of [X.509].

      ( 2.5.13.36 NAME 'certificatePairExactMatch'
           DESC 'X.509 Certificate Pair Exact Match'
           SYNTAX 1.3.6.1.1.15.3 )

3.4.  certificatePairMatch

   The certificatePairMatch matching rule compares the presented
   certificate pair assertion value with an attribute value of the
   certificate pair syntax as described in clause 11.3.4 of [X.509].

      ( 2.5.13.37 NAME 'certificatePairMatch'
           DESC 'X.509 Certificate Pair Match'
           SYNTAX 1.3.6.1.1.15.4 )

3.5.  certificateListExactMatch

   The certificateListExactMatch matching rule compares the presented
   certificate list exact assertion value with an attribute value of the
   certificate pair syntax as described in clause 11.3.5 of [X.509].

      ( 2.5.13.38 NAME 'certificateListExactMatch'
           DESC 'X.509 Certificate List Exact Match'
           SYNTAX 1.3.6.1.1.15.5 )

3.6.  certificateListMatch

   The certificateListMatch matching rule compares the presented
   certificate list assertion value with an attribute value of the
   certificate pair syntax as described in clause 11.3.6 of [X.509].

      ( 2.5.13.39 NAME 'certificateListMatch'
           DESC 'X.509 Certificate List Match'
           SYNTAX 1.3.6.1.1.15.6 )

3.7.  algorithmIdentifierMatch

   The algorithmIdentifierMatch mating rule compares a presented
   algorithm identifier with an attribute value of the supported
   algorithm as described in clause 11.3.7 of [X.509].

            ( 2.5.13.40 NAME 'algorithmIdentifierMatch' 
           DESC 'X.509 Algorithm Identifier Match'
           SYNTAX 1.3.6.1.1.15.7 )

EID 4074 (Verified) is as follows:

Section: 3.7

Original Text:

      ( 2.5.13.40 NAME 'algorithmIdentifier'
           DESC 'X.509 Algorithm Identifier Match'
           SYNTAX 1.3.6.1.1.15.7 )

Corrected Text:

