1<?xml version="1.0" encoding="US-ASCII"?>
2  <?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?>
3
4<!DOCTYPE rfc SYSTEM "rfc2629.dtd" [
5]>
6
7<?rfc compact="yes"?>
8<?rfc text-list-symbols="o*+-"?>
9<?rfc subcompact="no"?>
10<?rfc sortrefs="yes"?>
11<?rfc symrefs="yes"?>
12<?rfc strict="yes"?>
13<?rfc toc="yes"?>
14
15<rfc category="info" submissionType="IAB" number="8477" consensus="yes" ipr="trust200902">
16
17  <front>
18    <title abbrev="IOTSI Workshop 2016">Report from the Internet of Things (IoT) Semantic&nbsp;Interoperability&nbsp;(IOTSI)&nbsp;Workshop&nbsp;2016</title>
19
20
21
22<!--[rfced] *RJS or Stream Manager - please review and approve the
23split of the boilerplate paragraph in the Intro.
24
25As it appears at https://www.rfc-editor.org/materials/iab-format.txt:
26
27  The following boilerplate paragraph SHOULD appear in the introduction: 
28
29      The Internet Architecture Board (IAB) holds occasional workshops 
30      designed to consider long-term issues and strategies for the 
31      Internet, and to suggest future directions for the Internet 
32      architecture.  This long-term planning function of the IAB is 
33      complementary to the ongoing engineering efforts performed by working 
34      groups of the Internet Engineering Task Force (IETF).
35
36How it appears in this document:
37
38
39   The Internet Architecture Board (IAB) holds occasional workshops
40   designed to consider long-term issues and strategies for the
41   Internet, and to suggest future directions for the Internet
42   architecture.  The investigated topics often require coordinated
43   efforts of many organizations and industry bodies to improve an
44   identified problem.  One of the targets of the workshops is to
45   establish communication between relevant organizations, especially
46   when the topics are out of the scope for the Internet Engineering
47   Task Force (IETF).  This long-term planning function of the IAB is
48   complementary to the ongoing engineering efforts performed by working
49   groups of the IETF.
50
51-->
52
53    <author initials="J." surname="Jimenez" fullname="Jaime Jimenez">
54      <organization></organization>
55      <address>
56        <email>jaime.jimenez@ericsson.com</email>
57      </address>
58    </author>
59    <author initials="H." surname="Tschofenig" fullname="Hannes Tschofenig">
60      <organization></organization>
61      <address>
62        <email>hannes.tschofenig@arm.com</email>
63      </address>
64    </author>
65    <author initials="D." surname="Thaler" fullname="Dave Thaler">
66      <organization></organization>
67      <address>
68        <email>dthaler@microsoft.com</email>
69      </address>
70    </author>
71
72    <date year="2018" month="September"/>
73
74<!-- [rfced] Please insert any keywords (beyond those that appear in 
75the title) for use on https://www.rfc-editor.org/search.
76-->
77
78<keyword>example</keyword>
79
80
81       <abstract>
82
83<t>This document provides a summary of the "Workshop on Internet of
84Things (IoT) Semantic Interoperability (IOTSI)",
85which took place in Santa Clara, California March 17-18, 2016.  The main
86goal of the workshop was to foster a discussion on the different
87approaches used by companies and Standards Developing Organizations (SDOs)
88to accomplish interoperability at the application layer.  This report
89summarizes the discussions and lists recommendations to the standards
90community.  The views and positions in this report are those of the
91workshop participants and do not necessarily reflect those of the
92authors or the Internet Architecture Board (IAB), which organized
93the workshop.
94<!--begin DNE text -->
95Note that this document is a report on the proceedings of the 
96      workshop.  The views and positions documented in this report are 
97      those of the workshop participants and do not necessarily reflect IAB 
98      views and positions.
99
100<!--end DNE text -->
101</t>
102
103    </abstract>
104
105
106  </front>
107
108  <middle>
109
110
111<section anchor="section-1" title="Introduction">
112
113<!--Begin DNE text -->
114<t>The Internet Architecture Board (IAB) holds occasional workshops
115designed to consider long-term issues and strategies for the
116Internet, and to suggest future directions for the Internet
117architecture.
118<!--End DNE text -->
119The investigated topics often require coordinated
120efforts from many organizations and industry bodies to improve an
121identified problem.  One of the targets of the workshops is to
122establish communication between relevant organizations, especially
123when the topics are out of the scope of the Internet Engineering
124Task Force (IETF).
125<!--Begin DNE text -->
126This long-term planning function of the IAB is
127complementary to the ongoing engineering efforts performed by working
128groups of the IETF.
129<!--End DNE text -->
130</t>
131
132<t>With the expansion of the Internet of Things (IoT), interoperability
133becomes more and more important. Standards Developing Organizations (SDOs)
134have done a tremendous amount of work to standardize new protocols
135and profile existing protocols.</t>
136
137<t>At the application layer and at the level of solution frameworks, 
138interoperability is not yet mature. Particularly, the
139work on data formats (in the form of data models and information
140models) has not seen the same level of consistency throughout
141SDOs.</t>
142
143<t>One common problem is the lack of an encoding-independent standardization
144of the information, the so-called information model. Another problem is
145the strong relationship between data formats and the underlying communication architecture, 
146such as a design in Remote Procedure Call (RPC) style or a RESTful design (where REST refers to Representational State Transfer). Furthermore, groups develop solutions that are very similar on the surface but differ slightly in their standardized outcome, leading to interoperability
147problems. Finally, some groups favor different encodings for use with
148various application-layer protocols.</t>
149
150<t>Thus, the IAB decided to organize a workshop to reach out to relevant
151stakeholders to explore the state of the art and identify
152commonality and gaps <xref target="IOTSIAG"/><xref target="IOTSIWS"/>. In particular, the IAB was
153interested to learn about the following aspects:</t>
154
155<t><list style="symbols">
156  <t>What is the state of the art in data and information models? What should
157an information model look like?</t>
158  <t>What is the role of formal languages, such as schema languages, in
159describing information and data models?</t>
160  <t>What is the role of metadata, which is attached to data to make it self-describing?</t>
161  <t>How can we achieve interoperability when different organizations, companies,
162and individuals develop extensions?</t>
163  <t>What is the experience with interworking various data models developed
164from different groups, or with data models that evolved over time?</t>
165  <t>What functionality should online repositories for sharing schemas have?</t>
166  <t>How can existing data models be mapped against each other to offer interworking?</t>
167  <t>Is there room for harmonization, or are the use cases of different groups
168and organizations so unique that there is no possibility for cooperation?</t>
169  <t>How can organizations better work together to increase awareness and information sharing?</t>
170</list></t>
171
172</section>
173<section anchor="section-2" title="Terminology">
174
175<t>The first roadblock to interoperability at the level of data models is the lack of a
176common vocabulary to start the discussion.
177<xref target="RFC3444"/> provides a starting point by separating conceptual models for designers,
178or "information models", from concrete detailed definitions for implementers, or
179"data models". There are concepts that are
180undefined in that RFC and elsewhere, such as the interaction with the
181resources of an endpoint, or "interaction model".  Therefore, the three
182"main" common models that were identified were:</t>
183
184<t><list style="hanging" hangIndent="3">
185  <t hangText='Information Model'><vspace blankLines='0'/>
186  An information model defines an environment at the highest level of abstraction and
187expresses the desired functionality.
188Information models can be defined informally (e.g., in prose) or more
189formally (e.g., Unified Modeling Language (UML), Entity-Relationship Diagrams, etc.).
