<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE rfc SYSTEM "rfc2629-xhtml.ent">
<?rfc toc="yes"?>
<?rfc tocompact="yes"?>
<?rfc tocdepth="3"?>
<?rfc tocindent="yes"?>
<?rfc symrefs="yes"?>
<?rfc sortrefs="yes"?>
<?rfc comments="yes"?>
<?rfc inline="yes"?>
<?rfc compact="yes"?>
<?rfc subcompact="no"?>

<rfc xmlns:xi="http://www.w3.org/2001/XInclude" category="info" docName="draft-ietf-lisp-introduction-13.txt"
     ipr="trust200902" obsoletes="" updates="" submissionType="IETF"
     xml:lang="en" version="3"> tocInclude="true" symRefs="true" sortRefs="true"
     version="3" number="0000" consensus="true">

  <!-- xml2rfc v2v3 conversion 2.23.0 -->

  <front>
    <title abbrev="LISP Introduction">An Architectural Introduction to the Locator/ID Separation Protocol (LISP)</title>
    <seriesInfo name="Internet-Draft" value="draft-ietf-lisp-introduction-13.txt"/> name="RFC" value="0000"/>
    <author fullname="Albert Cabellos" initials="A." surname="Cabellos">
      <organization>UPC-BarcelonaTech</organization>
      <address>
        <postal>
          <street>c/ Jordi Girona 1-3</street>
          <city>Barcelona</city>
          <code>08034</code>
          <region>Catalonia</region>
          <country>Spain</country>
        </postal>
        <email>acabello@ac.upc.edu</email>
      </address>
    </author>
    <author fullname="Damien Saucez (Ed.)" initials="D." surname="Saucez (Ed.)">
      <organization>INRIA</organization>
      <address>
        <postal>
          <street>2004 route des Lucioles BP 93</street>
          <city>Sophia Antipolis Cedex</city>
          <code>06902</code>
          <country>France</country>
        </postal>
        <email>damien.saucez@inria.fr</email>
      </address>
    </author>
    <date day="02" month="April" year="2015"/> month="August" year="2019"/>
    <area>Routing Area</area>
    <keyword>LISP</keyword>
    <keyword>Architecture</keyword>
    <abstract>
      <t>This document describes the architecture of the Locator/ID Separation
	Protocol (LISP), making it easier to read the rest of the LISP
	specifications and providing a basis for discussion about the details
	of the LISP protocols. This document is used for introductory purposes,
	more details can be found in RFC6830, the protocol specification.</t>
    </abstract>
  </front>
  <middle>
    <section numbered="true" toc="default">
      <name>Introduction</name>
      <t>This document introduces the Locator/ID Separation Protocol (LISP)
	<xref target="RFC6830" format="default"/> architecture, its main operational mechanisms and its design
	rationale. Fundamentally, LISP is built following a well-known
	architectural idea: decoupling the IP address overloaded semantics.
	Indeed and as pointed out by Noel Chiappa <xref target="RFC4984" format="default"/>, currently IP addresses both
	identify the topological location of a network attachment point as
	well as the node's identity.  However, nodes and routing have
	fundamentally different requirements, routing systems require that
	addresses are aggregatable and have topological meaning, while nodes
	require to be identified independently of their current location <xref target="RFC4984" format="default"/>.</t>
      <t>LISP creates two separate namespaces, EIDs (End-host IDentifiers) and
	RLOCs (Routing LOCators), both are
	syntactically identical to the current IPv4 and IPv6 addresses.  EIDs
	are used to uniquely identify nodes irrespective of their topological
	location and are typically routed intra-domain. RLOCs are assigned
	topologically to network attachment points and are typically routed
	inter-domain.  With LISP, the edge of the Internet (where the nodes
	are connected) and the core (where inter-domain routing occurs) can be
	logically separated and interconnected by LISP-capable routers.
	LISP also introduces a database, called the
	Mapping System, to store and retrieve mappings between identity and
	location.  LISP-capable routers exchange packets over the Internet
	core by encapsulating them to the appropriate location.</t>
      <t>In summary:</t>
      <ul spacing="normal">
        <li>RLOCs have meaning only in the underlay network, that is the underlying core routing system.</li>
        <li>EIDs have meaning only in the overlay network, which is the encapsulation relationship between LISP-capable routers.</li>
        <li>The LISP edge maps EIDs to RLOCs</li>
        <li>Within the underlay network, RLOCs have both locator and
        identifier semantics</li>
        <li>An EID within a LISP site carries both identifier and locator
        semantics to other nodes within that site</li>
        <li>An EID within a LISP site carries identifier and limited locator
       	semantics to nodes at other LISP sites (i.e., enough locator
       	information to tell that the EID is external to the site)</li>
      </ul>
      <t>The relationship described above is not unique to LISP but it is
   	common to other overlay technologies.</t>
      <t>
The initial motivation in the LISP effort is to be found in the
	   routing scalability problem <xref target="RFC4984" format="default"/>, where, if LISP were to be completely
	   deployed, the Internet core is populated with RLOCs while Traffic
	   Engineering mechanisms are pushed to the Mapping System.

          In such scenario RLOCs are quasi-static (i.e., low churn), hence making the routing system
	   scalable <xref target="Quoitin" format="default"/>, while EIDs can roam anywhere with no churn to the
	   underlying routing system. <xref target="RFC7215" format="default"/> discusses the impact of LISP on the global routing
          system during the transition period. However, the separation between location and identity
   	that LISP offers makes it suitable for use in additional
   	scenarios such as Traffic Engineering (TE), multihoming, and
   	mobility among others.</t>
      <t>This document describes the LISP architecture and its main
   operational mechanisms as well as its design rationale. It is important to note that this
	document does not specify or complement the LISP protocol. The
	interested reader should refer to the main LISP specifications <xref target="RFC6830" format="default"/> and the complementary documents <xref target="RFC6831" format="default"/>, <xref target="RFC6832" format="default"/>, <xref target="RFC6833" format="default"/>, <xref target="RFC6834" format="default"/>, <xref target="RFC6835" format="default"/>,
	<xref target="RFC6836" format="default"/>, <xref target="RFC7052" format="default"/> for the protocol specifications along with the
	LISP deployment guidelines <xref target="RFC7215" format="default"/>.</t>
    </section>
    <section numbered="true" toc="default">
      <name>Definition of Terms</name>
      <dl newline="false" newline="true" spacing="normal">
        <dt>Endpoint IDentifier (EID):</dt>
        <dd> EIDs are addresses used to uniquely identify nodes irrespective of their topological location and are typically routed intra-domain.</dd>
        <dt>Routing LOcator (RLOC):</dt>
        <dd>RLOCs are addresses assigned topologically to network attachment points and typically routed inter-domain.</dd>
        <dt>Ingress Tunnel Router (ITR):</dt>
        <dd>A LISP-capable router that encapsulates packets from a LISP site towards the core network.</dd>
        <dt>Egress Tunnel Router (ETR):</dt>
        <dd>A LISP-capable router that decapsulates packets from the core of the network towards a LISP site.</dd>
        <dt>xTR:</dt>
        <dd>A router that implements both ITR and ETR functionalities.</dd>
        <dt>Map-Request:</dt>
        <dd>A LISP signaling message used to request an EID-to-RLOC mapping.</dd>
        <dt>Map-Reply:</dt>
        <dd>A LISP signaling message sent in response to a Map-Request that contains a resolved EID-to-RLOC mapping.</dd>
        <dt>Map-Register:</dt>
        <dd>A LISP signaling message used to register an EID-to-RLOC mapping.</dd>
        <dt>Map-Notify:</dt>
        <dd>A LISP signaling message sent in response of a Map-Register to acknowledge the correct reception of an EID-to-RLOC mapping.</dd>
      </dl>
      <t>This document describes the LISP architecture and does not
	introduce any new term. The reader is referred to <xref target="RFC6830" format="default"/>, <xref target="RFC6831" format="default"/>, <xref target="RFC6832" format="default"/>, <xref target="RFC6833" format="default"/>, <xref target="RFC6834" format="default"/>, <xref target="RFC6835" format="default"/>,
       <xref target="RFC6836" format="default"/>, <xref target="RFC7052" format="default"/>, <xref target="RFC7215" format="default"/> for the complete definition of terms.</t>
    </section>
    <section numbered="true" toc="default">
      <name>LISP Architecture</name>
      <t>This section presents the LISP architecture, it first details the
      design principles of LISP and then it proceeds to describe its main aspects:
      data-plane, control-plane, and internetworking mechanisms.</t>
      <section numbered="true" toc="default">
        <name>Design Principles</name>
        <t>The LISP architecture is built on top of four basic design
        principles:</t>
        <ul spacing="normal">
          <li>Locator/Identifier split: By decoupling the overloaded semantics of the
            current IP addresses the Internet core can be assigned identity meaningful addresses and hence, can use aggregation to
            scale. Devices are assigned with relatively opaque topologically meaningful addresses that
            are independent of their topological location.</li>
          <li>Overlay architecture: Overlays route packets over the current
            Internet, allowing deployment of new protocols without changing the
            current infrastructure hence, resulting into a low deployment
            cost.</li>
          <li>Decoupled data and control-plane: Separating the data-plane
            from the control-plane allows them to scale independently and use
            different architectural approaches. This is important given that
            they typically have different requirements and allows for other data-planes to be added. While decoupled, data and control-plane
      are not completely isolated because the LISP data-plane may
      trigger control-plane activity.</li>
          <li>Incremental deployability: This principle ensures that the protocol interoperates with the legacy Internet while providing some of the targeted benefits to early adopters.</li>
        </ul>
      </section>
      <section numbered="true" toc="default">
        <name>Overview of the Architecture</name>
        <t>LISP splits architecturally the core from the edge of the Internet
        by creating two separate namespaces: Endpoint Identifiers (EIDs) and
        Routing LOCators (RLOCs). The edge consists of LISP sites (e.g., an Autonomous
        System) that use EID addresses. EIDs are IPv4 or IPv6
        addresses that uniquely identify communication end-hosts and are assigned and
        configured by the same mechanisms that exist at the time of this
	writing. EIDs do not contain inter-domain topological information and
	because of this, EIDs are usually routable at the edge (within LISP
	sites) or in the non-LISP Internet; see Section 3.5 <xref target="internetwork"/>
	for discussion of LISP site internetworking with non-LISP sites and domains in the Internet.</t>
        <t>LISP sites (at the edge of the Internet) are connected to the core
			of the Internet by means of LISP-capable routers (e.g., border
			routers).  LISP sites are connected across the core of the Internet
			using tunnels between the LISP-capable routers.
When packets originated from a LISP site are flowing towards the core network, they ingress into an encapsulated tunnel via an Ingress Tunnel Router (ITR). When packets flow from the core network to a LISP site, they egress from an encapsulated tunnel to an Egress Tunnel Router (ETR).