      ( 2.5.13.40 NAME 'algorithmIdentifierMatch'
           DESC 'X.509 Algorithm Identifier Match'
           SYNTAX 1.3.6.1.1.15.7 )
Notes:
The name should be 'algorithmIdentifierMatch', in order to be used in section 4.7 as an EQUALITY MatchingRule.
4. Attribute Types This section details a set of certificate and related attribute types for use in LDAP. 4.1. userCertificate The userCertificate attribute holds the X.509 certificates issued to the user by one or more certificate authorities, as discussed in clause 11.2.1 of [X.509]. ( 2.5.4.36 NAME 'userCertificate' DESC 'X.509 user certificate' EQUALITY certificateExactMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.8 ) As required by this attribute type's syntax, values of this attribute are requested and transferred using the attribute description "userCertificate;binary". 4.2. cACertificate The cACertificate attribute holds the X.509 certificates issued to the certificate authority (CA), as discussed in clause 11.2.2 of [X.509]. ( 2.5.4.37 NAME 'cACertificate' DESC 'X.509 CA certificate' EQUALITY certificateExactMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.8 ) As required by this attribute type's syntax, values of this attribute are requested and transferred using the attribute description "cACertificate;binary". 4.3. crossCertificatePair The crossCertificatePair attribute holds an X.509 certificate pair, as discussed in clause 11.2.3 of [X.509]. ( 2.5.4.40 NAME 'crossCertificatePair' DESC 'X.509 cross certificate pair' EQUALITY certificatePairExactMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.10 ) As required by this attribute type's syntax, values of this attribute are requested and transferred using the attribute description "crossCertificatePair;binary". 4.4. certificateRevocationList The certificateRevocationList attribute holds certificate lists, as discussed in 11.2.4 of [X.509]. ( 2.5.4.39 NAME 'certificateRevocationList' DESC 'X.509 certificate revocation list' EQUALITY certificateListExactMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.9 ) As required by this attribute type's syntax, values of this attribute are requested and transferred using the attribute description "certificateRevocationList;binary". 4.5. authorityRevocationList The authorityRevocationList attribute holds certificate lists, as discussed in 11.2.5 of [X.509]. ( 2.5.4.38 NAME 'authorityRevocationList' DESC 'X.509 authority revocation list' EQUALITY certificateListExactMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.9 ) As required by this attribute type's syntax, values of this attribute are requested and transferred using the attribute description "authorityRevocationList;binary". 4.6. deltaRevocationList The deltaRevocationList attribute holds certificate lists, as discussed in 11.2.6 of [X.509]. ( 2.5.4.53 NAME 'deltaRevocationList' DESC 'X.509 delta revocation list' EQUALITY certificateListExactMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.9 ) As required by this attribute type's syntax, values of this attribute MUST be requested and transferred using the attribute description "deltaRevocationList;binary". 4.7. supportedAlgorithms The supportedAlgorithms attribute holds supported algorithms, as discussed in 11.2.7 of [X.509]. ( 2.5.4.52 NAME 'supportedAlgorithms' DESC 'X.509 supported algorithms' EQUALITY algorithmIdentifierMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.49 ) As required by this attribute type's syntax, values of this attribute MUST be requested and transferred using the attribute description "supportedAlgorithms;binary". 