190Implementation details are hidden.</t>
191</list></t>
192
193<t><list style="hanging" hangIndent="3">
194  <t hangText='Data Model'><vspace blankLines='0'/>
195  
196
197A data model defines concrete data representations at a lower level of
198abstraction, including implementation- and protocol-specific details.
199Some examples are SNMP Management Information Base (MIB) modules, World Wide
200Web Consortium (W3C) Thing Description (TD) Things, YANG modules, Lightweight Machine-to-Machine (LwM2M) Schemas, Open Connectivity Foundation (OCF) Schemas, and so on.</t>
201</list></t>
202
203<t><list style="hanging" hangIndent="3">
204  <t hangText='Interaction Model'><vspace blankLines='0'/>
205  An interaction model defines how data is accessed and retrieved from the endpoints,
206being, therefore, tied to the specific
207communication pattern that the system has (e.g., REST methods,
208Publish/Subscribe operations, or RPC calls).</t>
209</list></t>
210
211<t>Another identified terminology issue is the semantic meaning overload
212that some terms have.  The meaning can vary depending on the context in which the
213term is used.  Some examples of such terms are as follows: semantics, models,
214encoding, serialization format, media types, and encoding types.  Due
215to time constraints, no concrete terminology was agreed upon, but
216work will continue within each organization to create various
217terminology documents.  The participants agreed to set up a GitHub repository
218<xref target="IOTSIGIT"/> for sharing information.</t>
219
220</section>
221<section anchor="section-4" title="What Problems to Solve">
222
223<t>The participants agreed that there is not simply a single problem to be solved but
224rather a range of problems. During the workshop, the following problems were discussed:</t>
225
226<t><list style="symbols">
227  <t>Formal Languages for Documentation Purposes</t>
228</list></t>
229
230<t>To simplify review and publication, SDOs need
231formal descriptions of their data and interaction models.
232Several of them use a tabular representation found in the specification itself
233but use a formal language as an alternative way of describing objects and resources
234for formal purposes.  Some examples of formal language use are as follows.</t>
235
236<t>The Open Mobile Alliance (OMA), now OMA SpecWorks, used an XML Schema <xref
237target="LWM2M-Schema"/> to describe their object and resource definitions. The
238XML files of standardized objects are available for download at
239<xref target="OMNA"/>.</t>
240
241<t>The Bluetooth Special Interest Group (SIG) defined Generic Attribute Profile (GATT) services and characteristics for use with 
242Bluetooth Smart/Low Energy. The services and characteristics are shown in a tabular form on 
243the Bluetooth SIG website <xref target="SIG"/> and are defined as XML instance documents.</t>
244
245<t>The Open Connectivity Foundation (OCF) uses JSON Schemas to formally define
246data models and RESTful API Modeling Language (RAML) to define interaction models.  The standard files are
247available online at &lt;oneIoTa.org&gt;.</t>
248
249<t>The AllSeen Alliance uses AllJoyn Introspection XML to define data and interaction
250models in the same formal language, tailored for RPC-style interaction.  The standard
251files are available online on the AllSeen Alliance website, but both standard and
252vendor-defined model files can be obtained by directly querying a device for them at runtime.</t>
253
254<t>The World Wide Web Consortium (W3C) uses the Resource Description Framework (RDF)
255to define data and interaction models using a format tailored for the web.</t>
256
257<t>The Internet Engineering Task Force (IETF) uses YANG to define data and interaction models.
258Other SDOs may use various other formats.</t>
259
260<t><list style="symbols">
261  <t>Formal Languages for Code Generation</t>
262</list></t>
263
264<t>Code-generation tools that use formal data and information modeling languages
265are needed by developers. For example, the AllSeen Visual Studio
266Plugin <xref target="AllSeen-Plugin"/> offers a wizard to generate code based on
267the formal description of the data model.  Another example of a data
268modeling language that can be used for code generation is YANG.  A
269popular tool to help with code generation of YANG modules is pyang <xref target="PYANG"/>.
270An example of a tool that can generate code for multiple ecosystems is
271OpenDOF <xref target="OpenDOF"/>. Use cases discussed for code generation included easing
272development of server-side device functionality, clients, and compliance tests.</t>
273
274
275<t><list style="symbols">
276  <t>Debugging Support</t>
277</list></t>
278
279<t>Debugging tools are needed that implement generic object browsers, which
280use standard data models and/or retrieve formal language descriptions
281from the devices themselves. As one example, the
282nRF Bluetooth Smart sniffer from Nordic Semiconductor <xref target="nRF-Sniffer"/> can be
283used to display services and characteristics defined by the Bluetooth SIG.
284As another example, AllJoyn Explorer <xref target="AllJoynExplorer"/> can be used to browse
285and interact with any resource exposed by an AllJoyn device, including both
286standard and vendor-defined data models, by retrieving the formal descriptions
287from the device at runtime.</t>
288
289<t><list style="symbols">
290  <t>Translation</t>
291</list></t>
292
293<t>The working assumption is that devices need to have a common data model 
294with a priori knowledge of data types and actions. However, that would imply 
295that each consortium/organization will try to define their own data
296model. That would cause a major interoperability problem, possibly a completely
297intractable one  given the number of variations, extensions, compositions, or
298versioning changes that will happen for each data model.</t>
299
300
301<t>Another potential approach is to have a minimal amount of information on the
302device to allow for a runtime binding to a specific model, the objective being
303to require as little prior knowledge as possible.</t>
304
305<t>Moreover, gateways, bridges  and other similar devices need to dynamically
306translate (or map) one data model to another one. Complexity will increase 
307as there are also multiple protocols and schemas that make interoperability
308harder to achieve.</t>
309
310<t><list style="symbols">
311  <t>Runtime Discovery</t>
312</list></t>
313
314<t>Runtime discovery allows IoT devices to exchange metadata about the data, potentially along with the
315data exchanged itself. In some cases, the metadata not only describes data but also the interaction model as well. 
316An example of such an approach has been shown with Hypermedia as the Engine of
317Application State (HATEOAS) <xref target="HATEOAS"/>.
318Another example is that all AllJoyn devices support such runtime discovery
319using a protocol mechanism called "introspection", where the metadata is 
320queried from the device itself <xref target="AllSeen"/>.</t>
321
322<t>There are various models, whether deployed or possible, for such discovery.
323The metadata might be extracted from a specification, looked up on a 
324cloud repository (e.g., oneIoTa for OCF models), looked up via a vendor's
325site, or obtained from the device itself (such as in the AllJoyn case).  The 
326relevant metadata might be obtained from the same place or different
327pieces might be obtained from different places, such as separately obtaining (a) syntax information, (b) end-user descriptions in 
328a desired language, and (c) developer-specific comments for implementers.</t>
329
330</section>
331<section anchor="section-5" title="Translation">
332
333<t>In an ideal world where organizations and companies cooperate and agree on a
334single data model standard, there is no need for gateways that translate from one data model
335to another one. However, this is far from reality today, and there are many
336proprietary data models in addition to the already standardized ones. As a 
337consequence, gateways are needed to translate between data models. This leads to 
338(n^2)-n combinations, in the worst case.</t>
339
340<t>There are analogies with gateways back in the 1980s that were used to
341translate between network layer protocols.  Eventually, IP took over, providing
342the necessary end-to-end interoperability at the network layer. Unfortunately,
343the introduction of gateways leads to the loss of expressiveness
344due to the translation between data models. The functionality of IP was so 
345valuable in the market that advanced features of other networking 
346protocols became less attractive and were not used anymore.</t>
347
348<t>Participants discussed an alternative that they called a "red star", shown
349in <xref target="red-star"/>, where data models are translated to a common
350data model shown in the middle. This 
351reduces the number of translations that are needed down to 2n (in the best case). 