		An xTR is a router which can perform both ITR and ETR operations. In this context ITRs
		encapsulate packets while ETRs decapsulate them, hence LISP operates
		as an overlay on top of the current Internet core.</t>
	<figure anchor="fig1" title="A Schema of the LISP Architecture">
        <artwork name="" type="" align="left" alt=""><![CDATA[

                       /-----------------\                 ---
                       |     Mapping     |                  |
                       .     System      |                  | Control
                      -|                 |`,                | Plane
                    ,' \-----------------/  .               |
                   /                         |             ---
   ,..,           -        _,....,,          |      ,..,    |
 /     `        ,'      ,-`        `',       |    /     `   |
/        \ +-----+   ,'              `,  +-----+ /        \ |
|  EID   |-| xTR |--/        RLOC     ,--| xTR |-|  EID   | | Data
| Space  |-|     |--|       Space     |--|     |-| Space  | | Plane
\        / +-----+  .                 /  +-----+ \        / |
 `.    .'            `.              ,'           `.    .'  |
   `'-`                `.,        ,.'               `'-`   ---
                          ``'''``
  LISP Site (Edge)            Core              LISP Site (Edge)

           Figure 1.- A schema of the LISP Architecture

]]></artwork>
	</figure>
        <t>With LISP, the core uses RLOCs, an RLOC is an IPv4 or IPv6
        address assigned to an Internet-facing network interface of an ITR or
        ETR. Typically RLOCs are numbered from topologically aggregatable
        blocks assigned to a site at each point to which it attaches to the
        global Internet, the topology is defined by the connectivity of
        networks.</t>
        <t>A database which is typically distributed, called the Mapping System,
		stores mappings between EIDs and RLOCs. Such mappings relate
        the identity of the devices attached to LISP sites (EIDs) to the set
        of RLOCs configured at the LISP-capable routers servicing the site.
        Furthermore, the mappings also include traffic engineering policies
        and can be configured to achieve multihoming and load balancing. The
        LISP Mapping System is conceptually similar to the DNS
		where it is organized as a distributed multi-organization network database.
		With LISP, ETRs register mappings while ITRs retrieve them.</t>
        <t>Finally, the LISP architecture emphasizes incremental deployment. Given that LISP represents an
        overlay to the current Internet architecture, endhosts as well as
        intra and inter-domain routers remain unchanged, and the only required
        changes to the existing infrastructure are to routers connecting the
        EID with the RLOC space. Additionally, LISP requires the deployment of
        an independent Mapping System, such distributed database is a new
        network entity.</t>
        <t>The following describes a simplified packet flow sequence
        between two nodes that are attached to LISP sites. Please note that typical LISP-capable routers are xTRs (both ITR and ETR). Client HostA
        wants to send a packet to server HostB.</t>
<figure anchor="fig2" title="Packet Flow Sequence in LISP">
  <artwork name="" type="" align="left" alt=""><![CDATA[

                         /----------------\
                         |     Mapping    |
                         |     System     |
                        .|                |-
                       ` \----------------/ `.
                     ,`                       \
                    /                          `.
                  ,'         _,..-..,,           ',
                 /         -`         `-,          \
               .'        ,'              \          `,
               `        '                 \           '
           +-----+     |                   | RLOC_B1+-----+
    HostA  |     |    |        RLOC         |-------|     |  HostB
    EID_A--|ITR_A|----|        Space        |       |ETR_B|--EID_B
           |     | RLOC_A1                  |-------|     |
           +-----+     |                   | RLOC_B2+-----+
                        ,                 /
                         \               /
                          `',         ,-`
                             ``''-''``

			Figure 2.- Packet flow sequence in LISP

			]]></artwork>
      </figure>
        <ol spacing="normal" type="1">
          <li>HostA retrieves the EID_B of HostB, typically querying the DNS and obtaining an A or AAAA record.
            Then it generates an IP packet as in the Internet, the packet
            has source address EID_A and destination address EID_B.</li>
          <li>The packet is routed towards ITR_A in the LISP site using
            standard intra-domain mechanisms.</li>
          <li>ITR_A upon receiving the packet queries the Mapping System to
            retrieve the locator of ETR_B that is servicing HostB's EID_B. In order
            to do so it uses a LISP control message called Map-Request, the
            message contains EID_B as the lookup key. In turn it receives
            another LISP control message called Map-Reply, the message
            contains two locators: RLOC_B1 and RLOC_B2 along with traffic
            engineering policies: priority and weight per locator. Note that a Map-Reply can contain more locators if needed.
		   ITR_A also stores the mapping in a local cache to speed-up
		   forwarding of subsequent packets.</li>
          <li>ITR_A encapsulates the packet towards RLOC_B1 (chosen according
            to the priorities/weights specified in the mapping). The packet contains two
            IP headers, the outer header has RLOC_A1 as source and RLOC_B1 as
            destination, the inner original header has EID_A as source and EID_B as
            destination. Furthermore ITR_A adds a LISP header, more details
            about LISP encapsulation can be found in <xref target="encapsulation" format="default"/>.</li>
          <li>The encapsulated packet is forwarded by the Internet core as a
            normal IP packet, making the EID invisible from the Internet core.</li>
          <li>Upon reception of the encapsulated packet by ETR_B, it
            decapsulates the packet and forwards it to HostB.</li>
        </ol>
      </section>
      <section numbered="true" toc="default">
        <name>Data-Plane</name>
        <t>This section provides a high-level description of the LISP data-plane,
		which is specified in detail in <xref target="RFC6830" format="default"/>. The LISP data-plane is responsible for
        encapsulating and decapsulating data packets and caching the
        appropriate forwarding state. It includes two main entities, the ITR
        and the ETR, both are LISP capable routers that connect the EID with
	the RLOC space (ITR) and vice versa (ETR). </t>
        <section anchor="encapsulation" numbered="true" toc="default">
          <name>LISP Encapsulation</name>
          <t>ITRs encapsulate data packets towards ETRs. LISP data packets are
          encapsulated using UDP (port 4341), the source port is usually selected by the ITR using a 5-tuple hash of the inner header (so to be consistent in case of multi-path solutions such as ECMP <xref target="RFC2992" format="default"/>) and ignored on reception.  LISP data packets are often encapsulated in UDP packets that
		  include a zero checksum <xref target="RFC6935" format="default"/> <xref target="RFC6936" format="default"/> that is not verified
		  when it is received, because LISP data packets typically include
		  an inner transport protocol header with a non-zero checksum. By
		  omitting the additional outer UDP encapsulation checksum, xTRs
		  can forward packets more efficiently. If LISP data packets are
		  encapsulated in UDP packets with non-zero checksums, the outer
		  UDP checksums are verified when the UDP packets are received, as
		  part of normal UDP processing.</t>
          <t>LISP-encapsulated packets also include a LISP header (after the
          UDP header and before the original IP header). The LISP header is prepended by ITRs and striped by
          ETRs. It carries reachability information (see more details in <xref target="reachability" format="default"/>) and the Instance ID
	  field.
	  The Instance ID field is used to distinguish traffic to/from
	  different tenant address spaces at the LISP site and that may use
	  overlapped but logically separated EID addressing.</t>
          <t>Overall, LISP works on 4 headers, the inner header the source constructed, and the 3 headers a LISP encapsulator prepends ("outer" to "inner"):</t>
          <ol spacing="normal" type="1">
            <li>Outer IP header containing RLOCs as source and destination
              addresses. This header is originated by ITRs and stripped by
              ETRs.</li>
            <li>UDP header (port 4341) with zero checksum. This header is
              originated by ITRs and stripped by ETRs.</li>
            <li>LISP header that contains various forwarding-plane features (such as reachability) and an
              Instance ID field. This header is originated by ITRs and
              stripped by ETRs.</li>
            <li>Inner IP header containing EIDs as source and destination
              addresses. This header is created by the source end-host and
              is left unchanged by LISP data plane processing on the ITR and ETR.</li>
          </ol>
          <t>Finally, in some scenarios Re-encapsulating and/or Recursive
				tunnels are useful to choose a specified path in the underlay network, for instance to avoid congestion or failure.
				Re-encapsulating tunnels are consecutive LISP tunnels and occur when
				a decapsulator (an ETR action) removes a LISP header and then acts as an encapsultor (an ITR action) to prepend
				another one.  On the other hand, Recursive tunnels are nested tunnels
				and are implemented by using multiple LISP encapsulations on a packet. Such functions are implemented by Reencapsulating Tunnel
				Routers (RTRs). An RTR can be thought of as a router that first acts as an ETR by decapsulating packets and then as an ITR by encapsulating them towards another locator, more information can be found at <xref target="RFC6830" format="default"/>.</t>
        </section>
        <section numbered="true" toc="default">
          <name>LISP Forwarding State</name>
          <t>In the LISP architecture, ITRs keep just enough information to route
   		traffic flowing through them. Meaning that, ITRs retrieve from the LISP
   		Mapping System mappings between EID-prefixes (blocks of EIDs) and RLOCs that are used
   		to encapsulate packets.  Such mappings are stored in a local cache
 		called the Map-Cache for subsequent packets addressed to the same EID
   		prefix.  Note that, in case of overlapping EID-prefixes, following a
   		single request, the ITR may receive a set of mappings, covering the
   		requested EID-prefix and all more-specifics (cf., Section 6.1.5 (cf. <xref
		target="RFC6830" format="default"/>). sectionFormat="comma" section="6.1.5"/>). Mappings include a (Time-to-Live) TTL (set by the ETR).
   		More details about the Map-Cache management can be found in <xref target="management" format="default"/>.
          </t>
        </section>
      </section>
      <section numbered="true" toc="default">
        <name>Control-Plane</name>
        <t>
		The LISP control-plane, specified in <xref target="RFC6833" format="default"/>, provides a standard
		interface to register and request mappings.  The LISP
		Mapping System is a database that stores such
		mappings.  The following first describes the mappings, then the
		standard interface to the Mapping System, and finally its architecture.</t>
        <section numbered="true" toc="default">
          <name>LISP Mappings</name>
          <t>Each mapping includes the bindings between EID prefix(es) and
          set of RLOCs as well as traffic engineering policies, in the form of
          priorities and weights for the RLOCs. Priorities allow the ETR to
          configure active/backup policies while weights are used to
          load-balance traffic among the RLOCs (on a per-flow basis).</t>
          <t>Typical mappings in LISP bind EIDs in the form of IP prefixes with
		a set of RLOCs, also in the form of IPs.  IPv4 and IPv6 addresses are
		encoded using the appropriate Address Family Identifier (AFI)
		<xref target="RFC3232" format="default"/>. However LISP can also support more general address encoding
		by means of the ongoing effort around the LISP Canonical Address Format (LCAF)
		<xref target="I-D.ietf-lisp-lcaf" format="default"/>.</t>
          <t>With such a general syntax for address encoding in place, LISP
          aims to provide flexibility to current and future applications. For
          instance LCAFs could support
          MAC addresses, geo-coordinates, ASCII names and application specific
          data.</t>
        </section>
        <section numbered="true" toc="default">
          <name>Mapping System Interface</name>
          <t>LISP defines a standard interface between data and control
          planes. The interface is specified in <xref target="RFC6833" format="default"/> and
          defines two entities:</t>
          <dl newline="false" newline="true" spacing="normal">
            <dt>Map-Server:</dt>
            <dd>A network infrastructure component
              that learns mappings from ETRs and publishes them into the LISP
              Mapping System. Typically Map-Servers are not authoritative to
              reply to queries and hence, they forward them to the ETR.
              However they can also operate in proxy-mode, where the ETRs
              delegate replying to queries to Map-Servers. This setup is
              useful when the ETR has limited resources (i.e., CPU or power).</dd>
            <dt>Map-Resolver:</dt>
            <dd>A network infrastructure component
              that interfaces ITRs with the Mapping System by proxying queries
              and in some cases responses. </dd>
          </dl>
          <t> The interface defines four LISP control messages which are
          sent as UDP datagrams (port 4342):</t>
          <dl newline="false" newline="true" spacing="normal">
            <dt>Map-Register:</dt>
            <dd>This message is used by ETRs to
              register mappings in the Mapping System and it is authenticated
              using a shared key between the ETR and the Map-Server.</dd>
            <dt>Map-Notify:</dt>
            <dd>When requested by the ETR, this message is sent by the
			Map-Server in response to a Map-Register to acknowledge the correct
			reception of the mapping and convey the latest Map-Server state on the
			EID to RLOC mapping. In some cases a Map-Notify can be sent to the previous RLOCs when an EID is registered by a new set of RLOCs.</dd>
            <dt>Map-Request:</dt>
            <dd>This message is used by ITRs or
              Map-Resolvers to resolve the mapping of a given EID.</dd>
            <dt>Map-Reply:</dt>
            <dd>This message is sent by Map-Servers or ETRs in response to
			a Map-Request and contains the resolved mapping.  Please note that a
			Map-Reply may contain a negative reply if, for example, the queried EID is not part
			of the LISP EID space.  In such cases the ITR typically forwards the
			traffic natively (non encapsulated) to the public Internet, this
			behavior is defined to support incremental deployment of LISP.</dd>
          </dl>
        </section>
        <section numbered="true" toc="default">
          <name>Mapping System</name>
          <t>LISP architecturally decouples control and data-plane by means of
          a standard interface. This interface glues the data-plane, routers
          responsible for forwarding data-packets, with the LISP Mapping
          System, a database responsible for storing
          mappings.</t>
          <t>With this separation in place the data and control-plane can use
          different architectures if needed and scale independently.
          Typically the data-plane is optimized to route packets according to
          hierarchical IP addresses. However the control-plane may have
          different requirements, for instance and by taking advantage of the
          LCAFs, the Mapping System may be used to store
          non-hierarchical keys (such as MAC addresses),
          requiring different architectural approaches for scalability.
          Another important difference between the LISP control and
          data-planes is that, and as a result of the local mapping cache
          available at ITR, the Mapping System does not need to operate at
          line-rate.</t>
          <t>
	      Many of the existing mechanisms to create distributed systems have been explored and considered for the Mapping System architecture:
           graph-based databases in the form of LISP+ALT <xref target="RFC6836" format="default"/>, hierarchical databases in the form of LISP-DDT
          <xref target="I-D.ietf-lisp-ddt" format="default"/>, monolithic databases in the form
          of LISP-NERD <xref target="RFC6837" format="default"/>, flat databases
          in the form of LISP-DHT <xref target="I-D.cheng-lisp-shdht" format="default"/>,<xref target="Mathy" format="default"/> and, a multicast-based database <xref target="I-D.curran-lisp-emacs" format="default"/>. Furthermore it is worth noting that, in some
          scenarios such as private deployments, the Mapping System can operate as logically centralized.
          In such cases it is typically composed of a single Map-Server/Map-Resolver.</t>
          <t>The following focuses on the two mapping systems that have
          been implemented and deployed (LISP-ALT and LISP+DDT).</t>
          <section numbered="true" toc="default">
            <name>LISP+ALT</name>
            <t>
		  The LISP Alternative Topology (LISP+ALT) <xref target="RFC6836" format="default"/> was the first
			Mapping System proposed, developed and deployed on the LISP pilot
			network.  It is based on a distributed BGP overlay participated by
			Map-Servers and Map-Resolvers. The nodes connect to their peers
			through static tunnels. Each Map-Server involved in the ALT topology
			advertises the EID-prefixes registered by the serviced ETRs, making
			the EID routable on the ALT topology.
            </t>
            <t>When an ITR needs a mapping it sends a Map-Request to a Map-Resolver
			that, using the ALT topology, forwards the Map-Request towards the
			Map-Server responsible for the mapping. Upon reception the Map-Server
			forwards the request to the ETR that in turn, replies directly to the
			ITR using the native Internet core.</t>
          </section>
          <section numbered="true" toc="default">
            <name>LISP-DDT</name>
            <t>
		  LISP-DDT <xref target="I-D.ietf-lisp-ddt" format="default"/> is conceptually similar to the DNS, a
			hierarchical directory whose internal structure mirrors the
			hierarchical nature of the EID address space.  The DDT hierarchy is
			composed of DDT nodes forming a tree structure, the leafs of the tree
			are Map-Servers.  On top of the structure there is the DDT root node
			<xref target="DDT-ROOT" format="default"/>, which is a particular instance of a DDT node and that
			matches the entire address space.  As in the case of DNS, DDT supports
			multiple redundant DDT nodes and/or DDT roots. Finally, Map-Resolvers
			are the clients of the DDT hierarchy and can query either the DDT root
			and/or other DDT nodes.
            </t>
<figure anchor="fig3" title="A Schematic Representation of the DDT Tree Structure">
            <artwork name="" type="" align="left" alt=""><![CDATA[
                        /---------\
                        |         |
                        | DDT Root|
                        |   /0    |
                      ,.\---------/-,
                  ,-'`       |       `'.,
               -'`           |           `-
           /-------\     /-------\    /-------\
           |  DDT  |     |  DDT  |    |  DDT  |
           | Node  |     | Node  |    | Note  |  ...
           |  0/8  |     |  1/8  |    |  2/8  |
           \-------/     \-------/    \-------/
         _.                _.            . -..,,,_
       -`                -`              \        ````''--
+------------+     +------------+   +------------+ +------------+
| Map-Server |     | Map-Server |   | Map-Server | | Map-Server |
| EID-prefix1|     | EID-prefix2|   | EID-prefix3| | EID-prefix4|
+------------+     +------------+   +------------+ +------------+