5. Object Classes This section details a set of certificate-related object classes for use in LDAP. 5.1. pkiUser This object class is used in augment entries for objects that may be subject to certificates, as defined in clause 11.1.1 of [X.509]. ( 2.5.6.21 NAME 'pkiUser' DESC 'X.509 PKI User' SUP top AUXILIARY MAY userCertificate ) 5.2. pkiCA This object class is used to augment entries for objects that act as certificate authorities, as defined in clause 11.1.2 of [X.509] ( 2.5.6.22 NAME 'pkiCA' DESC 'X.509 PKI Certificate Authority' SUP top AUXILIARY MAY ( cACertificate $ certificateRevocationList $ authorityRevocationList $ crossCertificatePair ) ) 5.3. cRLDistributionPoint This class is used to represent objects that act as CRL distribution points, as discussed in clause 11.1.3 of [X.509]. ( 2.5.6.19 NAME 'cRLDistributionPoint' DESC 'X.509 CRL distribution point' SUP top STRUCTURAL MUST cn MAY ( certificateRevocationList $ authorityRevocationList $ deltaRevocationList ) ) 5.4. deltaCRL The deltaCRL object class is used to augment entries to hold delta revocation lists, as discussed in clause 11.1.4 of [X.509]. ( 2.5.6.23 NAME 'deltaCRL' DESC 'X.509 delta CRL' SUP top AUXILIARY MAY deltaRevocationList ) 5.5. strongAuthenticationUser This object class is used to augment entries for objects participating in certificate-based authentication, as defined in clause 6.15 of [X.521]. This object class is deprecated in favor of pkiUser. ( 2.5.6.15 NAME 'strongAuthenticationUser' DESC 'X.521 strong authentication user' SUP top AUXILIARY MUST userCertificate ) 5.6. userSecurityInformation This object class is used to augment entries with needed additional associated security information, as defined in clause 6.16 of [X.521]. ( 2.5.6.18 NAME 'userSecurityInformation' DESC 'X.521 user security information' SUP top AUXILIARY MAY ( supportedAlgorithms ) ) 5.7. certificationAuthority This object class is used to augment entries for objects that act as certificate authorities, as defined in clause 6.17 of [X.521]. This object class is deprecated in favor of pkiCA. ( 2.5.6.16 NAME 'certificationAuthority' DESC 'X.509 certificate authority' SUP top AUXILIARY MUST ( authorityRevocationList $ certificateRevocationList $ cACertificate ) MAY crossCertificatePair ) 5.8. certificationAuthority-V2 This object class is used to augment entries for objects that act as certificate authorities, as defined in clause 6.18 of [X.521]. This object class is deprecated in favor of pkiCA. ( 2.5.6.16.2 NAME 'certificationAuthority-V2' DESC 'X.509 certificate authority, version 2' SUP certificationAuthority AUXILIARY MAY deltaRevocationList ) 6. Security Considerations General certificate considerations [RFC3280] apply to LDAP-aware certificate applications. General LDAP security considerations [RFC4510] apply as well. While elements of certificate information are commonly signed, these signatures only protect the integrity of the signed information. In the absence of data integrity protections in LDAP (or lower layer, e.g., IPsec), a server is not assured that client certificate request (or other request) was unaltered in transit. Likewise, a client cannot be assured that the results of the query were unaltered in transit. Hence, it is generally recommended that implementations make use of authentication and data integrity services in LDAP [RFC4513][RFC4511]. 7. IANA Considerations 7.1. Object Identifier Registration The IANA has registered an LDAP Object Identifier [RFC4520] for use in this technical specification. Subject: Request for LDAP OID Registration Person & email address to contact for further information: Kurt Zeilenga <kurt@OpenLDAP.org> Specification: RFC 4523 Author/Change Controller: IESG Comments: Identifies the LDAP X.509 Certificate schema elements introduced in this document. 7.2. Descriptor Registration The IANA has updated the LDAP Descriptor registry [RFC4520] as indicated below.
EID 4107 (Verified) is as follows:

Section: 7.2

Original Text:

   The IANA has updated the LDAP
   Descriptor registry [RFC44520] as indicated below.

Corrected Text:

   The IANA has updated the LDAP
   Descriptor registry [RFC4520] as indicated below.
Notes:
Subject: Request for LDAP Descriptor Registration Descriptor (short name): see table Object Identifier: see table Person & email address to contact for further information: Kurt Zeilenga <kurt@OpenLDAP.org> Usage: see table Specification: RFC 4523 Author/Change Controller: IESG algorithmIdentifierMatch M 2.5.13.40 authorityRevocationList A 2.5.4.38 * cACertificate A 2.5.4.37 * cRLDistributionPoint O 2.5.6.19 * certificateExactMatch M 2.5.13.34 certificateListExactMatch M 2.5.13.38 certificateListMatch M 2.5.13.39 certificateMatch M 2.5.13.35 certificatePairExactMatch M 2.5.13.36 certificatePairMatch M 2.5.13.37 certificateRevocationList A 2.5.4.39 * certificationAuthority O 2.5.6.16 * certificationAuthority-V2 O 2.5.6.16.2 * crossCertificatePair A 2.5.4.40 * deltaCRL O 2.5.6.23 * deltaRevocationList A 2.5.4.53 * pkiCA O 2.5.6.22 * pkiUser O 2.5.6.21 * strongAuthenticationUser O 2.5.6.15 * supportedAlgorithms A 2.5.4.52 * userCertificate A 2.5.4.36 * userSecurityInformation O 2.5.6.18 * * Updates previous registration 8. Acknowledgements This document is based on X.509, a product of the ITU-T. A number of LDAP schema definitions were based on those found in RFCs 2252 and 2256, both products of the IETF ASID WG. The ABNF productions in Appendix A were provided by Steven Legg. Additional material was borrowed from prior works by David Chadwick and Steven Legg to refine the LDAP X.509 schema. 9. References 9.1. Normative References [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC3641] Legg, S., "Generic String Encoding Rules (GSER) for ASN.1 Types", RFC 3641, October 2003. [RFC4510] Zeilenga, K., Ed., "Lightweight Directory Access Protocol (LDAP): Technical Specification Road Map", RFC 4510, June 2006. [RFC4512] Zeilenga, K., "Lightweight Directory Access Protocol (LDAP): Directory Information Models", RFC 4512, June 2006. [RFC4522] Legg, S., "Lightweight Directory Access Protocol (LDAP): The Binary Encoding Option", RFC 4522, June 2006. [X.509] International Telecommunication Union - Telecommunication Standardization Sector, "The Directory: Authentication Framework", X.509(2000). [X.521] International Telecommunication Union - Telecommunication Standardization Sector, "The Directory: Selected Object Classes", X.521(2000). [X.690] International Telecommunication Union - Telecommunication Standardization Sector, "Specification of ASN.1 encoding rules: Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER)", X.690(2002) (also ISO/IEC 8825-1:2002). 9.2. Informative References [RFC1777] Yeong, W., Howes, T., and S. Kille, "Lightweight Directory Access Protocol", RFC 1777, March 1995. [RFC2156] Kille, S., "MIXER (Mime Internet X.400 Enhanced Relay): Mapping between X.400 and RFC 822/MIME", RFC 2156, January 1998. [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3280, April 2002. [RFC3494] Zeilenga, K., "Lightweight Directory Access Protocol version 2 (LDAPv2) to Historic Status", RFC 3494, March 2003. [RFC3642] Legg, S., "Common Elements of Generic String Encoding Rules (GSER) Encodings", RFC 3642, October 2003. [RFC4234] Crocker, D. and P. Overell, "Augmented BNF for Syntax Specifications: ABNF", RFC 