352The problem, of course, is that everyone wants their own data model to be the red star in the center.</t>
353
354<figure title="The &quot;Red Star&quot; in Data/Information Models" anchor="red-star"><artwork><![CDATA[
355   +-----+                                        +-----+
356   |     |                                        |     |
357   |     |  --                                 -- |     |
358   |     |    --                             --   |     |
359   +-----+      --                         --     +-----+
360                  --                    ---
361                    --                --
362                      --            --
363                        --        --
364     ---                  -- A  --                  ---
365    /   \                ___/ \___                 /   \
366   |     | ---------------',   .'---------------  |     |
367    \   /                 /. ^ .\                  \   /
368     ---                 /'     '\                  ---   
369                        --        --
370                      --            --
371                    --                --
372                  --                    --
373                --                        --
374       /\     --                            --     /\
375      /  \  --                                --  /  \
376     /    \                                      /    \
377    /      \                                    /      \
378   /--------\                                  /--------\
379]]></artwork></figure>
380
381<t>While the workshop itself was not a suitable forum to discuss the design of 
382such translation in detail, several questions were raised:</t>
383
384<t><list style="symbols">
385  <t>Do we need a "red star" that does everything, or could we design something that 
386offers a more restricted functionality?</t>
387  <t>How do we handle loss of data and functionality?</t>
388  <t>Should data be translated between data models, or should data models themselves be translated?</t>
389  <t>How can interaction models be translated? They need to be dealt with in addition 
390 to the data models.</t>
391  <t>Many (if not all) data and interaction models have some bizarre functionality 
392 that cannot be translated easily. How can those be handled?</t>
393  <t>What limitations are we going to accept in these translations?</t>
394</list></t>
395
396<!--[rfced] We recently received guidance from Benoit and the YANG
397Doctors that "YANG module" and "YANG data model" are preferred.
398We have updated the document accordingly.  Please review and let
399us know if further changes are necessary.
400
401-->
402<t>The participants also addressed the question of when translation should be done.
403Two use cases were discussed:
404<list style="format (%c)">
405<t>Design time: A translation between data model
406descriptions, such as translating a YANG module to a RAML/JSON model,
407can be performed once, during design time.
408A single information model might be mapped to a number of different data models.</t>
409
410<t>Run time: Runtime translation of values in two standard data models can only be
411algorithmically done when the data model on one side is algorithmically derived
412from the data model on the other side.  This was called a "derived model".
413It was discussed that the availability of runtime discovery can aid in
414semantic translation, such as when a vendor-specific data model on one
415side of a protocol bridge is resolved and the translator can algorithmically 
416derive the semantically equivalent vendor-specific data model on the other
417side. This situation is discussed in <xref target="BridgeTaxonomy"/>.</t>
418</list></t>
419<t>The participants agreed that algorithm translation will generally require
420custom code whenever one is translating to anything other than a derived model.</t>
421
422<t>Participants concluded that it is typically easier to translate data between systems that
423follow the same communication architecture.</t>
424
425</section>
426<section anchor="section-6" title="Dealing with Change">
427
428<t>A large part of the workshop was dedicated to the evolution of
429devices and server-side applications.
430Interactions between devices and services and how their relationship
431evolves over time is complicated by their respective interaction models.</t>
432
433<t>The workshop participants discussed various approaches to deal with change.  In the most basic case, a
434developer might use a description of an API and implement 
435the protocol steps.  Sometimes, the data or information model can be used to generate code stubs.  Subsequent changes to an API
436require changes on the clients to upgrade to the new version, which
437requires some development of new code to satisfy the needs of the new
438API.</t>
439
440<t>These interactions could be made machine understandable in the first place,
441enabling for changes to happen at runtime.
442In that scenario, a machine client could discover the possible interactions with a
443service, adapting to changes as they occur without specific code
444being developed to adapt to them.</t>
445
446<t>The challenge seems to be to code the human-readable specification into a machine-readable format.  Machine-readable languages require a shared vocabulary to
447give meaning to the tags.</t>
448
449<t>These types of interactions are often based on the REST architectural
450style. Its principle is that a device or endpoint only needs a
451single entry point, with a host providing descriptions of the API
452in-band by means of web links and forms.</t>
453
454<t>By defining IoT-specific relation types, it is possible to drive
455interactions through links instead of hard-coding URIs into a RESTful
456client, thus making the system flexible enough for later changes.
457The definition of the basic hypermedia formats for IoT is still a work
458in progress. However, some of the existing mechanisms can be reused,
459such as resource discovery, forms, or links.</t>
460
461</section>
462
463<!--[rfced] FYI - we have added an IANA Considerations to match the
464guidance in RFC 8126 stating that no IANA actions are necessary.
465Please let us know any objections.  -->
466
467<section title="IANA Considerations">
468  <t>This document has no IANA actions.</t>
469</section>
470
471<section anchor="section-7" title="Security Considerations">
472
473<t>There were two types of security considerations discussed: use of formal data
474models for security configuration and security of data and data models in general.</t>
475
476<t>It was observed that the security assumptions and configuration, or "security model", varies by ecosystem today,
477making the job of a translator difficult.  For example, there are different types of security
478principals (e.g., user vs. device vs. application), the use of Access Control Lists (ACLs) versus capabilities,
479and what types of policies can be expressed, all vary by ecosystem.  As a result,
480the security model architecture generally dictates where translation can be done.</t>
481
482<t>One approach discussed was whether two endpoints might be able to use some overlay
483security model across a translator between two ecosystems, which only works if
484the two endpoints agree on a common data model for their communication.  Another approach
485discussed was simply having a translator act as a trusted intermediary, which enables
486the translator to translate between different data models.</t>
487
488<t>One suggestion discussed was either adding metadata into the
489formal data model language or having it accompany the data values over the wire, tagging
490the data with privacy levels.  However, sometimes even the privacy level of information
491might itself be sensitive.  Still, it was observed that being able to dynamically
492learn security requirements might help provide better UIs and translators.</t>
493
494</section>
495<section anchor="section-8" title="Collaboration">
496
497<t>The participants discussed how best to share information among their various organizations.
498One discussion was around having joint meetings. One current challenge reported was that
499organizations were not aware of when and where each other's meetings were scheduled,
500and sharing such information could help organizations better collocate meetings.