      Figure 3.- A schematic representation of

]]></artwork>
</figure>
<t>
Note: In the DDT tree structure,
              please note that figure above, the prefixes and the structure depicted should be only
be considered as an example.

]]></artwork> example.</t>
            <t>The DDT structure does not actually index EID-prefixes but
            eXtended EID-prefixes (XEID). An XEID-prefix is just the
            concatenation of the following fields (from most significant bit
            to less significant bit): Database-ID, Instance ID, Address Family
            Identifier and the actual EID-prefix. The Database-ID is provided
            for possible future requirements of higher levels in the hierarchy
            and to enable the creation of multiple and separate database
            trees.</t>
            <t>In order to resolve a query LISP-DDT operates in a similar way to the
			DNS but only supports iterative lookups. DDT clients (usually Map-Resolvers)
            generate Map-Requests to the DDT root node. In response they
            receive a newly introduced LISP-control message: a Map-Referral. A
            Map-Referral provides the list of RLOCs of the set of DDT nodes
            matching a configured XEID delegation. That is, the information
            contained in the Map-Referral points to the child of the queried
            DDT node that has more specific information about the queried
            XEID-prefix. This process is repeated until the DDT client walks
            the tree structure (downwards) and discovers the Map-Server
            servicing the queried XEID. At this point the client sends a
            Map-Request and receives a Map-Reply containing the mappings. It
            is important to note that DDT clients can also cache the
            information contained in Map-Referrals, that is, they cache the
            DDT structure. This is used to reduce the mapping retrieving
            latency<xref
            latency <xref target="Jakab" format="default"/>.</t>
            <t>The DDT Mapping System relies on manual configuration. That is
            Map- Resolvers are manually configured with the set of available
            DDT root nodes while DDT nodes are manually configured with the
            appropriate XEID delegations. Configuration changes in the DDT
            nodes are only required when the tree structure changes itself,
            but it doesn't depend on EID dynamics (RLOC allocation or traffic
            engineering policy changes).</t>
          </section>
        </section>
      </section>
      <section numbered="true" toc="default"> toc="default" anchor="internetwork">
        <name>Internetworking Mechanisms</name>
        <t>EIDs are typically identical to either IPv4 or IPv6 addresses and
        they are stored in the LISP Mapping System, however they are usually not
        announced in the Internet global routing system. As a result LISP
        requires an internetworking mechanism to allow LISP sites to speak
        with non-LISP sites and vice versa. LISP internetworking mechanisms are
        specified in <xref target="RFC6832" format="default"/>.</t>
        <t>LISP defines two entities to provide internetworking:</t>
        <dl newline="false" newline="true" spacing="normal">
          <dt>Proxy Ingress Tunnel Router (PITR):</dt>
          <dd>PITRs provide
            connectivity from the legacy Internet to LISP sites. PITRs
            announce in the global routing system blocks of EID prefixes
            (aggregating when possible) to attract traffic. For each incoming packet from a source not in a LISP site (a non-EID),
			the PITR LISP-encapsulates it towards the RLOC(s) of
            the appropriate LISP site. The impact of PITRs in the routing
            table size of the Default-Free Zone (DFZ) is, in the worst-case, similar to the case
            in which LISP is not deployed. EID-prefixes will be aggregated
            as much as possible both by the PITR and by the global routing system.</dd>
          <dt>Proxy Egress Tunnel Router (PETR):</dt>
          <dd>PETRs provide
            connectivity from LISP sites to the legacy Internet. In some scenarios, LISP sites may be unable to send encapsulated
			packets with a local EID address as a source to the legacy Internet. For instance when Unicast Reverse Path
            Forwarding (uRPF) is used by Provider Edge routers, or when an
            intermediate network between a LISP site and a non-LISP site does
            not support the desired version of IP (IPv4 or IPv6). In both
            cases the PETR  overcomes such limitations by
            encapsulating packets over the network.
 There is no specified provision for the distribution of PETR RLOC addresses to the ITRs.</dd>
        </dl>
        <t>Additionally, LISP also defines mechanisms to operate with private EIDs <xref target="RFC1918" format="default"/> by means of LISP-NAT <xref target="RFC6832" format="default"/>. In this case
		the xTR replaces a private EID source address with a routable one. At the time of this writing, work is ongoing to define NAT-traversal capabilities, that is xTRs behind a NAT using non-routable RLOCs.</t>
        <t>PITRs, PETRs and, LISP-NAT enable incremental deployment of LISP,
		by providing significant flexibility in the placement of the boundaries between the
		LISP and non-LISP portions of the network, and making it easy to change those boundaries over time.</t>
      </section>
    </section>
    <section numbered="true" toc="default">
      <name>LISP Operational Mechanisms</name>
      <t>This section details the main operational mechanisms defined in
      LISP.</t>
      <section anchor="management" numbered="true" toc="default">
        <name>Cache Management</name>
        <t>LISP's decoupled control and data-plane, where mappings are
          stored in the control-plane and used for forwarding in the data
          plane, requires a local cache in ITRs to reduce signaling
          overhead (Map-Request/Map-Reply) and increase forwarding speed. The
          local cache available at the ITRs, called Map-Cache, is used by the
          router to LISP-encapsulate packets. The Map-Cache is indexed by
          (Instance ID, EID-prefix) and contains basically the set
          of RLOCs with the associated traffic engineering policies (priorities and
          weights).</t>
        <t>The Map-Cache, as any other cache, requires cache coherence
          mechanisms to maintain up-to-date information. LISP defines three
          main mechanisms for cache coherence:</t>
        <dl newline="false" newline="true" spacing="normal">
          <dt>Time-To-Live (TTL):</dt>
          <dd>Each mapping contains a TTL set by the ETR, upon
				expiration of the TTL the ITR can't use the mapping until it is refreshed by
				sending a new Map-Request.  Typical values for TTL defined by LISP
				are 24 hours.</dd>
          <dt>Solicit-Map-Request (SMR):</dt>
          <dd>SMR is an explicit
              mechanism to update mapping information. In particular a special
              type of Map-Request can be sent on demand by ETRs to request refreshing
             a mapping. Upon reception of a SMR
              message, the ITR must refresh the bindings by sending a
              Map-Request to the Mapping System. Further uses of SMRs are documented in <xref target="RFC6830" format="default"/>.</dd>
          <dt>Map-Versioning:</dt>
          <dd>This optional mechanism piggybacks in the LISP header of data-packets the
            version number of the mappings used by an xTR.  This way, when an xTR receives
            a LISP-encapsulated packet from a remote xTR, it can check whether its own
            Map-Cache or the one of the remote xTR is outdated.  If its Map-Cache is
            outdated, it sends a Map-Request for the remote EID so to obtain the newest
            mappings.  On the contrary, if it detects that the remote xTR Map-Cache is
            outdated, it sends a SMR to notify it that a new mapping is available.</dd>
        </dl>
        <t>Finally it is worth noting that in some cases an entry in the
			map-cache can be proactively refreshed using the mechanisms described
			in the section below.</t>
      </section>
      <section anchor="reachability" numbered="true" toc="default">
        <name>RLOC Reachability</name>
        <t>In most cases LISP operates with a pull-based Mapping System (e.g., DDT),
		this results in an edge to edge pull architecture. In such scenario the network
		state is stored in the control-plane while the data-plane pulls it on demand.
		This has consequences concerning the propagation of xTRs reachability/liveness
		information since pull architectures require explicit mechanisms to propagate this information.
		As a result LISP defines a set of mechanisms to inform ITRs and PITRS about the reachability of the cached RLOCs:</t>
        <t>Locator
<dl newline="true" spacing="normal">
<dt>Locator Status Bits (LSB): LSB (LSB):</dt><dd>LSB is a passive technique, the LSB field is carried by data-packets
		in the LISP header and can be set by a ETRs to specify which RLOCs of the ETR site are
		up/down. This information
        can be used by the ITRs as a hint about the reachability to perform
        additional checks. Also note that LSB does not provide path
        reachability status, only hints on the status of RLOCs.</t>
        <t>Echo-nonce: This RLOCs.</dd>
        <dt>Echo-nonce:</dt><dd>This is also a passive technique, that can only operate
        effectively when data flows bi-directionally between two communicating xTRs.
        Basically, an ITR piggybacks a random number (called nonce) in LISP
        data packets, if the path and the probed locator are up, the ETR will
        piggyback the same random number on the next data-packet, if this is
        not the case the ITR can set the locator as unreachable. When traffic
        flow is unidirectional or when the ETR receiving the traffic is not
        the same as the ITR that transmits it back, additional mechanisms are
        required.</t>
        <t>RLOC-probing: This
        required.</dd>
        <dt>RLOC-probing:</dt><dd>This is an active probing algorithm where ITRs send
		probes to specific locators, this effectively probes both the locator
		and the path. In particular this is done by sending a Map-Request
		(with certain flags activated) on the data-plane (RLOC space) and
		waiting in return a Map-Reply, also sent on the data-plane. The active
        nature of RLOC-probing provides an effective mechanism to determine
        reachability and, in case of failure, switching to a different
        locator. Furthermore the mechanism also provides useful RTT
        estimates of the delay of the path that can be used by other network
        algorithms.</t>
        algorithms.</dd>
      </dl>
        <t>It is worth noting that RLOC probing and Echo-nonce can work together.
		Specifically if a nonce is not echoed, an ITR could RLOC-probe to
		determine if the path is up when it cannot tell the difference between a
		failed bidirectional path or the return path is not used (a
	unidirectional path).</t>

