This is a purely informative rendering of an RFC that includes verified errata. This rendering may not be used as a reference.

The following 'Verified' errata have been incorporated in this document: EID 1882
Network Working Group                                     T. Nadeau, Ed.
Request for Comments: 3811                           Cisco Systems, Inc.
Category: Standards Track                              J. Cucchiara, Ed.
                                            Marconi Communications, Inc.
                                                               June 2004


              Definitions of Textual Conventions (TCs) for
            Multiprotocol Label Switching (MPLS) Management

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2004).

Abstract

   This memo defines a Management Information Base (MIB) module which
   contains Textual Conventions to represent commonly used Multiprotocol
   Label Switching (MPLS) management information.  The intent is that
   these TEXTUAL CONVENTIONS (TCs) will be imported and used in MPLS
   related MIB modules that would otherwise define their own
   representations.

Table of Contents

   1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .  2
   2.  The Internet-Standard Management Framework. . . . . . . . . .  2
   3.  MPLS Textual Conventions MIB Definitions. . . . . . . . . . .  2
   4.  References. . . . . . . . . . . . . . . . . . . . . . . . . . 16
       4.1.  Normative References. . . . . . . . . . . . . . . . . . 16
       4.2.  Informative References. . . . . . . . . . . . . . . . . 17
   5.  Security Considerations . . . . . . . . . . . . . . . . . . . 17
   6.  IANA Considerations . . . . . . . . . . . . . . . . . . . . . 17
   7.  Contributors. . . . . . . . . . . . . . . . . . . . . . . . . 18
   8   Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . 19
   9.  Authors' Addresses. . . . . . . . . . . . . . . . . . . . . . 19
   10. Full Copyright Statement. . . . . . . . . . . . . . . . . . . 20

1.  Introduction

   This document defines a MIB module which contains Textual Conventions
   for Multiprotocol Label Switching (MPLS) networks.  These Textual
   Conventions should be imported by MIB modules which manage MPLS
   networks.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   For an introduction to the concepts of MPLS, see [RFC3031].

2.  The Internet-Standard Management Framework

   For a detailed overview of the documents that describe the current
   Internet-Standard Management Framework, please refer to section 7 of
   RFC 3410 [RFC3410].

   Managed objects are accessed via a virtual information store, termed
   the Management Information Base or MIB.  MIB objects are generally
   accessed through the Simple Network Management Protocol (SNMP).
   Objects in the MIB are defined using the mechanisms defined in the
   Structure of Management Information (SMI).  This memo specifies a MIB
   module that is compliant to the SMIv2, which is described in STD 58,
   RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
   [RFC2580].

3.  MPLS Textual Conventions MIB Definitions

   MPLS-TC-STD-MIB DEFINITIONS ::= BEGIN

       IMPORTS

          MODULE-IDENTITY,
          Unsigned32, Integer32,
          transmission           FROM SNMPv2-SMI            -- [RFC2578]

          TEXTUAL-CONVENTION
             FROM SNMPv2-TC;                                -- [RFC2579]

       mplsTCStdMIB MODULE-IDENTITY
          LAST-UPDATED "200406030000Z" -- June 3, 2004
          ORGANIZATION
             "IETF Multiprotocol Label Switching (MPLS) Working
              Group."
          CONTACT-INFO
               "        Thomas D. Nadeau

                        Cisco Systems, Inc.
                        tnadeau@cisco.com

                        Joan Cucchiara
                        Marconi Communications, Inc.
                        jcucchiara@mindspring.com

                        Cheenu Srinivasan
                        Bloomberg L.P.
                        cheenu@bloomberg.net

                        Arun Viswanathan
                        Force10 Networks, Inc.
                        arunv@force10networks.com

                        Hans Sjostrand
                        ipUnplugged
                        hans@ipunplugged.com

                        Kireeti Kompella
                        Juniper Networks
                        kireeti@juniper.net

             Email comments to the MPLS WG Mailing List at
             mpls@uu.net."
          DESCRIPTION
              "Copyright (C) The Internet Society (2004). The
              initial version of this MIB module was published
              in RFC 3811. For full legal notices see the RFC
              itself or see:
              http://www.ietf.org/copyrights/ianamib.html

              This MIB module defines TEXTUAL-CONVENTIONs
              for concepts used in Multiprotocol Label
              Switching (MPLS) networks."