501To facilitate this exchange, the participants agreed to add links to their respective
502meeting schedules from a common page in the IOTSI repository <xref target="IOTSIGIT"/>.</t>
503
504<t>Another challenge reported was that organizations did not know how to find each other's
505published data models, and sharing such information could better facilitate reuse of the
506same information model.  To facilitate this exchange, the participants discussed whether
507a common repository might be used by multiple organizations.  The OCF's oneIoTa repository
508was discussed as one possibility, but it was reported that its terms of use at the time
509of the workshop prevented this.  The OCF agreed to take this back and look at updating
510the terms of use to allow other organizations to use it, as the restriction was not
511the intent.  &lt;schema.org&gt; was discussed as another possibility.  In the meantime, the
512participants agreed to add links to their respective repositories from a common page in
513the IOTSI repository <xref target="IOTSIGIT"/>.</t>
514
515<t>It was also agreed that the iotsi@iab.org mailing list would remain open and available
516for sharing information between all relevant organizations.</t>
517
518</section>
519
520
521  </middle>
522
523  <back>
524
525
526    <references title='Informative References'>
527
528<?rfc include="reference.RFC.3444" ?>
529
530
531
532<reference anchor="AllSeen-Plugin">
533  <front>
534    <title>Using the AllJoyn Studio Extension</title>
535    <author initials="B." surname="Rockwell" fullname="B. Rockwell">
536      <organization></organization>
537    </author>
538    <date year="2015" month="August" day="17"/>
539  </front>
540</reference>
541
542<reference anchor="HATEOAS" target="https://www.iab.org/wp-content/IAB-uploads/2016/03/2016-IAB-HATEOAS.pdf">
543  <front>
544    <title>Semantic Interoperability Requires Self-describing Interaction Models: HATEOAS for the Internet of Things</title>
545    <author initials="M." surname="Kovatsch" fullname="M. Kovatsch">
546      <organization></organization>
547    </author>
548    <author initials="Y.N." surname="Hassan">
549      <organization></organization>
550    </author>
551    <author initials="K." surname="Hartke">
552      <organization></organization>
553    </author>
554    <date />
555  </front>
556  <seriesInfo name="Proceedings of the IAB IoT Semantic Interoperability Workshop" value="2016"/>
557</reference>
558
559<reference anchor="AllSeen" target="https://www.iab.org/wp-content/IAB-uploads/2016/03/AllSeen-summary-IOTSI.pdf">
560  <front>
561    <title>Summary of AllSeen Alliance Work Relevant to Semantic Interoperability</title>
562    <author initials="D." surname="Thaler" fullname="D. Thaler">
563      <organization></organization>
564    </author>
565    <date year="2016"/>
566  </front>
567</reference>
568
569<reference anchor="BridgeTaxonomy" target="https://www.iab.org/wp-content/IAB-uploads/2016/03/DThaler-IOTSI.pdf">
570  <front>
571    <title>IoT Bridge Taxonomy</title>
572    <author initials="D." surname="Thaler" fullname="D. Thaler">
573      <organization></organization>
574    </author>
575    <date />
576  </front>
577<seriesInfo name="IAB IOTSI Workshop" value="2016" />
578</reference>
579
580<reference anchor="IOTSIAG" target="https://www.iab.org/activities/workshops/iotsi/agenda/">
581  <front>
582    <title>IoT Semantic Interoperability Workshop Agenda</title>
583    <author >
584      <organization>IAB</organization>
585    </author>
586    <date year="2016"/>
587  </front>
588</reference>
589
590<!--[rfced] Please review our updates to the [IOTSIGIT] and [PYANG]
591reference entries in compliance with
592https://www.rfc-editor.org/styleguide/part2/ and let us know any
593objections. -->
594
595<reference anchor="IOTSIGIT" target="https://github.com/iotsi/iotsi">
596  <front>
597    <title>Starting place for the IoT Semantic Interoperability Workshop
598    (IOTSI) Information Resource</title>
599    <author >
600      <organization></organization>
601    </author>
602    <date year="2018" month="July"/>
603  </front>
604<seriesInfo name='commit' value="ff21f74"/>
605</reference>
606
607<reference anchor="IOTSIWS" target="https://www.iab.org/activities/workshops/iotsi/">
608  <front>
609    <title>IoT Semantic Interoperability Workshop 2016</title>
610    <author >
611      <organization>IAB</organization>
612    </author>
613    <date year="2016"/>
614  </front>
615</reference>
616
617<reference anchor="LWM2M-Schema" >
618  <front>
619    <title>LWM2M XML Schema - LWM2M Editor Schema</title>
620    <author >
621      <organization>OMA</organization>
622    </author>
623    <date year="2018" month="July"/>
624  </front>
625</reference>
626
627<reference anchor="OMNA">
628  <front>
629    <title>OMA LightweightM2M (LwM2M) Object and Resource Registry</title>
630    <author >
631      <organization>OMA</organization>
632    </author>
633    <date />
634  </front>
635</reference>
636
637<reference anchor="SIG" target="https://www.bluetooth.com/specifications/gatt">
638  <front>
639    <title>GATT Specifications</title>
640    <author >
641      <organization>Bluetooth SIG</organization>
642    </author>
643    <date />
644  </front>
645</reference>
646
647<reference anchor="PYANG" target="https://github.com/mbj4668/pyang">
648  <front>
649    <title>An extensible YANG validator and converter in python</title>
650    <author>
651      <organization></organization>
652    </author>
653    <date year="2018" month="September" day="13"/>
654  </front>
655<seriesInfo name="commit" value="15c807f" />
656</reference>
657
658<reference anchor="nRF-Sniffer">
659  <front>
660    <title>nRF Sniffer: Smart/Bluetooth low energy packet sniffer</title>
661    <author >
662      <organization>Nordic Semiconductor</organization>
663    </author>
664    <date />
665  </front>
666</reference>
667
668<reference anchor="AllJoynExplorer">
669  <front>
670    <title>AllJoyn</title>
671    <author >
672      <organization>Microsoft</organization>
673    </author>
674    <date />
675  </front>
676</reference>
677
678<reference anchor="OpenDOF" target="https://opendof.org">
679  <front>
680    <title>The OpenDOF Project</title>
681    <author >
682      <organization>OpenDOF</organization>
683    </author>
684    <date />
685  </front>
686</reference>
687
688
689</references>
690
691
692<section title="Program Committee" >
693
694<t>This workshop was organized by the following individuals: Jari Arkko,
695Ralph Droms, Jaime Jimenez, Michael Koster, Dave Thaler, and Hannes
696Tschofenig.</t>
697
698</section>
699<section title="Accepted Position Papers">
700
701<!--[rfced] FYI, we standardized the capitalization of the paper
702titles from the workshop. Please let us know if that creates any
703problems.  -->
704
705<t><list style="symbols">
706  <t>Jari Arkko, "Gadgets and Protocols Come and Go, Data Is Forever"</t>
707  <t>Carsten Bormann, "Noise in Specifications hurts"</t>
708  <t>Benoit Claise, "YANG as the Data Modelling Language in the IoT space"</t>
709  <t>Robert Cragie, "The ZigBee Cluster Library over IP"</t>
710  <t>Dee Denteneer, Michael Verschoor, and Teresa Zotti, "Fairhair: interoperable IoT services for major Building Automation and Lighting Control ecosystems"</t>
711  <t>Universal Devices, "Object Oriented Approach to IoT Interoperability"</t>
712  <t>Bryant Eastham, "Interoperability and the OpenDOF Project"</t>
713  <t>Stephen Farrell and Alissa Cooper, "It's Often True: Security's Ignored (IOTSI) - and Privacy too"</t>
714  <t>Christian Groves, Lui Yan, and Yang Weiwei, "Overview of IoT semantics landscape"</t>
715  <t>Ted Hardie, "Loci of Interoperability for the Internet of Things"</t>
716  <t>Russ Housley, "Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communications"</t>