        <t>Additionally, LISP also recommends inferring reachability of
        locators by using information provided by the underlay, in
        particular:</t>
        <t>ICMP signaling: The
	<dl newline="true" spacing="normal">
        <dt>ICMP signaling:</dt><dd>The LISP underlay -the current Internet- uses the
        ICMP protocol to signal unreachability (among other things). LISP can
        take advantage of this and the reception of a ICMP Network Unreachable
        or ICMP Host Unreachable message can be seen as a hint that a locator
        might be unreachable, this should lead to perform additional
        checks.</t>
        <t>Underlay routing: Both
        checks.</dd>
        <dt>Underlay routing:</dt><dd>Both BGP and IBGP carry reachability information,
        LISP-capable routers that have access to underlay routing information
        can use it to determine if a given locator or path are reachable.</t> reachable.</dd>
	</dl>
      </section>
      <section numbered="true" toc="default">
        <name>ETR Synchronization</name>
        <t>All the ETRs that are authoritative to a particular EID-prefix must
		announce the same mapping to the requesters, this means that ETRs must be
		aware of the status of the RLOCs of the remaining ETRs. This is known as
		ETR synchronization.</t>
        <t>At the time of this writing LISP does not specify a mechanism to achieve ETR
		  synchronization. Although many well-known techniques could be applied to solve this issue
		  it is still under research, as a result operators must
		  rely on coherent manual configuration</t>
      </section>
      <section numbered="true" toc="default">
        <name>MTU Handling</name>
        <t>Since LISP encapsulates packets it requires dealing with packets that exceed the MTU of the path between the ITR
                and the ETR. Specifically LISP defines two mechanisms:</t>
        <dl newline="false" newline="true" spacing="normal">
          <dt>Stateless:</dt>
          <dd>With this mechanism the effective MTU is assumed from the
				ITR's perspective. If a payload packet is too big for the effective MTU, and
				can be fragmented, the payload packet is fragmented on the ITR, such that
				reassembly is performed at the destination host.</dd>
          <dt>Stateful:</dt>
          <dd>With this mechanism ITRs keep track of the MTU of the
				paths towards the destination locators by parsing the ICMP Too Big
				packets sent by intermediate routers. ITRs will send ICMP Too Big messages to inform the sources about the effective MTU.
				Additionally ITRs can use mechanisms such as PMTUD <xref target="RFC1191" format="default"/> or PLPMTUD <xref target="RFC4821" format="default"/> to keep track of the MTU towards the locators.</dd>
        </dl>
        <t>In both cases if the packet cannot be fragmented (IPv4 with DF=1 or IPv6) then the ITR drops
                it and replies with a ICMP Too Big message to the source.</t>
      </section>
    </section>
    <section numbered="true" toc="default">
      <name>Mobility</name>
      <t>The separation between locators and identifiers in LISP is suitable
		for traffic engineering purpose where LISP sites can change their attachment
		points to the Internet (i.e., RLOCs) without impacting endpoints or the
		Internet core. In this context, the border routers operate the xTR
		functionality and endpoints are not aware of the existence of LISP. This functionality is similar to Network Mobility <xref target="RFC3963" format="default"/>. However,
		this mode of operation does not allow seamless mobility of endpoints between
		different LISP sites as the EID address might not be routable in a visited
		site.  Nevertheless, LISP can be used to enable seamless IP mobility when LISP
		is directly implemented in the endpoint or when the endpoint roams to an attached xTR.
		Each endpoint is then an xTR and the EID address is the one presented to the network stack used by applications
		while the RLOC is the address gathered from the network when it is visited. This functionality is similar to Mobile IP (<xref target="RFC5944" format="default"/> and <xref target="RFC6275" format="default"/>).</t>
      <t>Whenever the device changes of RLOC, the xTR updates the RLOC of its
          local mapping and registers it to its Map-Server, typically with a low TTL value (1min). To avoid the need of a
          home gateway, the ITR also indicates the RLOC change to all remote devices
          that have ongoing communications with the device that moved.  The
          combination of both methods ensures the scalability of the system as
          signaling is strictly limited the Map-Server and to hosts with which
          communications are ongoing. In the mobility case the EID-prefix can be as small as a full /32 or /128 (IPv4 or IPv6 respectively) depending on the specific use-case (e.g., subnet mobility vs single VM/Mobile node mobility).</t>
      <t>The decoupled identity and location provided by LISP allows it to operate with other layer 2 and layer 3 mobility solutions.</t>
    </section>
    <section numbered="true" toc="default">
      <name>Multicast</name>
      <t>LISP also supports transporting IP multicast packets sent from the EID
		space, the operational changes required to the multicast protocols are
		documented in <xref target="RFC6831" format="default"/>.</t>
      <t>In such scenarios, LISP may create multicast state both at the core
		and at the sites (both source and receiver).  When signaling is used
		to create multicast state at the sites, LISP routers unicast encapsulate
		PIM Join/Prune messages from receiver to source sites.  At the core,
		ETRs build a new PIM Join/Prune message addressed to the RLOC of the
		ITR servicing the source.  An simplified sequence is shown below</t>
      <ol spacing="normal" type="1">
        <li>An end-host willing to join a multicast channel sends an IGMP
			report. Multicast PIM routers at the LISP site propagate PIM
			Join/Prune messages (S-EID, G) towards the ETR.</li>
        <li>The join message flows to the ETR, upon reception the ETR builds two join messages,
	            the first one unicast LISP-encapsulates the original join message towards the RLOC of the
	            ITR servicing the source. This message creates (S-EID, G) multicast state at the source site.
	            The second join message contains as destination address the RLOC of the ITR
	            servicing the source (S-RLOC, G) and creates multicast state at the core.</li>
        <li>Multicast data packets originated by the source (S-EID, G) flow from the source
	        to the ITR. The ITR LISP-encapsulates the multicast packets, the outter header includes its own RLOC
	        as the source (S-RLOC) and the original multicast group address (G) as the destination. Please
	        note that multicast group address are logical and are not resolved by the mapping system. Then
	        the multicast packet is transmitted through the core towards the receiving ETRs that decapsulates
	        the packets and sends them using the receiver's site multicast state.</li>
      </ol>
      <t>Please note that the inner and outer multicast addresses are in general different,
		unless in specific cases where the underlay provider implements a tight control on the overlay. LISP specifications already support all PIM modes <xref target="RFC6831" format="default"/>. Additionally,
		LISP can support as well non-PIM mechanisms in order to maintain multicast state.</t>
    </section>
    <section numbered="true" toc="default">
      <name>Use Cases</name>
      <section numbered="true" toc="default">
        <name>Traffic Engineering</name>
        <t> A LISP site can strictly impose via which ETRs the
          traffic must enter the the LISP site network even though the path followed to reach the
          ETR is not under the control of the LISP site.  This fine control is
          implemented with the mappings.  When a remote site is willing to send
          traffic to a LISP site, it retrieves the mapping associated to the
          destination EID via the mapping system.  The mapping is sent directly by an
          authoritative ETR of the EID and is not altered by any intermediate network.  </t>
        <t>A mapping associates a list of RLOCs to an EID prefix.  Each RLOC
          corresponds to an interface of an ETR (or set of ETRs) that is able to correctly forward
          packets to EIDs in the prefix.  Each RLOC is tagged with a priority and a
          weight in the mapping.  The priority is used to indicates which RLOCs
          should be preferred to send packets (the least preferred ones being
          provided for backup purpose).  The weight permits to balance the load
          between the RLOCs with the same priority, proportionally to the weight
          value.</t>
        <t>As mappings are directly issued by the authoritative ETR of the EID and are not altered
          while transmitted to the remote site, it offers highly flexible incoming
          inter-domain traffic engineering with even the possibility for a site to support a different mapping
			policy for each remote site.
          routing policies.</t>
      </section>
      <section numbered="true" toc="default">
        <name>LISP for IPv6 Co-existence</name>
        <t>LISP encapsulations allows to transport packets using EIDs from a given
          address family (e.g., IPv6) with packets from other address families (e.g., IPv4). The absence of correlation between
          the address family of RLOCs and EIDs makes LISP a candidate to allow, e.g., IPv6 to be deployed when all of the core
			network may not have IPv6 enabled.</t>
        <t>For example, two IPv6-only data centers could be interconnected via the
          legacy IPv4 Internet. If their border routers are LISP capable, sending
          packets between the data center is done without any form of translation as
          the native IPv6 packets (in the EID space) will be LISP encapsulated and
          transmitted over the IPv4 legacy Internet by the mean of IPv4 RLOCs.</t>
      </section>
      <section numbered="true" toc="default">
        <name>LISP for Virtual Private Networks</name>
        <t>It is common to operate several virtual networks over the same
          physical infrastructure. In such virtual private networks, it is essential to distinguish which virtual
          network a packet belongs and tags or labels are used for that purpose.
          When using LISP, the distinction can be made with the Instance ID field.  When an
          ITR encapsulates a packet from a particular virtual network (e.g., known
          via the VRF or VLAN), it tags the encapsulated packet with the Instance ID
          corresponding to the virtual network of the packet.  When an ETR receives a
          packet tagged with an Instance ID it uses the Instance ID to determine how
          to treat the packet. </t>
        <t>The main usage of LISP for virtual private networks does not introduce
additional requirements on the underlying network, as long as it is  running IP.</t>
      </section>
      <section numbered="true" toc="default">
        <name>LISP for Virtual Machine Mobility in Data Centers</name>
        <t>A way to enable seamless virtual machine mobility in data center is to
          conceive the datacenter backbone as the RLOC space and the subnet
          where servers are hosted as forming the EID space. A LISP router is placed
          at the border between the backbone and each subnet. When a virtual
          machine is moved to another subnet, it can keep (temporarily) the address it had before the move so to continue without a transport layer connection reset. When an xTR detects a source address received on a subnet to be an address not assigned to the subnet, it registers the address to the Mapping System.</t>
        <t>To inform the other LISP routers that the machine moved and where, and then
		to avoid detours via the initial subnetwork, mechanisms such as the
		Solicit-Map-Request messages are used.</t>
      </section>
    </section>
    <section numbered="true" toc="default">
      <name>Security Considerations</name>
      <t>This section describes the security considerations associated to the LISP protocol.</t>
      <t>While in a push
   mapping system, the state necessary to forward packets is learned
   independently of the traffic itself, with a pull architecture, the
   system becomes reactive and data-plane events (e.g., the arrival of a
   packet for an unknown destination) may trigger control-plane events.
   This on-demand learning of mappings provides many advantages as
   discussed above but may also affect the way security is enforced.</t>
      <t>Usually, the data-plane is implemented in the fast path of routers to
        provide high performance forwarding capabilities while the control-plane
        features are implemented in the slow path to offer high flexibility and a
        performance gap of several order of magnitude can be observed between the slow
        and the fast paths.  As a consequence, the way data-plane events are notified
        to the control-plane must be thought carefully so to not overload the slow path
        and rate limiting should be used as specified in <xref target="RFC6830" format="default"/>.</t>
      <t>Care must also be taken so to not overload the mapping system (i.e., the
        control plane infrastructure) as the operations to be performed by the mapping
        system may be more complex than those on the data-plane, for that reason
        <xref target="RFC6830" format="default"/> recommends to rate limit the sending of messages to the
          mapping system.</t>
      <t>To improve resiliency and reduce the overall number of messages exchanged,
        LISP offers the possibility to leak information, such as reachabilty
        of locators, directly into data plane packets.  In environments that are not
        fully trusted, control information gleaned from data-plane packets should be
        verified before using them.</t>
      <t>
	  Mappings are the centrepiece of LISP and all precautions must be taken to
   avoid them to be manipulated or misused by malicious entities.  Using
   trustable Map-Servers that strictly respect [RFC6833] <xref target="RFC6833"/> and the lightweight
   authentication mechanism proposed by LISP-Sec <xref target="I-D.ietf-lisp-sec" format="default"/> reduces
   the risk of attacks to the mapping integrity.  In more critical
   environments, secure measures may be needed.  The way security is
   implemented for a given mapping system strongly depends on the architecture
   of the mapping system itself and the threat model assumed for the
   deployment. Thus, the mapping system security has to be discussed in the
relevant documents proposing the mapping system architecture.
      </t>
      <t>
	As with any other tunneling mechanism, middleboxes on the path between an ITR (or PITR) and an ETR (or PETR)  must implement mechanisms to strip the LISP encapsulation to correctly
	inspect the content of LISP encapsulated packets. </t>
      <t>
	    Like other map-and-encap mechanisms, LISP enables triangular routing (i.e.,
		packets of a flow cross different border routers depending on their direction).