4234, October 2005. [RFC4511] Sermersheim, J., Ed., "Lightweight Directory Access Protocol (LDAP): The Protocol", RFC 4511, June 2006. [RFC4513] Harrison, R. Ed., "Lightweight Directory Access Protocol (LDAP): Authentication Methods and Security Mechanisms", RFC 4513, June 2006. [RFC4520] Zeilenga, K., "Internet Assigned Numbers Authority (IANA) Considerations for the Lightweight Directory Access Protocol (LDAP)", BCP 64, RFC 4520, June 2006. Appendix A. This appendix is informative. This appendix provides ABNF [RFC4234] grammars for GSER-based [RFC3641] LDAP-specific encodings specified in this document. These grammars where produced using, and relying on, Common Elements for GSER Encodings [RFC3642]. A.1. CertificateExactAssertion CertificateExactAssertion = "{" sp cea-serialNumber "," sp cea-issuer sp "}" cea-serialNumber = id-serialNumber msp CertificateSerialNumber cea-issuer = id-issuer msp Name id-serialNumber = %x73.65.72.69.61.6C.4E.75.6D.62.65.72 ; 'serialNumber' id-issuer = %x69.73.73.75.65.72 ; 'issuer' Name = id-rdnSequence ":" RDNSequence id-rdnSequence = %x72.64.6E.53.65.71.75.65.6E.63.65 ; 'rdnSequence' CertificateSerialNumber = INTEGER A.2. CertificateAssertion CertificateAssertion = "{" [ sp ca-serialNumber ] [ sep sp ca-issuer ] [ sep sp ca-subjectKeyIdentifier ] [ sep sp ca-authorityKeyIdentifier ] [ sep sp ca-certificateValid ] [ sep sp ca-privateKeyValid ] [ sep sp ca-subjectPublicKeyAlgID ] [ sep sp ca-keyUsage ] [ sep sp ca-subjectAltName ] [ sep sp ca-policy ] [ sep sp ca-pathToName ] [ sep sp ca-subject ] [ sep sp ca-nameConstraints ] sp "}" ca-serialNumber = id-serialNumber msp CertificateSerialNumber ca-issuer = id-issuer msp Name ca-subjectKeyIdentifier = id-subjectKeyIdentifier msp SubjectKeyIdentifier ca-authorityKeyIdentifier = id-authorityKeyIdentifier msp AuthorityKeyIdentifier ca-certificateValid = id-certificateValid msp Time ca-privateKeyValid = id-privateKeyValid msp GeneralizedTime ca-subjectPublicKeyAlgID = id-subjectPublicKeyAlgID msp OBJECT-IDENTIFIER ca-keyUsage = id-keyUsage msp KeyUsage ca-subjectAltName = id-subjectAltName msp AltNameType ca-policy = id-policy msp CertPolicySet ca-pathToName = id-pathToName msp Name ca-subject = id-subject msp Name ca-nameConstraints = id-nameConstraints msp NameConstraintsSyntax id-subjectKeyIdentifier = %x73.75.62.6A.65.63.74.4B.65.79.49.64.65.6E.74.69.66.69.65.72 ; 'subjectKeyIdentifier' id-authorityKeyIdentifier = %x61.75.74.68.6F.72.69.74.79.4B.65.79.49.64.65.6E.74.69.66.69.65.72 ; 'authorityKeyIdentifier' id-certificateValid = %x63.65.72.74.69.66.69.63.61.74.65.56.61.6C.69.64 ; 'certificateValid' id-privateKeyValid = %x70.72.69.76.61.74.65.4B.65.79.56.61.6C.69.64 ; 'privateKeyValid' id-subjectPublicKeyAlgID = %x73.75.62.6A.65.63.74.50.75.62.6C.69.63.4B.65.79.41.6C.67.49.44 ; 'subjectPublicKeyAlgID' id-keyUsage = %x6B.65.79.55.73.61.67.65 ; 'keyUsage' id-subjectAltName = %x73.75.62.6A.65.63.74.41.6C.74.4E.61.6D.65 ; 'subjectAltName' id-policy = %x70.6F.6C.69.63.79 ; 'policy' id-pathToName = %x70.61.74.68.54.6F.4E.61.6D.65 ; 'pathToName' id-subject = %x73.75.62.6A.65.63.74 ; 'subject' id-nameConstraints = %x6E.61.6D.65.43.6F.6E.73.74.72.61.69.6E.74.73 ; 'nameConstraints' SubjectKeyIdentifier = KeyIdentifier KeyIdentifier = OCTET-STRING AuthorityKeyIdentifier = "{" [ sp aki-keyIdentifier ] [ sep sp aki-authorityCertIssuer ] [ sep sp aki-authorityCertSerialNumber ] sp "}" aki-keyIdentifier = id-keyIdentifier msp KeyIdentifier aki-authorityCertIssuer = id-authorityCertIssuer msp GeneralNames GeneralNames = "{" sp GeneralName *( "," sp GeneralName ) sp "}" GeneralName = gn-otherName / gn-rfc822Name / gn-dNSName / gn-x400Address / gn-directoryName / gn-ediPartyName / gn-uniformResourceIdentifier / gn-iPAddress / gn-registeredID gn-otherName = id-otherName ":" OtherName gn-rfc822Name = id-rfc822Name ":" IA5String gn-dNSName = id-dNSName ":" IA5String gn-x400Address = id-x400Address ":" ORAddress gn-directoryName = id-directoryName ":" Name gn-ediPartyName = id-ediPartyName ":" EDIPartyName gn-iPAddress = id-iPAddress ":" OCTET-STRING gn-registeredID = gn-id-registeredID ":" OBJECT-IDENTIFIER gn-uniformResourceIdentifier = id-uniformResourceIdentifier ":" IA5String id-otherName = %x6F.74.68.65.72.4E.61.6D.65 ; 'otherName' gn-id-registeredID = %x72.65.67.69.73.74.65.72.65.64.49.44 ; 'registeredID' OtherName = "{" sp on-type-id "," sp on-value sp "}" on-type-id = id-type-id msp OBJECT-IDENTIFIER on-value = id-value msp Value ;; <Value> as defined in Section 3 of [RFC3641] id-type-id = %x74.79.70.65.2D.69.64 ; 'type-id' id-value = %x76.61.6C.75.65 ; 'value' ORAddress = dquote *SafeIA5Character dquote SafeIA5Character = %x01-21 / %x23-7F / ; ASCII minus dquote dquote dquote ; escaped double quote dquote = %x22 ; '"' (double quote) ;; Note: The <ORAddress> rule encodes the x400Address component ;; of a GeneralName as a character string between double quotes. ;; The character string is first derived according to Section 4.1 ;; of [RFC2156], and then any embedded double quotes are escaped ;; by being repeated. This resulting string is output between ;; double quotes. EDIPartyName = "{" [ sp nameAssigner "," ] sp partyName sp "}" nameAssigner = id-nameAssigner msp DirectoryString partyName = id-partyName msp DirectoryString id-nameAssigner = %x6E.61.6D.65.41.73.73.69.67.6E.65.72 ; 'nameAssigner' id-partyName = %x70.61.72.74.79.4E.61.6D.65 ; 'partyName' aki-authorityCertSerialNumber = id-authorityCertSerialNumber msp CertificateSerialNumber id-keyIdentifier = %x6B.65.79.49.64.65.6E.74.69.66.69.65.72 ; 'keyIdentifier' id-authorityCertIssuer = %x61.75.74.68.6F.72.69.74.79.43.65.72.74.49.73.73.75.65.72 ; 'authorityCertIssuer' id-authorityCertSerialNumber = %x61.75.74.68.6F.72.69.74.79.43 %x65.72.74.53.65.72.69.61.6C.4E.75.6D.62.65.72 ; 'authorityCertSerialNumber' Time = time-utcTime / time-generalizedTime time-utcTime = id-utcTime ":" UTCTime time-generalizedTime = id-generalizedTime ":" GeneralizedTime id-utcTime = %x75.74.63.54.69.6D.65 ; 'utcTime' id-generalizedTime = %x67.65.6E.65.72.61.6C.69.7A.65.64.54.69.6D.65 ; 'generalizedTime' KeyUsage = BIT-STRING / key-usage-bit-list key-usage-bit-list = "{" [ sp key-usage *( "," sp key-usage ) ] sp "}" ;; Note: The <key-usage-bit-list> rule encodes the one bits in ;; a KeyUsage value as a comma separated list of identifiers. key-usage = id-digitalSignature / id-nonRepudiation / id-keyEncipherment / id-dataEncipherment / id-keyAgreement / id-keyCertSign / id-cRLSign / id-encipherOnly / id-decipherOnly id-digitalSignature = %x64.69.67.69.74.61.6C.53.69.67.6E.61.74 %x75.72.65 ; 'digitalSignature' id-nonRepudiation = %x6E.6F.6E.52.65.70.75.64.69.61.74.69.6F.6E ; 'nonRepudiation' id-keyEncipherment = %x6B.65.79.45.6E.63.69.70.68.65.72.6D.65.6E.74 ; 