717  <t>Jaime Jimenez, Michael Koster, and Hannes Tschofenig, "IPSO Smart Objects"</t>
718  <t>David Jones, "IOTDB - interoperability Through Semantic Metastandards"</t>
719  <t>Sebastian Kaebisch and Darko Anicic, "Thing Description as Enabler of Semantic Interoperability on the Web of Things"</t>
720  <t>Achilleas Kemos, "Alliance for Internet of Things Innovation Semantic Interoperability Release 2.0, AIOTI WG03 - IoT Standardisation"</t>
721  <t>Ari Keraenen and Cullen Jennings, "SenML: simple building block for IoT semantic interoperability"</t>
722  <t>Dongmyoung Kim, Yunchul Choi, and Yonggeun Hong, "Research on Unified Data Model and Framework to Support Interoperability between IoT Applications"</t>
723  <t>Michael Koster, "Model-Based Hypertext Language"</t>
724  <t>Matthias Kovatsch, Yassin N.  Hassan, and Klaus Hartke, "Semantic Interoperability Requires Self-describing Interaction Models"</t>
725  <t>Kai Kreuzer, "A Pragmatic Approach to Interoperability in the Internet of Things"</t>
726  <t>Barry Leiba, "Position Paper"</t>
727  <t>Marcello Lioy, "AllJoyn"</t>
728  <t>Kerry Lynn and Laird Dornin, "Modeling RESTful APIs with JSON Hyper-Schema"</t>
729  <t>Erik Nordmark, "Thoughts on IoT Semantic Interoperability: Scope of security issues"</t>
730  <t>Open Geospatial Consortium, "OGC SensorThings API: Communicating "Where" in the Web of Things"</t>
731  <t>Jean Paoli and Taqi Jaffri, "IoT Information Model Interoperability: An Open, Crowd-Sourced Approach in Three Parallel Parti"</t>
732  <t>Joaquin Prado, "OMA Lightweight M2M Resource Model"</t>
733  <t>Dave Raggett and Soumya Kanti Datta, "Input paper for IAB Semantic Interoperability Workshop"</t>
734  <t>Pete Rai and Stephen Tallamy, "Semantic Overlays Over Immutable Data to Facilitate Time and Context Specific Interoperability"</t>
735  <t>Jasper Roes and Laura Daniele, "Towards semantic interoperability in the IoT using the Smart Appliances REFerence ontology (SAREF) and its extensions"</t>
736  <t>Max Senges, "Submission for IAB IoT Sematic Interoperability workshop"</t>
737  <t>Bill Silverajan, Mert Ocak and Jaime Jimenez, "Implementation Experiences of Semantic Interoperability for RESTful Gateway Management"</t>
738  <t>Ned Smith, Jeff Sedayao, and Claire Vishik, "Key Semantic Interoperability Gaps in the Internet-of-Things Meta-Models"</t>
739  <t>Robert Sparks and Ben Campbell, "Considerations for certain IoT-based services"</t>
740  <t>J. Clarke Stevens, "Open Connectivity Foundation oneIoTa Tool"</t>
741  <t>J. Clarke Stevens and Piper Merriam, "Derived Models for Interoperability Between IoT Ecosystems"</t>
742  <t>Ravi Subramaniam, "Semantic Interoperability in Open Connectivity Foundation (OCF) - formerly Open Interconnect Consortium (OIC)"</t>
743  <t>Andrew Sullivan, "Position paper for IOTSI workshop"</t>
744  <t>Darshak Thakore, "IoT Security in the context of Semantic Interoperability"</t>
745  <t>Dave Thaler, "IoT Bridge Taxonomy"</t>
746  <t>Dave Thaler, "Summary of AllSeen Alliance Work Relevant to Semantic Interoperability"</t>
747  <t>Mark Underwood, Michael Gruninger, Leo Obrst, Ken Baclawski, Mike
748  Bennett, Gary Berg-Cross, Torsten Hahmann, and Ram Sriram, "Internet of Things: Toward Smart Networked Systems and Societies"</t>
749  <t>Peter van der Stok and Andy Bierman, "YANG-Based Constrained Management Interface (CoMI)"</t>
750</list></t>
751
752</section>
753
754<section title="List of Participants">
755<?rfc subcompact="yes"?>
756<t><list>
757  <t>Andy Bierman, YumaWorks</t>
758  <t>Carsten Bormann, Uni Bremen/TZI</t>
759  <t>Ben Campbell, Oracle</t>
760  <t>Benoit Claise, Cisco</t>
761  <t>Alissa Cooper, Cisco</t>
762  <t>Robert Cragie, ARM Limited</t>
763  <t>Laura Daniele, TNO</t>
764  <t>Bryant Eastham, OpenDOF</t>
765  <t>Christian Groves, Huawei</t>
766  <t>Ted Hardie, Google</t>
767  <t>Yonggeun Hong, ETRI</t>
768  <t>Russ Housley, Vigil Security</t>
769  <t>David Janes, IOTDB</t>
770  <t>Jaime Jimenez, Ericsson</t>
771  <t>Shailendra Karody, Catalina Labs</t>
772  <t>Ari Keraenen, Ericsson</t>
773  <t>Michael Koster, SmartThings</t>
774  <t>Matthias Kovatsch, Siemens</t>
775  <t>Kai Kreuzer, Deutsche Telekom</t>
776  <t>Barry Leiba, Huawei</t>
777  <t>Steve Liang, Uni Calgary</t>
778  <t>Marcello Lioy, Qualcomm</t>
779  <t>Kerry Lynn, Verizon</t>
780  <t>Mayan Mathen, Catalina Labs</t>
781  <t>Erik Nordmark, Arista</t>
782  <t>Jean Paoli, Microsoft</t>
783  <t>Joaquin Prado, OMA</t>
784  <t>Dave Raggett, W3C</t>
785  <t>Max Senges, Google</t>
786  <t>Ned Smith, Intel</t>
787  <t>Robert Sparks, Oracle</t>
788  <t>Ram Sriram, NIST</t>
789  <t>Clarke Stevens</t>
790  <t>Ram Subramanian, Intel</t>
791  <t>Andrew Sullivan, DIN</t>
792  <t>Darshak Thakore, CableLabs</t>
793  <t>Dave Thaler, Microsoft</t>
794  <t>Hannes Tschofenig, ARM Limited</t>
795  <t>Michael Verschoor, Philips Lighting</t>
796</list></t>
797<?rfc subcompact="no"?>
798
799</section>
800
801<section title="IAB Members at the Time of Approval" numbered="no">
802<?rfc subcompact="yes"?>
803  <t><list>
804  <t>Jari Arkko</t>
805  <t>Alissa Cooper</t>
806  <t>Ted Hardie</t>
807  <t>Christian Huitema</t>
808  <t>Gabriel Montenegro</t>
809  <t>Erik Nordmark</t>
810  <t>Mark Nottingham</t>
811  <t>Melinda Shore</t>
812  <t>Robert Sparks</t>
813  <t>Jeff Tantsura</t>
814  <t>Martin Thomson</t>
815  <t>Brian Trammell</t>
816  <t>Suzanne Woolf</t>
817  </list></t>
818<?rfc subcompact="no"?>
819  </section>
820
821<section title="Acknowledgements" numbered="no">
822
823<t>We would like to thank all paper authors and participants for their
824contributions and Ericsson for hosting the workshop.</t>
825
826</section>
827
828
829  </back>
830
831
832</rfc>
833
1<?xml version='1.0' encoding='UTF-8'?>
2
3<reference  anchor='RFC3444' target='https://www.rfc-editor.org/info/rfc3444'>
4<front>
5<title>On the Difference between Information Models and Data Models</title>
6<author initials='A.' surname='Pras' fullname='A. Pras'><organization /></author>
7<author initials='J.' surname='Schoenwaelder' fullname='J. Schoenwaelder'><organization /></author>
8<date year='2003' month='January' />
9<abstract><t>There has been ongoing confusion about the differences between Information Models and Data Models for defining managed objects in network management.  This document explains the differences between these terms by analyzing how existing network management model specifications (from the IETF and other bodies such as the International Telecommunication Union (ITU) or the Distributed Management Task Force (DMTF)) fit into the universe of Information Models and Data Models. This memo documents the main results of the 8th workshop of the Network Management Research Group (NMRG) of the Internet Research Task Force (IRTF) hosted by the University of Texas at Austin.  This memo provides information for the Internet community.</t></abstract>
10</front>
11<seriesInfo name='RFC' value='3444'/>
12<seriesInfo name='DOI' value='10.17487/RFC3444'/>
13</reference>
  • <?xml version="1.0" encoding="US-ASCII"?>
  • <!DOCTYPE rfc SYSTEM "rfc2629.dtd">
  • <?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?>
  • <?rfc compact="yes"?>
  • <?rfc text-list-symbols="o*+-"?>
  • <?rfc subcompact="no"?>
  • <?rfc sortrefs="yes"?>
  • <?rfc symrefs="yes"?>
  • <?rfc strict="yes"?>
  • <?rfc toc="yes"?>
  • <rfc category="info" submissionType="IAB" number="8477" consensus="yes" ipr="trust200902" obsoletes="" updates="" {http://www.w3.org/XML/1998/namespace}lang="en">
    • <front>
      • <title abbrev="IOTSI Workshop 2016">
        • Report from the Internet of Things (IoT) Semantic Interoperability (IOTSI) Workshop 2016
        • </title>
      • <--[rfced] *RJS or Stream Manager - please review and approve the
        split of the boilerplate paragraph in the Intro.