		This means that intermediate boxes may have incomplete view on the traffic they
		inspect or manipulate. Moreover, LISP-encapsulated packets are routed
		based on the outer IP address (i.e., the RLOC), and can be
		delivered to an ETR that is not responsible of the destination EID of the
		packet or even to a network element that is not an ETR. The mitigation
		consists in applying appropriate filtering techniques on the network elements
		that can potentially receive un-expected LISP-encapsulated packets</t>
      <t>More details about security implications of LISP are discussed in
        <xref target="I-D.ietf-lisp-threats" format="default"/>.
      </t>
    </section>
    <section numbered="true" toc="default">
      <name>IANA Considerations</name>
      <t>This memo includes no request to IANA.</t>
    </section>
    <section anchor="Acknowledgements" numbered="true" toc="default">
      <name>Acknowledgements</name>
      <t>This document was initiated by Noel Chiappa and much of the core
		philosophy came from him.  The authors acknowledge the important contributions
		he has made to this work and thank him for his past efforts.</t>
      <t>The authors would also like to thank Dino Farinacci, Fabio Maino,
		Luigi Iannone,  Sharon Barkai, Isidoros Kouvelas, Christian Cassar,
		Florin Coras, Marc Binderberger, Alberto Rodriguez-Natal, Ronald Bonica,
		Chad Hintz, Robert Raszuk, Joel M. Halpern, Darrel Lewis, David Black as well as every people acknowledged in <xref target="RFC6830" format="default"/>.</t>
    </section>
  </middle>
  <back>
    <references>
      <name>References</name>
      <references>
        <name>Normative References</name>
        <reference anchor="RFC1191" target="https://www.rfc-editor.org/info/rfc1191">
          <front>
            <title>Path MTU discovery</title>
            <seriesInfo name="DOI" value="10.17487/RFC1191"/>
            <seriesInfo name="RFC" value="1191"/>
            <author initials="J.C." surname="Mogul" fullname="J.C. Mogul">
              <organization/>
            </author>
            <author initials="S.E." surname="Deering" fullname="S.E. Deering">
              <organization/>
            </author>
            <date year="1990" month="November"/>
            <abstract>
              <t>This memo describes a technique for dynamically discovering the maximum transmission unit (MTU) of an arbitrary internet path.  It specifies a small change to the way routers generate one type of ICMP message.  For a path that passes through a router that has not been so changed, this technique might not discover the correct Path MTU, but it will always choose a Path MTU as accurate as, and in many cases more accurate than, the Path MTU that would be chosen by current practice.  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC1918" target="https://www.rfc-editor.org/info/rfc1918">
          <front>
            <title>Address Allocation for Private Internets</title>
            <seriesInfo name="DOI" value="10.17487/RFC1918"/>
            <seriesInfo name="RFC" value="1918"/>
            <seriesInfo name="BCP" value="5"/>
            <author initials="Y." surname="Rekhter" fullname="Y. Rekhter">
              <organization/>
            </author>
            <author initials="B." surname="Moskowitz" fullname="B. Moskowitz">
              <organization/>
            </author>
            <author initials="D." surname="Karrenberg" fullname="D. Karrenberg">
              <organization/>
            </author>
            <author initials="G. J." surname="de Groot" fullname="G. J. de Groot">
              <organization/>
            </author>
            <author initials="E." surname="Lear" fullname="E. Lear">
              <organization/>
            </author>
            <date year="1996" month="February"/>
            <abstract>
              <t>This document describes address allocation for private internets.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC2992" target="https://www.rfc-editor.org/info/rfc2992">
          <front>
            <title>Analysis of an Equal-Cost Multi-Path Algorithm</title>
            <seriesInfo name="DOI" value="10.17487/RFC2992"/>
            <seriesInfo name="RFC" value="2992"/>
            <author initials="C." surname="Hopps" fullname="C. Hopps">
              <organization/>
            </author>
            <date year="2000" month="November"/>
            <abstract>
              <t>Equal-cost multi-path (ECMP) is a routing technique for routing packets along multiple paths of equal cost.  The forwarding engine identifies paths by next-hop.  When forwarding a packet the router must decide which next-hop (path) to use.  This document gives an analysis of one method for making that decision.  The analysis includes the performance of the algorithm and the disruption caused by changes to the set of next-hops.  This memo provides information for the Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC3232" target="https://www.rfc-editor.org/info/rfc3232">
          <front>
            <title>Assigned Numbers: RFC 1700 is Replaced by an On-line Database</title>
            <seriesInfo name="DOI" value="10.17487/RFC3232"/>
            <seriesInfo name="RFC" value="3232"/>
            <author initials="J." surname="Reynolds" fullname="J. Reynolds" role="editor">
              <organization/>
            </author>
            <date year="2002" month="January"/>
            <abstract>
              <t>This memo obsoletes RFC 1700 (STD 2) "Assigned Numbers", which contained an October 1994 snapshot of assigned Internet protocol parameters.  This memo provides information for the Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC4821" target="https://www.rfc-editor.org/info/rfc4821">
          <front>
            <title>Packetization Layer Path MTU Discovery</title>
            <seriesInfo name="DOI" value="10.17487/RFC4821"/>
            <seriesInfo name="RFC" value="4821"/>
            <author initials="M." surname="Mathis" fullname="M. Mathis">
              <organization/>
            </author>
            <author initials="J." surname="Heffner" fullname="J. Heffner">
              <organization/>
            </author>
            <date year="2007" month="March"/>
            <abstract>
              <t>This document describes a robust method for Path MTU Discovery (PMTUD) that relies on TCP or some other Packetization Layer to probe an Internet path with progressively larger packets.  This method is described as an extension to RFC 1191 and RFC 1981, which specify ICMP-based Path MTU Discovery for IP versions 4 and 6, respectively.  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC5944" target="https://www.rfc-editor.org/info/rfc5944">
          <front>
            <title>IP Mobility Support for IPv4, Revised</title>
            <seriesInfo name="DOI" value="10.17487/RFC5944"/>
            <seriesInfo name="RFC" value="5944"/>
            <author initials="C." surname="Perkins" fullname="C. Perkins" role="editor">
              <organization/>
            </author>
            <date year="2010" month="November"/>
            <abstract>
              <t>This document specifies protocol enhancements that allow transparent routing of IP datagrams to mobile nodes in the Internet.  Each mobile node is always identified by its home address, regardless of its current point of attachment to the Internet.  While situated away from its home, a mobile node is also associated with a care-of address, which provides information about its current point of attachment to the Internet.  The protocol provides for registering the care-of address with a home agent.  The home agent sends datagrams destined for the mobile node through a tunnel to the care-of address.  After arriving at the end of the tunnel, each datagram is then delivered to the mobile node.  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6275" target="https://www.rfc-editor.org/info/rfc6275">
          <front>
            <title>Mobility Support in IPv6</title>
            <seriesInfo name="DOI" value="10.17487/RFC6275"/>
            <seriesInfo name="RFC" value="6275"/>
            <author initials="C." surname="Perkins" fullname="C. Perkins" role="editor">
              <organization/>
            </author>
            <author initials="D." surname="Johnson" fullname="D. Johnson">
              <organization/>
            </author>
            <author initials="J." surname="Arkko" fullname="J. Arkko">
              <organization/>
            </author>
            <date year="2011" month="July"/>
            <abstract>
              <t>This document specifies Mobile IPv6, a protocol that allows nodes to remain reachable while moving around in the IPv6 Internet.  Each mobile node is always identified by its home address, regardless of its current point of attachment to the Internet.  While situated away from its home, a mobile node is also associated with a care-of address, which provides information about the mobile node's current location.  IPv6 packets addressed to a mobile node's home address are transparently routed to its care-of address.  The protocol enables IPv6 nodes to cache the binding of a mobile node's home address with its care-of address, and to then send any packets destined for the mobile node directly to it at this care-of address.  To support this operation, Mobile IPv6 defines a new IPv6 protocol and a new destination option.  All IPv6 nodes, whether mobile or stationary, can communicate with mobile nodes.  This document obsoletes RFC 3775. [STANDARDS-TRACK]</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC3963" target="https://www.rfc-editor.org/info/rfc3963">
          <front>
            <title>Network Mobility (NEMO) Basic Support Protocol</title>
            <seriesInfo name="DOI" value="10.17487/RFC3963"/>
            <seriesInfo name="RFC" value="3963"/>
            <author initials="V." surname="Devarapalli" fullname="V. Devarapalli">
              <organization/>
            </author>
            <author initials="R." surname="Wakikawa" fullname="R. Wakikawa">
              <organization/>
            </author>
            <author initials="A." surname="Petrescu" fullname="A. Petrescu">
              <organization/>
            </author>
            <author initials="P." surname="Thubert" fullname="P. Thubert">
              <organization/>
            </author>
            <date year="2005" month="January"/>
            <abstract>
              <t>This document describes the Network Mobility (NEMO) Basic Support protocol that enables Mobile Networks to attach to different points in the Internet.  The protocol is an extension of Mobile IPv6 and allows session continuity for every node in the Mobile Network as the network moves.  It also allows every node in the Mobile Network to be reachable while moving around.  The Mobile Router, which connects the network to the Internet, runs the NEMO Basic Support protocol with its Home Agent.  The protocol is designed so that network mobility is transparent to the nodes inside the Mobile Network.  [STANDARDS-TRACK]</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC4984" target="https://www.rfc-editor.org/info/rfc4984">
          <front>
            <title>Report from the IAB Workshop on Routing and Addressing</title>
            <seriesInfo name="DOI" value="10.17487/RFC4984"/>
            <seriesInfo name="RFC" value="4984"/>
            <author initials="D." surname="Meyer" fullname="D. Meyer" role="editor">
              <organization/>
            </author>
            <author initials="L." surname="Zhang" fullname="L. Zhang" role="editor">
              <organization/>
            </author>
            <author initials="K." surname="Fall" fullname="K. Fall" role="editor">
              <organization/>
            </author>
            <date year="2007" month="September"/>
            <abstract>
              <t>This document reports the outcome of the Routing and Addressing Workshop that was held by the Internet Architecture Board (IAB) on October 18-19, 2006, in Amsterdam, Netherlands.  The primary goal of the workshop was to develop a shared understanding of the problems that the large backbone operators are facing regarding the scalability of today's Internet routing system.  The key workshop findings include an analysis of the major factors that are driving routing table growth, constraints in router technology, and the limitations of today's Internet addressing architecture.  It is hoped that these findings will serve as input to the IETF community and help identify next steps towards effective solutions.</t>
              <t>Note that this document is a report on the proceedings of the workshop.  The views and positions documented in this report are those of the workshop participants and not of the IAB.  Furthermore, note that work on issues related to this workshop report is continuing, and this document does not intend to reflect the increased understanding of issues nor to discuss the range of potential solutions that may be the outcome of this ongoing work.  This memo provides information for the Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6830" target="https://www.rfc-editor.org/info/rfc6830">
          <front>
            <title>The Locator/ID Separation Protocol (LISP)</title>
            <seriesInfo name="DOI" value="10.17487/RFC6830"/>
            <seriesInfo name="RFC" value="6830"/>
            <author initials="D." surname="Farinacci" fullname="D. Farinacci">
              <organization/>
            </author>
            <author initials="V." surname="Fuller" fullname="V. Fuller">
              <organization/>
            </author>
            <author initials="D." surname="Meyer" fullname="D. Meyer">
              <organization/>
            </author>
            <author initials="D." surname="Lewis" fullname="D. Lewis">
              <organization/>
            </author>
            <date year="2013" month="January"/>
            <abstract>
              <t>This document describes a network-layer-based protocol that enables separation of IP addresses into two new numbering spaces: Endpoint Identifiers (EIDs) and Routing Locators (RLOCs).  No changes are required to either host protocol stacks or to the "core" of the Internet infrastructure.  The Locator/ID Separation Protocol (LISP) can be incrementally deployed, without a "flag day", and offers Traffic Engineering, multihoming, and mobility benefits to early adopters, even when there are relatively few LISP-capable sites.</t>
              <t>Design and development of LISP was largely motivated by the problem statement produced by the October 2006 IAB Routing and Addressing Workshop.  This document defines an Experimental Protocol for the Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6831" target="https://www.rfc-editor.org/info/rfc6831">
          <front>
            <title>The Locator/ID Separation Protocol (LISP) for Multicast Environments</title>
            <seriesInfo name="DOI" value="10.17487/RFC6831"/>
            <seriesInfo name="RFC" value="6831"/>
            <author initials="D." surname="Farinacci" fullname="D. Farinacci">
              <organization/>
            </author>
            <author initials="D." surname="Meyer" fullname="D. Meyer">
              <organization/>