          REVISION "200406030000Z" -- June 3, 2004
          DESCRIPTION
             "Initial version published as part of RFC 3811."

           ::= { mplsStdMIB 1 }

       mplsStdMIB OBJECT IDENTIFIER

       ::= { transmission 166 }

       MplsAtmVcIdentifier ::= TEXTUAL-CONVENTION
          DISPLAY-HINT "d"

          STATUS  current
          DESCRIPTION
             "A Label Switching Router (LSR) that
              creates LDP sessions on ATM interfaces
              uses the VCI or VPI/VCI field to hold the
              LDP Label.

              VCI values MUST NOT be in the 0-31 range.
              The values 0 to 31 are reserved for other uses
              by the ITU and ATM Forum.  The value
              of 32 can only be used for the Control VC,
              although values greater than 32 could be
              configured for the Control VC.

              If a value from 0 to 31 is used for a VCI
              the management entity controlling the LDP
              subsystem should reject this with an
              inconsistentValue error.  Also, if
              the value of 32 is used for a VC which is
              NOT the Control VC, this should
              result in an inconsistentValue error."
          REFERENCE
             "MPLS using LDP and ATM VC Switching, RFC3035."
          SYNTAX  Integer32 (32..65535)

       MplsBitRate ::= TEXTUAL-CONVENTION
          DISPLAY-HINT "d"
          STATUS      current
          DESCRIPTION
             "If the value of this object is greater than zero,
              then this represents the bandwidth of this MPLS
              interface (or Label Switched Path) in units of
              '1,000 bits per second'.

              The value, when greater than zero, represents the
              bandwidth of this MPLS interface (rounded to the
              nearest 1,000) in units of 1,000 bits per second.
              If the bandwidth of the MPLS interface is between
              ((n * 1000) - 500) and ((n * 1000) + 499), the value
              of this object is n, such that n > 0.

              If the value of this object is 0 (zero), this
              means that the traffic over this MPLS interface is
              considered to be best effort."
          SYNTAX  Unsigned32 (0|1..4294967295)

       MplsBurstSize ::= TEXTUAL-CONVENTION
          DISPLAY-HINT "d"

          STATUS      current
          DESCRIPTION
             "The number of octets of MPLS data that the stream
              may send back-to-back without concern for policing.
              The value of zero indicates that an implementation
              does not support Burst Size."
          SYNTAX  Unsigned32 (0..4294967295)

       MplsExtendedTunnelId ::= TEXTUAL-CONVENTION
          STATUS        current
          DESCRIPTION
             "A unique identifier for an MPLS Tunnel.  This may
              represent an IPv4 address of the ingress or egress
              LSR for the tunnel.  This value is derived from the
              Extended Tunnel Id in RSVP or the Ingress Router ID
              for CR-LDP."
          REFERENCE
             "RSVP-TE: Extensions to RSVP for LSP Tunnels,
              [RFC3209].

              Constraint-Based LSP Setup using LDP, [RFC3212]."
          SYNTAX  Unsigned32(0..4294967295)

       MplsLabel ::= TEXTUAL-CONVENTION
          STATUS        current
          DESCRIPTION
             "This value represents an MPLS label as defined in
              [RFC3031],  [RFC3032], [RFC3034], [RFC3035] and
              [RFC3471].

              The label contents are specific to the label being
              represented, such as:

              * The label carried in an MPLS shim header
                (for LDP this is the Generic Label) is a 20-bit
                number represented by 4 octets.  Bits 0-19 contain
                a label or a reserved label value.  Bits 20-31
                MUST be zero.

                The following is quoted directly from [RFC3032].
                There are several reserved label values:

                   i. A value of 0 represents the
                      'IPv4 Explicit NULL Label'.  This label
                      value is only legal at the bottom of the
                      label stack.  It indicates that the label
                      stack must be popped, and the forwarding
                      of the packet must then be based on the

                      IPv4 header.

                  ii. A value of 1 represents the
                      'Router Alert Label'.  This label value is
                      legal anywhere in the label stack except at
                      the bottom.  When a received packet
                      contains this label value at the top of
                      the label stack, it is delivered to a
                      local software module for processing.
                      The actual forwarding of the packet
                      is determined by the label beneath it
                      in the stack.  However, if the packet is
                      forwarded further, the Router Alert Label
                      should be pushed back onto the label stack
                      before forwarding.  The use of this label
                      is analogous to the use of the
                      'Router Alert Option' in IP packets
                      [RFC2113].  Since this label
                      cannot occur at the bottom of the stack,
                      it is not associated with a
                      particular network layer protocol.