        As it appears at https://www.rfc-editor.org/materials/iab-format.txt:

          The following boilerplate paragraph SHOULD appear in the introduction: 

              The Internet Architecture Board (IAB) holds occasional workshops 
              designed to consider long-term issues and strategies for the 
              Internet, and to suggest future directions for the Internet 
              architecture.  This long-term planning function of the IAB is 
              complementary to the ongoing engineering efforts performed by working 
              groups of the Internet Engineering Task Force (IETF).

        How it appears in this document:


           The Internet Architecture Board (IAB) holds occasional workshops
           designed to consider long-term issues and strategies for the
           Internet, and to suggest future directions for the Internet
           architecture.  The investigated topics often require coordinated
           efforts of many organizations and industry bodies to improve an
           identified problem.  One of the targets of the workshops is to
           establish communication between relevant organizations, especially
           when the topics are out of the scope for the Internet Engineering
           Task Force (IETF).  This long-term planning function of the IAB is
           complementary to the ongoing engineering efforts performed by working
           groups of the IETF.

        -->
      • <author initials="J." surname="Jimenez" fullname="Jaime Jimenez">
        • <organization/>
        • <address>
          • <email>
            • jaime.jimenez@ericsson.com
            • </email>
          • </address>
        • </author>
      • <author initials="H." surname="Tschofenig" fullname="Hannes Tschofenig">
        • <organization/>
        • <address>
          • <email>
            • hannes.tschofenig@arm.com
            • </email>
          • </address>
        • </author>
      • <author initials="D." surname="Thaler" fullname="Dave Thaler">
        • <organization/>
        • <address>
          • <email>
            • dthaler@microsoft.com
            • </email>
          • </address>
        • </author>
      • <date year="2018" month="September"/>
      • <-- [rfced] Please insert any keywords (beyond those that appear in 
        the title) for use on https://www.rfc-editor.org/search.
        -->
      • <keyword>
        • example
        • </keyword>
      • <abstract>
        • <t>
          • This document provides a summary of the "Workshop on Internet of Things (IoT) Semantic Interoperability (IOTSI)", which took place in Santa Clara, California March 17-18, 2016. The main goal of the workshop was to foster a discussion on the different approaches used by companies and Standards Developing Organizations (SDOs) to accomplish interoperability at the application layer. This report summarizes the discussions and lists recommendations to the standards community. The views and positions in this report are those of the workshop participants and do not necessarily reflect those of the authors or the Internet Architecture Board (IAB), which organized the workshop.
            <--begin DNE text -->
            Note that this document is a report on the proceedings of the workshop. The views and positions documented in this report are those of the workshop participants and do not necessarily reflect IAB views and positions.
            <--end DNE text -->
          • </t>
        • </abstract>
      • </front>
    • <middle>
      • <section anchor="section-1" title="Introduction" numbered="true" toc="default">
        • <--Begin DNE text -->
        • <t>
          • The Internet Architecture Board (IAB) holds occasional workshops designed to consider long-term issues and strategies for the Internet, and to suggest future directions for the Internet architecture.
            <--End DNE text -->
            The investigated topics often require coordinated efforts from many organizations and industry bodies to improve an identified problem. One of the targets of the workshops is to establish communication between relevant organizations, especially when the topics are out of the scope of the Internet Engineering Task Force (IETF).
            <--Begin DNE text -->
            This long-term planning function of the IAB is complementary to the ongoing engineering efforts performed by working groups of the IETF.
            <--End DNE text -->
          • </t>
        • <t>
          • With the expansion of the Internet of Things (IoT), interoperability becomes more and more important. Standards Developing Organizations (SDOs) have done a tremendous amount of work to standardize new protocols and profile existing protocols.
          • </t>
        • <t>
          • At the application layer and at the level of solution frameworks, interoperability is not yet mature. Particularly, the work on data formats (in the form of data models and information models) has not seen the same level of consistency throughout SDOs.
          • </t>
        • <t>
          • One common problem is the lack of an encoding-independent standardization of the information, the so-called information model. Another problem is the strong relationship between data formats and the underlying communication architecture, such as a design in Remote Procedure Call (RPC) style or a RESTful design (where REST refers to Representational State Transfer). Furthermore, groups develop solutions that are very similar on the surface but differ slightly in their standardized outcome, leading to interoperability problems. Finally, some groups favor different encodings for use with various application-layer protocols.
          • </t>
        • <t>
          • Thus, the IAB decided to organize a workshop to reach out to relevant stakeholders to explore the state of the art and identify commonality and gaps <xref target="IOTSIAG" format="default" pageno="false"/><xref target="IOTSIWS" format="default" pageno="false"/>. In particular, the IAB was interested to learn about the following aspects:
          • </t>
        • <t>
          • <list style="symbols">
            • <t>
              • What is the state of the art in data and information models? What should an information model look like?
              • </t>
            • <t>
              • What is the role of formal languages, such as schema languages, in describing information and data models?
              • </t>
            • <t>
              • What is the role of metadata, which is attached to data to make it self-describing?
              • </t>
            • <t>
              • How can we achieve interoperability when different organizations, companies, and individuals develop extensions?
              • </t>
            • <t>
              • What is the experience with interworking various data models developed from different groups, or with data models that evolved over time?
              • </t>
            • <t>
              • What functionality should online repositories for sharing schemas have?
              • </t>
            • <t>
              • How can existing data models be mapped against each other to offer interworking?
              • </t>
            • <t>
              • Is there room for harmonization, or are the use cases of different groups and organizations so unique that there is no possibility for cooperation?
              • </t>
            • <t>
              • How can organizations better work together to increase awareness and information sharing?
              • </t>
            • </list>
          • </t>
        • </section>
      • <section anchor="section-2" title="Terminology" numbered="true" toc="default">
        • <t>
          • The first roadblock to interoperability at the level of data models is the lack of a common vocabulary to start the discussion. <xref target="RFC3444" format="default" pageno="false"/> provides a starting point by separating conceptual models for designers, or "information models", from concrete detailed definitions for implementers, or "data models". There are concepts that are undefined in that RFC and elsewhere, such as the interaction with the resources of an endpoint, or "interaction model". Therefore, the three "main" common models that were identified were:
          • </t>
        • <t>
          • <list style="hanging" hangIndent="3">
            • <t hangText="Information Model">
              • <vspace blankLines="0"/> An information model defines an environment at the highest level of abstraction and expresses the desired functionality. Information models can be defined informally (e.g., in prose) or more formally (e.g., Unified Modeling Language (UML), Entity-Relationship Diagrams, etc.). Implementation details are hidden.