            </author>
            <author initials="J." surname="Zwiebel" fullname="J. Zwiebel">
              <organization/>
            </author>
            <author initials="S." surname="Venaas" fullname="S. Venaas">
              <organization/>
            </author>
            <date year="2013" month="January"/>
            <abstract>
              <t>This document describes how inter-domain multicast routing will function in an environment where Locator/ID Separation is deployed using the Locator/ID Separation Protocol (LISP) architecture.   This document defines an Experimental Protocol for the Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6832" target="https://www.rfc-editor.org/info/rfc6832">
          <front>
            <title>Interworking between Locator/ID Separation Protocol (LISP) and Non-LISP Sites</title>
            <seriesInfo name="DOI" value="10.17487/RFC6832"/>
            <seriesInfo name="RFC" value="6832"/>
            <author initials="D." surname="Lewis" fullname="D. Lewis">
              <organization/>
            </author>
            <author initials="D." surname="Meyer" fullname="D. Meyer">
              <organization/>
            </author>
            <author initials="D." surname="Farinacci" fullname="D. Farinacci">
              <organization/>
            </author>
            <author initials="V." surname="Fuller" fullname="V. Fuller">
              <organization/>
            </author>
            <date year="2013" month="January"/>
            <abstract>
              <t>This document describes techniques for allowing sites running the Locator/ID Separation Protocol (LISP) to interoperate with Internet sites that may be using either IPv4, IPv6, or both but that are not running LISP.  A fundamental property of LISP-speaking sites is that they use Endpoint Identifiers (EIDs), rather than traditional IP addresses, in the source and destination fields of all traffic they emit or receive.  While EIDs are syntactically identical to IPv4 or IPv6 addresses, normally routes to them are not carried in the global routing system, so an interoperability mechanism is needed for non- LISP-speaking sites to exchange traffic with LISP-speaking sites. This document introduces three such mechanisms.  The first uses a new network element, the LISP Proxy Ingress Tunnel Router (Proxy-ITR), to act as an intermediate LISP Ingress Tunnel Router (ITR) for non-LISP- speaking hosts.  Second, this document adds Network Address Translation (NAT) functionality to LISP ITRs and LISP Egress Tunnel Routers (ETRs) to substitute routable IP addresses for non-routable EIDs.  Finally, this document introduces the Proxy Egress Tunnel Router (Proxy-ETR) to handle cases where a LISP ITR cannot send packets to non-LISP sites without encapsulation.  This document defines  an Experimental Protocol for the Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6833" target="https://www.rfc-editor.org/info/rfc6833">
          <front>
            <title>Locator/ID Separation Protocol (LISP) Map-Server Interface</title>
            <seriesInfo name="DOI" value="10.17487/RFC6833"/>
            <seriesInfo name="RFC" value="6833"/>
            <author initials="V." surname="Fuller" fullname="V. Fuller">
              <organization/>
            </author>
            <author initials="D." surname="Farinacci" fullname="D. Farinacci">
              <organization/>
            </author>
            <date year="2013" month="January"/>
            <abstract>
              <t>This document describes the Mapping Service for the Locator/ID Separation Protocol (LISP), implemented by two new types of LISP- speaking devices -- the LISP Map-Resolver and LISP Map-Server -- that provides a simplified "front end" for one or more Endpoint ID to Routing Locator mapping databases.</t>
              <t>By using this service interface and communicating with Map-Resolvers and Map-Servers, LISP Ingress Tunnel Routers and Egress Tunnel Routers are not dependent on the details of mapping database systems, which facilitates experimentation with different database designs. Since these devices implement the "edge" of the LISP infrastructure, connect directly to LISP-capable Internet end sites, and comprise the bulk of LISP-speaking devices, reducing their implementation and operational complexity should also reduce the overall cost and effort of deploying LISP.  This document defines an Experimental Protocol  for the Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6834" target="https://www.rfc-editor.org/info/rfc6834">
          <front>
            <title>Locator/ID Separation Protocol (LISP) Map-Versioning</title>
            <seriesInfo name="DOI" value="10.17487/RFC6834"/>
            <seriesInfo name="RFC" value="6834"/>
            <author initials="L." surname="Iannone" fullname="L. Iannone">
              <organization/>
            </author>
            <author initials="D." surname="Saucez" fullname="D. Saucez">
              <organization/>
            </author>
            <author initials="O." surname="Bonaventure" fullname="O. Bonaventure">
              <organization/>
            </author>
            <date year="2013" month="January"/>
            <abstract>
              <t>This document describes the LISP (Locator/ID Separation Protocol) Map-Versioning mechanism, which provides in-packet information about Endpoint ID to Routing Locator (EID-to-RLOC) mappings used to encapsulate LISP data packets.  The proposed approach is based on associating a version number to EID-to-RLOC mappings and the transport of such a version number in the LISP-specific header of LISP-encapsulated packets.  LISP Map-Versioning is particularly useful to inform communicating Ingress Tunnel Routers (ITRs) and Egress Tunnel Routers (ETRs) about modifications of the mappings used to encapsulate packets.  The mechanism is transparent to implementations not supporting this feature, since in the LISP- specific header and in the Map Records, bits used for Map-Versioning can be safely ignored by ITRs and ETRs that do not support the mechanism.  This document defines an Experimental Protocol for the  Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6835" target="https://www.rfc-editor.org/info/rfc6835">
          <front>
            <title>The Locator/ID Separation Protocol Internet Groper (LIG)</title>
            <seriesInfo name="DOI" value="10.17487/RFC6835"/>
            <seriesInfo name="RFC" value="6835"/>
            <author initials="D." surname="Farinacci" fullname="D. Farinacci">
              <organization/>
            </author>
            <author initials="D." surname="Meyer" fullname="D. Meyer">
              <organization/>
            </author>
            <date year="2013" month="January"/>
            <abstract>
              <t>A simple tool called the Locator/ID Separation Protocol (LISP) Internet Groper or 'lig' can be used to query the LISP mapping database.  This document describes how it works.  This document  is not an Internet Standards Track specification; it is published for informational purposes.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6836" target="https://www.rfc-editor.org/info/rfc6836">
          <front>
            <title>Locator/ID Separation Protocol Alternative Logical Topology (LISP+ALT)</title>
            <seriesInfo name="DOI" value="10.17487/RFC6836"/>
            <seriesInfo name="RFC" value="6836"/>
            <author initials="V." surname="Fuller" fullname="V. Fuller">
              <organization/>
            </author>
            <author initials="D." surname="Farinacci" fullname="D. Farinacci">
              <organization/>
            </author>
            <author initials="D." surname="Meyer" fullname="D. Meyer">
              <organization/>
            </author>
            <author initials="D." surname="Lewis" fullname="D. Lewis">
              <organization/>
            </author>
            <date year="2013" month="January"/>
            <abstract>
              <t>This document describes a simple distributed index system to be used by a Locator/ID Separation Protocol (LISP) Ingress Tunnel Router (ITR) or Map-Resolver (MR) to find the Egress Tunnel Router (ETR) that holds the mapping information for a particular Endpoint Identifier (EID).  The MR can then query that ETR to obtain the actual mapping information, which consists of a list of Routing Locators (RLOCs) for the EID.  Termed the Alternative Logical Topology (ALT), the index is built as an overlay network on the public Internet using the Border Gateway Protocol (BGP) and Generic Routing Encapsulation (GRE).  This document defines an Experimental  Protocol for the Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6837" target="https://www.rfc-editor.org/info/rfc6837">
          <front>
            <title>NERD: A Not-so-novel Endpoint ID (EID) to Routing Locator (RLOC) Database</title>
            <seriesInfo name="DOI" value="10.17487/RFC6837"/>
            <seriesInfo name="RFC" value="6837"/>
            <author initials="E." surname="Lear" fullname="E. Lear">
              <organization/>
            </author>
            <date year="2013" month="January"/>
            <abstract>
              <t>The Locator/ID Separation Protocol (LISP) is a protocol to encapsulate IP packets in order to allow end sites to route to one another without injecting routes from one end of the Internet to another.  This memo presents an experimental database and a discussion of methods to transport the mapping of Endpoint IDs (EIDs) to Routing Locators (RLOCs) to routers in a reliable, scalable, and secure manner.  Our analysis concludes that transport of all EID-to- RLOC mappings scales well to at least 10^8 entries.  This document  defines an Experimental Protocol for the Internet community.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC7215" target="https://www.rfc-editor.org/info/rfc7215">
          <front>
            <title>Locator/Identifier Separation Protocol (LISP) Network Element Deployment Considerations</title>
            <seriesInfo name="DOI" value="10.17487/RFC7215"/>
            <seriesInfo name="RFC" value="7215"/>
            <author initials="L." surname="Jakab" fullname="L. Jakab">
              <organization/>
            </author>
            <author initials="A." surname="Cabellos-Aparicio" fullname="A. Cabellos-Aparicio">
              <organization/>
            </author>
            <author initials="F." surname="Coras" fullname="F. Coras">
              <organization/>
            </author>
            <author initials="J." surname="Domingo-Pascual" fullname="J. Domingo-Pascual">
              <organization/>
            </author>
            <author initials="D." surname="Lewis" fullname="D. Lewis">
              <organization/>
            </author>
            <date year="2014" month="April"/>
            <abstract>
              <t>This document is a snapshot of different Locator/Identifier Separation Protocol (LISP) deployment scenarios.  It discusses the placement of new network elements introduced by the protocol, representing the thinking of the LISP working group as of Summer 2013.  LISP deployment scenarios may have evolved since then.  This memo represents one stable point in that evolution of understanding.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6935" target="https://www.rfc-editor.org/info/rfc6935">
          <front>
            <title>IPv6 and UDP Checksums for Tunneled Packets</title>
            <seriesInfo name="DOI" value="10.17487/RFC6935"/>
            <seriesInfo name="RFC" value="6935"/>
            <author initials="M." surname="Eubanks" fullname="M. Eubanks">
              <organization/>
            </author>
            <author initials="P." surname="Chimento" fullname="P. Chimento">
              <organization/>
            </author>
            <author initials="M." surname="Westerlund" fullname="M. Westerlund">
              <organization/>
            </author>
            <date year="2013" month="April"/>
            <abstract>
              <t>This document updates the IPv6 specification (RFC 2460) to improve performance when a tunnel protocol uses UDP with IPv6 to tunnel packets.  The performance improvement is obtained by relaxing the IPv6 UDP checksum requirement for tunnel protocols whose header information is protected on the "inner" packet being carried. Relaxing this requirement removes the overhead associated with the computation of UDP checksums on IPv6 packets that carry the tunnel protocol packets.  This specification describes how the IPv6 UDP checksum requirement can be relaxed when the encapsulated packet itself contains a checksum.  It also describes the limitations and risks of this approach and discusses the restrictions on the use of this method.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC6936" target="https://www.rfc-editor.org/info/rfc6936">
          <front>
            <title>Applicability Statement for the Use of IPv6 UDP Datagrams with Zero Checksums</title>
            <seriesInfo name="DOI" value="10.17487/RFC6936"/>
            <seriesInfo name="RFC" value="6936"/>
            <author initials="G." surname="Fairhurst" fullname="G. Fairhurst">
              <organization/>
            </author>
            <author initials="M." surname="Westerlund" fullname="M. Westerlund">
              <organization/>
            </author>
            <date year="2013" month="April"/>
            <abstract>
              <t>This document provides an applicability statement for the use of UDP transport checksums with IPv6.  It defines recommendations and requirements for the use of IPv6 UDP datagrams with a zero UDP checksum.  It describes the issues and design principles that need to be considered when UDP is used with IPv6 to support tunnel encapsulations, and it examines the role of the IPv6 UDP transport checksum.  The document also identifies issues and constraints for deployment on network paths that include middleboxes.  An appendix presents a summary of the trade-offs that were considered in evaluating the safety of the update to RFC 2460 that changes the use of the UDP checksum with IPv6.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="RFC7052" target="https://www.rfc-editor.org/info/rfc7052">
          <front>
            <title>Locator/ID Separation Protocol (LISP) MIB</title>
            <seriesInfo name="DOI" value="10.17487/RFC7052"/>
            <seriesInfo name="RFC" value="7052"/>
            <author initials="G." surname="Schudel" fullname="G. Schudel">
              <organization/>
            </author>
            <author initials="A." surname="Jain" fullname="A. Jain">
              <organization/>
            </author>
            <author initials="V." surname="Moreno" fullname="V. Moreno">
              <organization/>
            </author>
            <date year="2013" month="October"/>
            <abstract>
              <t>This document defines the MIB module that contains managed objects to support the monitoring devices of the Locator/ID Separation Protocol (LISP).  These objects provide information useful for monitoring LISP devices, including determining basic LISP configuration information, LISP functional status, and operational counters and other statistics.</t>
            </abstract>
          </front>
        </reference>