                 iii. A value of 2 represents the
                      'IPv6 Explicit NULL Label'.  This label
                      value is only legal at the bottom of the
                      label stack.  It indicates that the label
                      stack must be popped, and the forwarding
                      of the packet must then be based on the
                      IPv6 header.

                  iv. A value of 3 represents the
                      'Implicit NULL Label'.
                      This is a label that an LSR may assign and
                      distribute, but which never actually
                      appears in the encapsulation.  When an
                      LSR would otherwise replace the label
                      at the top of the stack with a new label,
                      but the new label is 'Implicit NULL',
                      the LSR will pop the stack instead of
                      doing the replacement.  Although
                      this value may never appear in the
                      encapsulation, it needs to be specified in
                      the Label Distribution Protocol, so a value
                      is reserved.

                   v. Values 4-15 are reserved.

              * The frame relay label can be either 10-bits or

                23-bits depending on the DLCI field size and the
                upper 22-bits or upper 9-bits must be zero,
                respectively.

              * For an ATM label the lower 16-bits represents the
                VCI, the next 12-bits represents the VPI and the
                remaining bits MUST be zero.

                            * The Generalized-MPLS (GMPLS) label may contain 
                a value greater than 2^24-1 and is used in
                GMPLS as defined in [RFC3471]."
EID 1882 (Verified) is as follows:

Section: MplsLabel

Original Text:

              * The Generalized-MPLS (GMPLS) label contains a
                value greater than 2^24-1 and used in GMPLS
                as defined in [RFC3471]."

Corrected Text:

              * The Generalized-MPLS (GMPLS) label may contain
                a value greater than 2^24-1 and is used in
                GMPLS as defined in [RFC3471]."
Notes:
The orriginal text implied that GMPLS labels could only be greater than
(2^24 - 1). In fact all label alues are supported.
REFERENCE "Multiprotocol Label Switching Architecture, RFC3031. MPLS Label Stack Encoding, [RFC3032]. Use of Label Switching on Frame Relay Networks, RFC3034. MPLS using LDP and ATM VC Switching, RFC3035. Generalized Multiprotocol Label Switching (GMPLS) Architecture, [RFC3471]." SYNTAX Unsigned32 (0..4294967295) MplsLabelDistributionMethod ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "The label distribution method which is also called the label advertisement mode [RFC3036]. Each interface on an LSR is configured to operate in either Downstream Unsolicited or Downstream on Demand." REFERENCE "Multiprotocol Label Switching Architecture, RFC3031. LDP Specification, RFC3036, Section 2.6.3." SYNTAX INTEGER { downstreamOnDemand(1), downstreamUnsolicited(2) } MplsLdpIdentifier ::= TEXTUAL-CONVENTION DISPLAY-HINT "1d.1d.1d.1d:2d" STATUS current DESCRIPTION "The LDP identifier is a six octet quantity which is used to identify a Label Switching Router (LSR) label space. The first four octets identify the LSR and must be a globally unique value, such as a 32-bit router ID assigned to the LSR, and the last two octets identify a specific label space within the LSR." SYNTAX OCTET STRING (SIZE (6)) MplsLsrIdentifier ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "The Label Switching Router (LSR) identifier is the first 4 bytes of the Label Distribution Protocol (LDP) identifier." SYNTAX OCTET STRING (SIZE (4)) MplsLdpLabelType ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "The Layer 2 label types which are defined for MPLS LDP and/or CR-LDP are generic(1), atm(2), or frameRelay(3)." SYNTAX INTEGER { generic(1), atm(2), frameRelay(3) } MplsLSPID ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "A unique identifier within an MPLS network that is assigned to each LSP. This is assigned at the head end of the LSP and can be used by all LSRs to identify this LSP. This value is piggybacked by the signaling protocol when this LSP is signaled within the network. This identifier can then be used at each LSR to identify which labels are being swapped to other labels for this LSP. This object can also be used to disambiguate LSPs that share the same RSVP sessions between the same source and destination. For LSPs established using CR-LDP, the LSPID is composed of the ingress LSR Router ID (or any of its own IPv4 addresses) and a locally unique CR-LSP ID to that LSR. The first two bytes carry the CR-LSPID, and the remaining 4 bytes carry the Router ID. The LSPID is useful in network management, in CR-LSP repair, and in using an already established CR-LSP as a hop in an ER-TLV. For LSPs signaled using RSVP-TE, the LSP ID is defined as a 16-bit (2 byte) identifier used in the SENDER_TEMPLATE and the FILTER_SPEC that can be changed to allow a sender to share resources with itself. The length of this object should only be 2 or 6 bytes. If the length of this octet string is 2 bytes, then it must identify an RSVP-TE LSPID, or it is 6 bytes, it must contain a CR-LDP LSPID." REFERENCE "RSVP-TE: Extensions to RSVP for LSP Tunnels, [RFC3209]. Constraint-Based LSP Setup using LDP, [RFC3212]." SYNTAX OCTET STRING (SIZE (2|6)) MplsLspType ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "Types of Label Switch Paths (LSPs) on a Label Switching Router (LSR) or a Label Edge Router (LER) are: unknown(1) -- if the LSP is not known to be one of the following. terminatingLsp(2) -- if the LSP terminates on the LSR/LER, then this is an egressing LSP which ends on the LSR/LER, originatingLsp(3) -- if the LSP originates from this LSR/LER, then this is an ingressing LSP which is the head-end of the LSP, crossConnectingLsp(4) -- if the LSP ingresses and egresses on the LSR, then it is cross-connecting on that LSR." SYNTAX INTEGER { unknown(1), terminatingLsp(2), originatingLsp(3), crossConnectingLsp(4) } MplsOwner ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "This object indicates the local network management subsystem that originally created the object(s) in question. The values of this enumeration are defined as follows: unknown(1) - the local network management subsystem cannot discern which component created the object. other(2) - the local network management subsystem is able to discern which component created the object, but the component is not listed within the following choices, e.g., command line interface (cli). snmp(3) - The Simple Network Management Protocol was used to configure this object initially. ldp(4) - The Label Distribution Protocol was used to configure this object initially. crldp(5) - The Constraint-Based Label Distribution Protocol was used to configure this object initially. rsvpTe(6) - The Resource Reservation Protocol was used to configure this object initially. policyAgent(7) - A policy agent (perhaps in combination with one of the above protocols) was used to configure this object initially. An object created by any of the above choices MAY be modified or destroyed by the same or a different choice." SYNTAX INTEGER { unknown(1), other(2), snmp(3), ldp(4), crldp(5), rsvpTe(6), policyAgent(7) } MplsPathIndexOrZero ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "A unique identifier used to identify a specific path used by a tunnel. A value of 0 (zero) means that no path is in use." SYNTAX Unsigned32(0..4294967295) MplsPathIndex ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "A unique value to index (by Path number) an entry in a table." SYNTAX Unsigned32(1..4294967295) MplsRetentionMode ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "The label retention mode which specifies whether an LSR maintains a label binding for a FEC learned from a neighbor that is not its next hop for the FEC. If the value is conservative(1) then advertised label mappings are retained only if they will be used to forward packets, i.e., if label came from a valid next hop. If the value is liberal(2) then all advertised label mappings are retained whether they are from a valid next hop or not." REFERENCE "Multiprotocol Label Switching Architecture, RFC3031. LDP Specification, RFC3036, Section 2.6.2." SYNTAX INTEGER { conservative(1), liberal(2) } MplsTunnelAffinity ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "Describes the configured 32-bit Include-any, include-all, or exclude-all constraint for constraint-based link selection." REFERENCE "RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC3209, Section 4.7.4." SYNTAX Unsigned32(0..4294967295) MplsTunnelIndex ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "A unique index into mplsTunnelTable. For tunnels signaled using RSVP, this value should correspond to the RSVP Tunnel ID used for the RSVP-TE session." SYNTAX Unsigned32 (0..65535) MplsTunnelInstanceIndex ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "The tunnel entry with instance index 0 should refer to the configured tunnel interface (if one exists). Values greater than 0, but less than or equal to 65535, should be used to indicate signaled (or backup) tunnel LSP instances. For tunnel LSPs signaled using RSVP, this value should correspond to the RSVP LSP ID used for the RSVP-TE LSP. Values greater than 65535 apply to FRR detour instances." SYNTAX Unsigned32(0|1..65535|65536..4294967295) TeHopAddressType ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "A value that represents a type of address for a Traffic Engineered (TE) Tunnel hop. unknown(0) An unknown address type. This value MUST be used if the value of the corresponding TeHopAddress object is a zero-length string. It may also be used to indicate a TeHopAddress which is not in one of the formats defined below. ipv4(1) An IPv4 network address as defined by the InetAddressIPv4 TEXTUAL-CONVENTION [RFC3291]. ipv6(2) A global IPv6 address as defined by the InetAddressIPv6 TEXTUAL-CONVENTION [RFC3291]. asnumber(3) An Autonomous System (AS) number as defined by the TeHopAddressAS TEXTUAL-CONVENTION. unnum(4) An unnumbered interface index as defined by the TeHopAddressUnnum TEXTUAL-CONVENTION. lspid(5) An LSP ID for TE Tunnels (RFC3212) as defined by the MplsLSPID TEXTUAL-CONVENTION. Each definition of a concrete TeHopAddressType value must be accompanied by a definition of a TEXTUAL-CONVENTION for use with that TeHopAddress. To support future extensions, the TeHopAddressType TEXTUAL-CONVENTION SHOULD NOT be sub-typed in object type definitions. It MAY be sub-typed in compliance statements in order to require only a subset of these address types for a compliant implementation. Implementations must ensure that TeHopAddressType objects and any dependent objects (e.g., TeHopAddress objects) are consistent. An inconsistentValue error must be generated if an attempt to change a TeHopAddressType object would, for example, lead to an undefined TeHopAddress value that is not defined herein. In particular, TeHopAddressType/TeHopAddress pairs must be changed together if the address type changes (e.g., from ipv6(2) to ipv4(1))." REFERENCE "TEXTUAL-CONVENTIONs for Internet Network Addresses, RFC3291. Constraint-Based LSP Setup using LDP, [RFC3212]" SYNTAX INTEGER { unknown(0), ipv4(1), ipv6(2), asnumber(3), unnum(4), lspid(5) } TeHopAddress ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "Denotes a generic Tunnel hop address, that is, the address of a node which an LSP traverses, including the source and destination nodes. An address may be very concrete, for example, an IPv4 host address (i.e., with prefix length 32); if this IPv4 address is an interface address, then that particular interface must be traversed. An address may also specify an 'abstract node', for example, an IPv4 address with prefix length less than 32, in which case, the LSP can traverse any node whose address falls in that range. An address may also specify an Autonomous System (AS), in which case the LSP can traverse any node that falls within that AS. A TeHopAddress value is always interpreted within the context of an TeHopAddressType value. Every usage of the TeHopAddress TEXTUAL-CONVENTION is required to specify the TeHopAddressType object which provides the context. It is suggested that the TeHopAddressType object is logically registered before the object(s) which use the TeHopAddress TEXTUAL-CONVENTION if they appear in the same logical row. The value of a TeHopAddress object must always be consistent with the value of the associated TeHopAddressType object. Attempts to set a TeHopAddress object to a value which is inconsistent with the associated TeHopAddressType must fail with an inconsistentValue error." SYNTAX OCTET STRING (SIZE (0..32)) TeHopAddressAS ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "Represents a two or four octet AS number. The AS number is represented in network byte order (MSB first). A two-octet AS number has the two MSB octets set to zero." REFERENCE "Textual Conventions for Internet Network Addresses, [RFC3291]. The InetAutonomousSystemsNumber TEXTUAL-CONVENTION has a SYNTAX of Unsigned32, whereas this TC has a SYNTAX of OCTET STRING (SIZE (4)). Both TCs represent an autonomous system number but use different syntaxes to do so." SYNTAX OCTET STRING (SIZE (4)) TeHopAddressUnnum ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "Represents an unnumbered interface: octets contents encoding 1-4 unnumbered interface network-byte order The corresponding TeHopAddressType value is unnum(5)." SYNTAX OCTET STRING(SIZE(4)) END 4. References 4.1. Normative References [RFC2113] Katz, D., "IP Router Alert Option", RFC 2113, February 1997. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP: 26, RFC 2434, October 1998. [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999. [RFC2579] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999. [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999. [RFC3031] Rosen, E., Viswananthan, A., and R. Callon, "Multiprotocol Label Switching Architecture", RFC 3031, January 2001. [RFC3032] Rosen, E., Rekhter, Y., Tappan, D., Farinacci, D., Federokow, G., Li, T., and A. Conta, "MPLS Label Stack Encoding", RFC 3032, January 2001. [RFC3034] Conta, A., Doolan, P., and A. Malis, "Use of Label Switching on Frame Relay Networks Specification", RFC 3034, January 2001. [RFC3035] Davie, B., Lawrence, J., McCloghrie, K., Rosen, E., Swallow, G., Rekhter, Y., and P. Doolan, "MPLS using LDP and ATM VC Switching", RFC 3035, January 2001. [RFC3036] Andersson, L., Doolan, P., Feldman, N., Fredette, A., and B. Thomas, "LDP Specification", RFC 3036, January 2001. [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, December 2001. [RFC3212] Jamoussi, B., Ed., Andersson, L., Callon, R., Dantu, R., Wu, L., Doolan, P., Worster, T., Feldman, N., Fredette, A., Girish, M., Gray, E., Heinanen, J., Kilty, T., and A. Malis, "Constraint-Based LSP Setup using LDP", RFC 3212, January 2002. [RFC3291] Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder, "Textual Conventions for Internet Network Addresses", RFC 3291, May 2002. [RFC3471] Berger, L., Editor, "Generalized Multi-Protocol Label Switching (GMPLS) Architecture", RFC 3471, January 2003. 4.2. Informative References [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction and Applicability Statements for Internet- Standard Management Framework", RFC 3410, December 2002. 5. Security Considerations This module does not define any management objects. Instead, it defines a set of textual conventions which may be used by other MPLS MIB modules to define management objects. Meaningful security considerations can only be written in the MIB modules that define management objects. Therefore, this document has no impact on the security of the Internet. 6. IANA Considerations IANA has made a MIB OID assignment under the transmission branch, that is, assigned the mplsStdMIB under { transmission 166 }. This sub-id is requested because 166 is the ifType for mpls(166) and is available under transmission. In the future, MPLS related standards track MIB modules should be rooted under the mplsStdMIB subtree. The IANA is requested to manage that namespace. New assignments can only be made via a Standards Action as specified in [RFC2434]. The IANA has also assigned { mplsStdMIB 1 } to the MPLS-TC-STD-MIB specified in this document. 7. Contributors This document was created by combining TEXTUAL-CONVENTIONS from current MPLS MIBs and a TE-WG MIB. Co-authors on each of these MIBs contributed to the TEXTUAL-CONVENTIONS contained in this MIB and also contributed greatly to the revisions of this document. These co- authors addresses are included here because they are useful future contacts for information about this document. These co-authors are: Cheenu Srinivasan Bloomberg L.P. 499 Park Ave. New York, NY 10022 Phone: +1-212-893-3682 EMail: cheenu@bloomberg.net Arun Viswanathan Force10 Networks, Inc. 1440 McCarthy Blvd Milpitas, CA 95035 Phone: +1-408-571-3516 EMail: arunv@force10networks.com Hans Sjostrand ipUnplugged P.O. Box 101 60 S-121 28 Stockholm, Sweden Phone: +46-8-725-5900 EMail: hans@ipunplugged.com Kireeti Kompella Juniper Networks 1194 Mathilda Ave Sunnyvale, CA 94089 Phone: +1-408-745-2000 EMail: kireeti@juniper.net 8. Acknowledgements This document is a product of the MPLS Working Group. The editors and contributors would like to thank Mike MacFadden and Adrian Farrel for their helpful comments on several reviews. Also, the editors and contributors would like to give a special acknowledgement to Bert Wijnen for his many detailed reviews. Bert's assistance and guidance is greatly appreciated. 9. Authors' Addresses Thomas D. Nadeau Cisco Systems, Inc. BXB300/2/ 300 Beaver Brook Road Boxborough, MA 01719 Phone: +1-978-936-1470 EMail: tnadeau@cisco.com Joan E. Cucchiara Marconi Communications, Inc. 900 Chelmsford Street Lowell, MA 01851 Phone: +1-978-275-7400 EMail: jcucchiara@mindspring.com 10. Full Copyright Statement Copyright (C) The Internet Society (2004). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf- ipr@ietf.org. Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.

mirror server hosted at Truenetwork, Russian Federation.