              • </t>
            • </list>
          • </t>
        • <t>
          • <list style="hanging" hangIndent="3">
            • <t hangText="Data Model">
              • <vspace blankLines="0"/> A data model defines concrete data representations at a lower level of abstraction, including implementation- and protocol-specific details. Some examples are SNMP Management Information Base (MIB) modules, World Wide Web Consortium (W3C) Thing Description (TD) Things, YANG modules, Lightweight Machine-to-Machine (LwM2M) Schemas, Open Connectivity Foundation (OCF) Schemas, and so on.
              • </t>
            • </list>
          • </t>
        • <t>
          • <list style="hanging" hangIndent="3">
            • <t hangText="Interaction Model">
              • <vspace blankLines="0"/> An interaction model defines how data is accessed and retrieved from the endpoints, being, therefore, tied to the specific communication pattern that the system has (e.g., REST methods, Publish/Subscribe operations, or RPC calls).
              • </t>
            • </list>
          • </t>
        • <t>
          • Another identified terminology issue is the semantic meaning overload that some terms have. The meaning can vary depending on the context in which the term is used. Some examples of such terms are as follows: semantics, models, encoding, serialization format, media types, and encoding types. Due to time constraints, no concrete terminology was agreed upon, but work will continue within each organization to create various terminology documents. The participants agreed to set up a GitHub repository <xref target="IOTSIGIT" format="default" pageno="false"/> for sharing information.
          • </t>
        • </section>
      • <section anchor="section-4" title="What Problems to Solve" numbered="true" toc="default">
        • <t>
          • The participants agreed that there is not simply a single problem to be solved but rather a range of problems. During the workshop, the following problems were discussed:
          • </t>
        • <t>
          • <list style="symbols">
            • <t>
              • Formal Languages for Documentation Purposes
              • </t>
            • </list>
          • </t>
        • <t>
          • To simplify review and publication, SDOs need formal descriptions of their data and interaction models. Several of them use a tabular representation found in the specification itself but use a formal language as an alternative way of describing objects and resources for formal purposes. Some examples of formal language use are as follows.
          • </t>
        • <t>
          • The Open Mobile Alliance (OMA), now OMA SpecWorks, used an XML Schema <xref target="LWM2M-Schema" format="default" pageno="false"/> to describe their object and resource definitions. The XML files of standardized objects are available for download at <xref target="OMNA" format="default" pageno="false"/>.
          • </t>
        • <t>
          • The Bluetooth Special Interest Group (SIG) defined Generic Attribute Profile (GATT) services and characteristics for use with Bluetooth Smart/Low Energy. The services and characteristics are shown in a tabular form on the Bluetooth SIG website <xref target="SIG" format="default" pageno="false"/> and are defined as XML instance documents.
          • </t>
        • <t>
          • The Open Connectivity Foundation (OCF) uses JSON Schemas to formally define data models and RESTful API Modeling Language (RAML) to define interaction models. The standard files are available online at <oneIoTa.org>.
          • </t>
        • <t>
          • The AllSeen Alliance uses AllJoyn Introspection XML to define data and interaction models in the same formal language, tailored for RPC-style interaction. The standard files are available online on the AllSeen Alliance website, but both standard and vendor-defined model files can be obtained by directly querying a device for them at runtime.
          • </t>
        • <t>
          • The World Wide Web Consortium (W3C) uses the Resource Description Framework (RDF) to define data and interaction models using a format tailored for the web.
          • </t>
        • <t>
          • The Internet Engineering Task Force (IETF) uses YANG to define data and interaction models. Other SDOs may use various other formats.
          • </t>
        • <t>
          • <list style="symbols">
            • <t>
              • Formal Languages for Code Generation
              • </t>
            • </list>
          • </t>
        • <t>
          • Code-generation tools that use formal data and information modeling languages are needed by developers. For example, the AllSeen Visual Studio Plugin <xref target="AllSeen-Plugin" format="default" pageno="false"/> offers a wizard to generate code based on the formal description of the data model. Another example of a data modeling language that can be used for code generation is YANG. A popular tool to help with code generation of YANG modules is pyang <xref target="PYANG" format="default" pageno="false"/>. An example of a tool that can generate code for multiple ecosystems is OpenDOF <xref target="OpenDOF" format="default" pageno="false"/>. Use cases discussed for code generation included easing development of server-side device functionality, clients, and compliance tests.
          • </t>
        • <t>
          • <list style="symbols">
            • <t>
              • Debugging Support
              • </t>
            • </list>
          • </t>
        • <t>
          • Debugging tools are needed that implement generic object browsers, which use standard data models and/or retrieve formal language descriptions from the devices themselves. As one example, the nRF Bluetooth Smart sniffer from Nordic Semiconductor <xref target="nRF-Sniffer" format="default" pageno="false"/> can be used to display services and characteristics defined by the Bluetooth SIG. As another example, AllJoyn Explorer <xref target="AllJoynExplorer" format="default" pageno="false"/> can be used to browse and interact with any resource exposed by an AllJoyn device, including both standard and vendor-defined data models, by retrieving the formal descriptions from the device at runtime.
          • </t>
        • <t>
          • <list style="symbols">
            • <t>
              • Translation
              • </t>
            • </list>
          • </t>
        • <t>
          • The working assumption is that devices need to have a common data model with a priori knowledge of data types and actions. However, that would imply that each consortium/organization will try to define their own data model. That would cause a major interoperability problem, possibly a completely intractable one given the number of variations, extensions, compositions, or versioning changes that will happen for each data model.
          • </t>
        • <t>
          • Another potential approach is to have a minimal amount of information on the device to allow for a runtime binding to a specific model, the objective being to require as little prior knowledge as possible.
          • </t>
        • <t>
          • Moreover, gateways, bridges and other similar devices need to dynamically translate (or map) one data model to another one. Complexity will increase as there are also multiple protocols and schemas that make interoperability harder to achieve.
          • </t>
        • <t>
          • <list style="symbols">
            • <t>
              • Runtime Discovery
              • </t>
            • </list>
          • </t>
        • <t>
          • Runtime discovery allows IoT devices to exchange metadata about the data, potentially along with the data exchanged itself. In some cases, the metadata not only describes data but also the interaction model as well. An example of such an approach has been shown with Hypermedia as the Engine of Application State (HATEOAS) <xref target="HATEOAS" format="default" pageno="false"/>. Another example is that all AllJoyn devices support such runtime discovery using a protocol mechanism called "introspection", where the metadata is queried from the device itself <xref target="AllSeen" format="default" pageno="false"/>.
          • </t>
        • <t>
          • There are various models, whether deployed or possible, for such discovery. The metadata might be extracted from a specification, looked up on a cloud repository (e.g., oneIoTa for OCF models), looked up via a vendor's site, or obtained from the device itself (such as in the AllJoyn case). The relevant metadata might be obtained from the same place or different pieces might be obtained from different places, such as separately obtaining (a) syntax information, (b) end-user descriptions in a desired language, and (c) developer-specific comments for implementers.
          • </t>
        • </section>
      • <section anchor="section-5" title="Translation" numbered="true" toc="default">
        • <t>
          • In an ideal world where organizations and companies cooperate and agree on a single data model standard, there is no need for gateways that translate from one data model to another one. However, this is far from reality today, and there are many proprietary data models in addition to the already standardized ones. As a consequence, gateways are needed to translate between data models. This leads to (n^2)-n combinations, in the worst case.