<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.1191.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.1918.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.2992.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3232.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.3963.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4821.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.4984.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.5944.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6275.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6830.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6831.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6832.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6833.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6834.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6835.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6836.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6837.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6935.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.6936.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7052.xml"/>
<xi:include
    href="https://xml2rfc.ietf.org/public/rfc/bibxml/reference.RFC.7215.xml"/>

        <reference anchor="I-D.ietf-lisp-ddt" target="http://www.ietf.org/internet-drafts/draft-ietf-lisp-ddt-09.txt">
          <front>
            <title>LISP Delegated Database Tree</title>
            <seriesInfo name="Internet-Draft" value="draft-ietf-lisp-ddt-09"/>
            <author initials="V" surname="Fuller" fullname="Vince Fuller">
              <organization/>
            </author>
            <author initials="D" surname="Lewis" fullname="Darrel Lewis">
              <organization/>
            </author>
            <author initials="V" surname="Ermagan" fullname="Vina Ermagan">
              <organization/>
            </author>
            <author initials="A" surname="Jain" fullname="Amit Jain">
              <organization/>
            </author>
            <author initials="A" surname="Smirnov" fullname="Anton Smirnov">
              <organization/>
            </author>
            <date month="January" day="18" year="2017"/>
            <abstract>
              <t>This document describes the LISP Delegated Database Tree (LISP-DDT), a hierarchical, distributed database which embodies the delegation of authority to provide mappings from LISP Endpoint Identifiers (EIDs) to Routing Locators (RLOCs).  It is a statically-defined distribution of the EID namespace among a set of LISP-speaking servers, called DDT nodes.  Each DDT node is configured as "authoritative" for one or more EID-prefixes, along with the set of RLOCs for Map Servers or "child" DDT nodes to which more-specific EID-prefixes are delegated.</t>
            </abstract>
          </front>
        </reference>