'keyEncipherment' id-dataEncipherment = %x64.61.74.61.45.6E.63.69.70.68.65.72.6D.65.6E %x74 ; "dataEncipherment' id-keyAgreement = %x6B.65.79.41.67.72.65.65.6D.65.6E.74 ; 'keyAgreement' id-keyCertSign = %x6B.65.79.43.65.72.74.53.69.67.6E ; 'keyCertSign' id-cRLSign = %x63.52.4C.53.69.67.6E ; "cRLSign" id-encipherOnly = %x65.6E.63.69.70.68.65.72.4F.6E.6C.79 ; 'encipherOnly' id-decipherOnly = %x64.65.63.69.70.68.65.72.4F.6E.6C.79 ; 'decipherOnly' AltNameType = ant-builtinNameForm / ant-otherNameForm ant-builtinNameForm = id-builtinNameForm ":" BuiltinNameForm ant-otherNameForm = id-otherNameForm ":" OBJECT-IDENTIFIER id-builtinNameForm = %x62.75.69.6C.74.69.6E.4E.61.6D.65.46.6F.72.6D ; 'builtinNameForm' id-otherNameForm = %x6F.74.68.65.72.4E.61.6D.65.46.6F.72.6D ; 'otherNameForm' BuiltinNameForm = id-rfc822Name / id-dNSName / id-x400Address / id-directoryName / id-ediPartyName / id-uniformResourceIdentifier / id-iPAddress / id-registeredId id-rfc822Name = %x72.66.63.38.32.32.4E.61.6D.65 ; 'rfc822Name' id-dNSName = %x64.4E.53.4E.61.6D.65 ; 'dNSName' id-x400Address = %x78.34.30.30.41.64.64.72.65.73.73 ; 'x400Address' id-directoryName = %x64.69.72.65.63.74.6F.72.79.4E.61.6D.65 ; 'directoryName' id-ediPartyName = %x65.64.69.50.61.72.74.79.4E.61.6D.65 ; 'ediPartyName' id-iPAddress = %x69.50.41.64.64.72.65.73.73 ; 'iPAddress' id-registeredId = %x72.65.67.69.73.74.65.72.65.64.49.64 ; 'registeredId' id-uniformResourceIdentifier = %x75.6E.69.66.6F.72.6D.52.65.73.6F.75 %x72.63.65.49.64.65.6E.74.69.66.69.65.72 ; 'uniformResourceIdentifier' CertPolicySet = "{" sp CertPolicyId *( "," sp CertPolicyId ) sp "}" CertPolicyId = OBJECT-IDENTIFIER NameConstraintsSyntax = "{" [ sp ncs-permittedSubtrees ] [ sep sp ncs-excludedSubtrees ] sp "}" ncs-permittedSubtrees = id-permittedSubtrees msp GeneralSubtrees ncs-excludedSubtrees = id-excludedSubtrees msp GeneralSubtrees id-permittedSubtrees = %x70.65.72.6D.69.74.74.65.64.53.75.62.74.72.65.65.73 ; 'permittedSubtrees' id-excludedSubtrees = %x65.78.63.6C.75.64.65.64.53.75.62.74.72.65.65.73 ; 'excludedSubtrees' GeneralSubtrees = "{" sp GeneralSubtree *( "," sp GeneralSubtree ) sp "}" GeneralSubtree = "{" sp gs-base [ "," sp gs-minimum ] [ "," sp gs-maximum ] sp "}" gs-base = id-base msp GeneralName gs-minimum = id-minimum msp BaseDistance gs-maximum = id-maximum msp BaseDistance id-base = %x62.61.73.65 ; 'base' id-minimum = %x6D.69.6E.69.6D.75.6D ; 'minimum' id-maximum = %x6D.61.78.69.6D.75.6D ; 'maximum' BaseDistance = INTEGER-0-MAX A.3. CertificatePairExactAssertion CertificatePairExactAssertion = "{" [ sp cpea-issuedTo ] [sep sp cpea-issuedBy ] sp "}" ;; At least one of <cpea-issuedTo> or <cpea-issuedBy> MUST be present. cpea-issuedTo = id-issuedToThisCAAssertion msp CertificateExactAssertion cpea-issuedBy = id-issuedByThisCAAssertion msp CertificateExactAssertion id-issuedToThisCAAssertion = %x69.73.73.75.65.64.54.6F.54.68.69.73 %x43.41.41.73.73.65.72.74.69.6F.6E ; 'issuedToThisCAAssertion' id-issuedByThisCAAssertion = %x69.73.73.75.65.64.42.79.54.68.69.73 %x43.41.41.73.73.65.72.74.69.6F.6E ; 'issuedByThisCAAssertion' A.4. CertificatePairAssertion CertificatePairAssertion = "{" [ sp cpa-issuedTo ] [sep sp cpa-issuedBy ] sp "}" ;; At least one of <cpa-issuedTo> and <cpa-issuedBy> MUST be present. cpa-issuedTo = id-issuedToThisCAAssertion msp CertificateAssertion cpa-issuedBy = id-issuedByThisCAAssertion msp