        <reference anchor="I-D.ietf-lisp-lcaf" target="http://www.ietf.org/internet-drafts/draft-ietf-lisp-lcaf-22.txt">
          <front>
            <title>LISP Canonical Address Format (LCAF)</title>
            <seriesInfo name="Internet-Draft" value="draft-ietf-lisp-lcaf-22"/>
            <author initials="D" surname="Farinacci" fullname="Dino Farinacci">
              <organization/>
            </author>
            <author initials="D" surname="Meyer" fullname="David Meyer">
              <organization/>
            </author>
            <author initials="J" surname="Snijders" fullname="Job Snijders">
              <organization/>
            </author>
            <date month="November" day="28" year="2016"/>
            <abstract>
              <t>This document defines a canonical address format encoding used in LISP control messages and in the encoding of lookup keys for the LISP Mapping Database System.</t>
            </abstract>
          </front>
        </reference>

        <reference anchor="I-D.ietf-lisp-threats" target="http://www.ietf.org/internet-drafts/draft-ietf-lisp-threats-15.txt">
          <front>
            <title>LISP Threats Analysis</title>
            <seriesInfo name="Internet-Draft" value="draft-ietf-lisp-threats-15"/>
            <author initials="D" surname="Saucez" fullname="Damien Saucez">
              <organization/>
            </author>
            <author initials="L" surname="Iannone" fullname="Luigi Iannone">
              <organization/>
            </author>
            <author initials="O" surname="Bonaventure" fullname="Olivier Bonaventure">
              <organization/>
            </author>
            <date month="January" day="29" year="2016"/>
            <abstract>
              <t>This document provides a threat analysis of the Locator/Identifier Separation Protocol (LISP).</t>
            </abstract>
          </front>
        </reference>

        <reference anchor="I-D.ietf-lisp-sec" target="http://www.ietf.org/internet-drafts/draft-ietf-lisp-sec-18.txt">
          <front>
            <title>LISP-Security (LISP-SEC)</title>
            <seriesInfo name="Internet-Draft" value="draft-ietf-lisp-sec-18"/>
            <author initials="F" surname="Maino" fullname="Fabio Maino">
              <organization/>
            </author>
            <author initials="V" surname="Ermagan" fullname="Vina Ermagan">
              <organization/>
            </author>
            <author initials="A" surname="Cabellos-Aparicio" fullname="Albert Cabellos-Aparicio">
              <organization/>
            </author>
            <author initials="D" surname="Saucez" fullname="Damien Saucez">
              <organization/>
            </author>
            <date month="June" day="2" year="2019"/>
            <abstract>
              <t>This memo specifies LISP-SEC, a set of security mechanisms that provides origin authentication, integrity and anti-replay protection to LISP's EID-to-RLOC mapping data conveyed via mapping lookup process.  LISP-SEC also enables verification of authorization on EID- prefix claims in Map-Reply messages.</t>
            </abstract>
          </front>
        </reference>
      </references>
      <references>

        <name>Informative References</name>
        <reference anchor="Jakab" target="">
          <front>
            <title>LISP-TREE: A DNS Hierarchy to Support the LISP Mapping
          System, IEEE Journal on Selected Areas in Communications, vol. 28,
          no. 8, pp. 1332-1343</title>
            <author initials="L." surname="Jakab"/>
            <author initials="A." surname="Cabellos"/>
            <author initials="D." surname="Saucez"/>
            <author initials="O." surname="Bonaventure"/>
            <date month="October" year="2010"/>
          </front>
        </reference>
        <reference anchor="Mathy" target="">
          <front>
            <title>LISP-DHT: Towards a DHT to map identifiers onto locators.
		  The ACM ReArch, Re-Architecting the Internet. Madrid (Spain)</title>
            <author initials="L." surname="Mathy"/>
            <author initials="L." surname="Iannone"/>
            <author initials="O." surname="Bonaventure"/>
            <date month="December" year="2008"/>
          </front>
        </reference>
        <reference anchor="I-D.cheng-lisp-shdht" target="http://www.ietf.org/internet-drafts/draft-cheng-lisp-shdht-04.txt">
          <front>
            <title>LISP Single-Hop DHT Mapping Overlay</title>
            <seriesInfo name="Internet-Draft" value="draft-cheng-lisp-shdht-04"/>
            <author fullname="Li Cheng" initials="L" surname="Cheng">
              <organization/>
            </author>
            <author fullname="Jun Wang" initials="J" surname="Wang">
              <organization/>
            </author>
            <date day="15" month="July" year="2013"/>
            <abstract>
              <t>This draft specifies the LISP Single-Hop Distributed Hash Table
            Mapping Database (LISP-SHDHT), a distributed mapping database
            which consists of a set of SHDHT Nodes to provide mappings from
            LISP Endpoint Identifiers (EIDs) to Routing Locators (RLOCs). EID
            namespace is dynamically distributed among SHDHT Nodes based on
            DHT Hash algorithm. Each SHDHT Node is configured with one or more
            hash spaces which contain multiple EID-prefixes along with RLOCs
            of corresponding Map Servers.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="I-D.curran-lisp-emacs" target="http://tools.ietf.org/html/draft-curran-lisp-emacs-00">
          <front>
            <title>EID Mappings Multicast Across Cooperating Systems for LISP</title>
            <seriesInfo name="Internet-Draft" value="draft-curran-lisp-emacs-00"/>
            <author fullname="S. Brim" initials="S" surname="Brim">
              <organization/>
            </author>
            <author fullname="Dino Farinacci" initials="D" surname="Farinacci">
              <organization/>
            </author>
            <author fullname="Dave Meyer" initials="D" surname="Meyer">
              <organization/>
            </author>
            <author fullname="J Curran" initials="J" surname="Curran">
              <organization/>
            </author>
            <date day="9" month="November" year="2007"/>
            <abstract>
              <t> One of the potential problems with the "map-and-encapsulate"
   approaches to routing architecture is that there is a significant
   chance of packets being dropped while a mapping is being retrieved.
   Some approaches pre-load ingress tunnel routers with at least part of
   the mapping database.  Some approaches try to solve this by providing intermediate "default" routers which have a great deal more knowledge
   than a typical ingress tunnel router.  This document proposes a
   scheme which does not drop packets yet does not require a great deal
   of knowledge in any router.  However, there are still some issues
   that need to be worked out.</t>
            </abstract>
          </front>
        </reference>
        <reference anchor="DDT-ROOT" target="">
          <front>
            <title>http://ddt-root.org/</title>
            <author surname="LISP DDT ROOT"/>
            <date month="August" year="2013"/>
          </front>
        </reference>
        <reference anchor="Quoitin" target="">
          <front>
            <title>"Evaluating the Benefits of the Locator/Identifier Separation" in Proceedings of 2Nd ACM/IEEE International Workshop on Mobility in the Evolving Internet Architecture</title>
            <author initials="B." surname="Quoitin"/>
            <author initials="L." surname="Iannone"/>
            <author initials="C." surname="Launois"/>
            <author initials="O." surname="Bonaventure"/>
            <date year="2007"/>
          </front>
        </reference>
      </references>
    </references>
    <section numbered="true" toc="default">
      <name>A Brief History of Location/Identity Separation</name>
      <t>The LISP architecture for separation of location and identity resulted from
      the discussions of this topic at the Amsterdam IAB Routing and
      Addressing Workshop, which took place in October 2006 <xref target="RFC4984" format="default"/>.</t>
      <t>A small group of like-minded personnel spontaneously formed immediately after that
		workshop, to work on an idea that came out of informal discussions at
		the workshop and on various mailing lists.  The first
		Internet-Draft on LISP appeared in January, 2007.</t>
      <t>Trial implementations started at that time, with initial trial
      deployments underway since June 2007; the results of early experience
      have been fed back into the design in a continuous, ongoing process
      over several years.  LISP at this point represents a moderately
      mature system, having undergone a long organic series of changes and
      updates.</t>
      <t>LISP transitioned from an IRTF activity to an IETF WG in March 2009,
      and after numerous revisions, the basic specifications moved to
      becoming RFCs at the start of 2013 (although work to expand and
      improve it, and find new uses for it, continues, and undoubtly will
      for a long time to come).</t>
      <section numbered="true" toc="default">
        <name>Old LISP Models</name>
        <t>LISP, as initially conceived, had a number of potential operating
      modes, named 'models'.  Although they are no used anymore, one
      occasionally sees mention of them, so they are briefly described
      here.</t>
        <dl newline="false" newline="true" spacing="normal">
          <dt>LISP 1:</dt>
          <dd>EIDs all appear in the normal routing and forwarding
            tables of the network (i.e. they are 'routable');this property is
            used to 'bootstrap' operation, by using this to load EID-&gt;RLOC
            mappings.  Packets were sent with the EID as the destination in
            the outer wrapper; when an ETR saw such a packet, it would send a
            Map-Reply to the source ITR, giving the full mapping.</dd>
          <dt>LISP 1.5:</dt>
          <dd>Similar to LISP 1, but the routability of EIDs happens
            on a separate network.</dd>
          <dt>LISP 2:</dt>
          <dd>EIDs are not routable; EID-&gt;RLOC mappings are available
            from the DNS.</dd>
          <dt>LISP 3:</dt>
          <dd>EIDs are not routable; and have to be looked up in in a
            new EID-&gt;RLOC mapping database (in the initial concept, a system
            using Distributed Hash Tables).  Two variants were possible: a
            'push' system, in which all mappings were distributed to all ITRs,
            and a 'pull' system in which ITRs load the mappings they need, as
            needed.</dd>
        </dl>
      </section>
    </section>
  </back>
</rfc>

mirror server hosted at Truenetwork, Russian Federation.