CertificateAssertion A.5. CertificateListExactAssertion CertificateListExactAssertion = "{" sp clea-issuer "," sp clea-thisUpdate [ "," sp clea-distributionPoint ] sp "}" clea-issuer = id-issuer msp Name clea-thisUpdate = id-thisUpdate msp Time clea-distributionPoint = id-distributionPoint msp DistributionPointName id-thisUpdate = %x74.68.69.73.55.70.64.61.74.65 ; 'thisUpdate' id-distributionPoint = %x64.69.73.74.72.69.62.75.74.69.6F.6E.50.6F.69.6E.74 ; 'distributionPoint' DistributionPointName = dpn-fullName / dpn-nameRelativeToCRLIssuer dpn-fullName = id-fullName ":" GeneralNames dpn-nameRelativeToCRLIssuer = id-nameRelativeToCRLIssuer ":" RelativeDistinguishedName id-fullName = %x66.75.6C.6C.4E.61.6D.65 ; 'fullName' id-nameRelativeToCRLIssuer = %x6E.61.6D.65.52.65.6C.61.74.69.76.65 %x54.6F.43.52.4C.49.73.73.75.65.72 ; 'nameRelativeToCRLIssuer' A.6. CertificateListAssertion CertificateListAssertion = "{" [ sp cla-issuer ] [ sep sp cla-minCRLNumber ] [ sep sp cla-maxCRLNumber ] [ sep sp cla-reasonFlags ] [ sep sp cla-dateAndTime ] [ sep sp cla-distributionPoint ] [ sep sp cla-authorityKeyIdentifier ] sp "}" cla-issuer = id-issuer msp Name cla-minCRLNumber = id-minCRLNumber msp CRLNumber cla-maxCRLNumber = id-maxCRLNumber msp CRLNumber cla-reasonFlags = id-reasonFlags msp ReasonFlags cla-dateAndTime = id-dateAndTime msp Time cla-distributionPoint = id-distributionPoint msp DistributionPointName cla-authorityKeyIdentifier = id-authorityKeyIdentifier msp AuthorityKeyIdentifier id-minCRLNumber = %x6D.69.6E.43.52.4C.4E.75.6D.62.65.72 ; 'minCRLNumber' id-maxCRLNumber = %x6D.61.78.43.52.4C.4E.75.6D.62.65.72 ; 'maxCRLNumber' id-reasonFlags = %x72.65.61.73.6F.6E.46.6C.61.67.73 ; 'reasonFlags' id-dateAndTime = %x64.61.74.65.41.6E.64.54.69.6D.65 ; 'dateAndTime' CRLNumber = INTEGER-0-MAX ReasonFlags = BIT-STRING / "{" [ sp reason-flag *( "," sp reason-flag ) ] sp "}" reason-flag = id-unused / id-keyCompromise / id-cACompromise / id-affiliationChanged / id-superseded / id-cessationOfOperation / id-certificateHold / id-privilegeWithdrawn / id-aACompromise id-unused = %x75.6E.75.73.65.64 ; 'unused' id-keyCompromise = %x6B.65.79.43.6F.6D.70.72.6F.6D.69.73.65 ; 'keyCompromise' id-cACompromise = %x63.41.43.6F.6D.70.72.6F.6D.69.73.65 ; 'cACompromise' id-affiliationChanged = %x61.66.66.69.6C.69.61.74.69.6F.6E.43.68.61.6E.67.65.64 ; 'affiliationChanged' id-superseded = %x73.75.70.65.72.73.65.64.65.64 ; 'superseded' id-cessationOfOperation = %x63.65.73.73.61.74.69.6F.6E.4F.66.4F.70.65.72.61.74.69.6F.6E ; 'cessationOfOperation' id-certificateHold = %x63.65.72.74.69.66.69.63.61.74.65.48.6F.6C.64 ; 'certificateHold' id-privilegeWithdrawn = %x70.72.69.76.69.6C.65.67.65.57.69.74.68.64.72.61.77.6E ; 'privilegeWithdrawn' id-aACompromise = %x61.41.43.6F.6D.70.72.6F.6D.69.73.65 ; 'aACompromise' A.7. AlgorithmIdentifier AlgorithmIdentifier = "{" sp ai-algorithm [ "," sp ai-parameters ] sp "}" ai-algorithm = id-algorithm msp OBJECT-IDENTIFIER ai-parameters = id-parameters msp Value id-algorithm = %x61.6C.67.6F.72.69.74.68.6D ; 'algorithm' id-parameters = %x70.61.72.61.6D.65.74.65.72.73 ; 'parameters' Author's Address Kurt D. Zeilenga OpenLDAP Foundation EMail: Kurt@OpenLDAP.org Full Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Acknowledgement Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA).

mirror server hosted at Truenetwork, Russian Federation.