          • </t>
        • <t>
          • There are analogies with gateways back in the 1980s that were used to translate between network layer protocols. Eventually, IP took over, providing the necessary end-to-end interoperability at the network layer. Unfortunately, the introduction of gateways leads to the loss of expressiveness due to the translation between data models. The functionality of IP was so valuable in the market that advanced features of other networking protocols became less attractive and were not used anymore.
          • </t>
        • <t>
          • Participants discussed an alternative that they called a "red star", shown in <xref target="red-star" format="default" pageno="false"/>, where data models are translated to a common data model shown in the middle. This reduces the number of translations that are needed down to 2n (in the best case). The problem, of course, is that everyone wants their own data model to be the red star in the center.
          • </t>
        • <figure title="The "Red Star" in Data/Information Models" anchor="red-star" suppress-title="false" align="left" alt="" width="" height="">
          • <artwork {http://www.w3.org/XML/1998/namespace}space="preserve" name="" type="" align="left" alt="" width="" height="">

            •    +-----+                                        +-----+
                 |     |                                        |     |
                 |     |  --                                 -- |     |
                 |     |    --                             --   |     |
                 +-----+      --                         --     +-----+
                                --                    ---
                                  --                --
                                    --            --
                                      --        --
                   ---                  -- A  --                  ---
                  /   \                ___/ \___                 /   \
                 |     | ---------------',   .'---------------  |     |
                  \   /                 /. ^ .\                  \   /
                   ---                 /'     '\                  ---   
                                      --        --
                                    --            --
                                  --                --
                                --                    --
                              --                        --
                     /\     --                            --     /\
                    /  \  --                                --  /  \
                   /    \                                      /    \
                  /      \                                    /      \
                 /--------\                                  /--------\
            • </artwork>
          • </figure>
        • <t>
          • While the workshop itself was not a suitable forum to discuss the design of such translation in detail, several questions were raised:
          • </t>
        • <t>
          • <list style="symbols">
            • <t>
              • Do we need a "red star" that does everything, or could we design something that offers a more restricted functionality?
              • </t>
            • <t>
              • How do we handle loss of data and functionality?
              • </t>
            • <t>
              • Should data be translated between data models, or should data models themselves be translated?
              • </t>
            • <t>
              • How can interaction models be translated? They need to be dealt with in addition to the data models.
              • </t>
            • <t>
              • Many (if not all) data and interaction models have some bizarre functionality that cannot be translated easily. How can those be handled?
              • </t>
            • <t>
              • What limitations are we going to accept in these translations?
              • </t>
            • </list>
          • </t>
        • <--[rfced] We recently received guidance from Benoit and the YANG
          Doctors that "YANG module" and "YANG data model" are preferred.
          We have updated the document accordingly.  Please review and let
          us know if further changes are necessary.

          -->
        • <t>
          • The participants also addressed the question of when translation should be done. Two use cases were discussed:
          • <list style="format (%c)">
            • <t>
              • Design time: A translation between data model descriptions, such as translating a YANG module to a RAML/JSON model, can be performed once, during design time. A single information model might be mapped to a number of different data models.
              • </t>
            • <t>
              • Run time: Runtime translation of values in two standard data models can only be algorithmically done when the data model on one side is algorithmically derived from the data model on the other side. This was called a "derived model". It was discussed that the availability of runtime discovery can aid in semantic translation, such as when a vendor-specific data model on one side of a protocol bridge is resolved and the translator can algorithmically derive the semantically equivalent vendor-specific data model on the other side. This situation is discussed in <xref target="BridgeTaxonomy" format="default" pageno="false"/>.
              • </t>
            • </list>
          • </t>
        • <t>
          • The participants agreed that algorithm translation will generally require custom code whenever one is translating to anything other than a derived model.
          • </t>
        • <t>
          • Participants concluded that it is typically easier to translate data between systems that follow the same communication architecture.
          • </t>
        • </section>
      • <section anchor="section-6" title="Dealing with Change" numbered="true" toc="default">
        • <t>
          • A large part of the workshop was dedicated to the evolution of devices and server-side applications. Interactions between devices and services and how their relationship evolves over time is complicated by their respective interaction models.
          • </t>
        • <t>
          • The workshop participants discussed various approaches to deal with change. In the most basic case, a developer might use a description of an API and implement the protocol steps. Sometimes, the data or information model can be used to generate code stubs. Subsequent changes to an API require changes on the clients to upgrade to the new version, which requires some development of new code to satisfy the needs of the new API.
          • </t>
        • <t>
          • These interactions could be made machine understandable in the first place, enabling for changes to happen at runtime. In that scenario, a machine client could discover the possible interactions with a service, adapting to changes as they occur without specific code being developed to adapt to them.
          • </t>
        • <t>
          • The challenge seems to be to code the human-readable specification into a machine-readable format. Machine-readable languages require a shared vocabulary to give meaning to the tags.
          • </t>
        • <t>
          • These types of interactions are often based on the REST architectural style. Its principle is that a device or endpoint only needs a single entry point, with a host providing descriptions of the API in-band by means of web links and forms.
          • </t>
        • <t>
          • By defining IoT-specific relation types, it is possible to drive interactions through links instead of hard-coding URIs into a RESTful client, thus making the system flexible enough for later changes. The definition of the basic hypermedia formats for IoT is still a work in progress. However, some of the existing mechanisms can be reused, such as resource discovery, forms, or links.
          • </t>
        • </section>
      • <--[rfced] FYI - we have added an IANA Considerations to match the
        guidance in RFC 8126 stating that no IANA actions are necessary.
        Please let us know any objections.  -->
      • <section title="IANA Considerations" numbered="true" toc="default">
        • <t>
          • This document has no IANA actions.
          • </t>
        • </section>
      • <section anchor="section-7" title="Security Considerations" numbered="true" toc="default">
        • <t>
          • There were two types of security considerations discussed: use of formal data models for security configuration and security of data and data models in general.
          • </t>
        • <t>
          • It was observed that the security assumptions and configuration, or "security model", varies by ecosystem today, making the job of a translator difficult. For example, there are different types of security principals (e.g., user vs. device vs. application), the use of Access Control Lists (ACLs) versus capabilities, and what types of policies can be expressed, all vary by ecosystem. As a result, the security model architecture generally dictates where translation can be done.
          • </t>
        • <t>
          • One approach discussed was whether two endpoints might be able to use some overlay security model across a translator between two ecosystems, which only works if the two endpoints agree on a common data model for their communication. Another approach discussed was simply having a translator act as a trusted intermediary, which enables the translator to translate between different data models.
          • </t>
        • <t>
          • One suggestion discussed was either adding metadata into the formal data model language or having it accompany the data values over the wire, tagging the data with privacy levels. However, sometimes even the privacy level of information might itself be sensitive. Still, it was observed that being able to dynamically learn security requirements might help provide better UIs and translators.
          • </t>
        • </section>
      • <section anchor="section-8" title="Collaboration" numbered="true" toc="default">
        • <t>
          • The participants discussed how best to share information among their various organizations. One discussion was around having joint meetings. One current challenge reported was that organizations were not aware of when and where each other's meetings were scheduled, and sharing such information could help organizations better collocate meetings. To facilitate this exchange, the participants agreed to add links to their respective meeting schedules from a common page in the IOTSI repository <xref target="IOTSIGIT" format="default" pageno="false"/>.
          • </t>
        • <t>
          • Another challenge reported was that organizations did not know how to find each other's published data models, and sharing such information could better facilitate reuse of the same information model. To facilitate this exchange, the participants discussed whether a common repository might be used by multiple organizations. The OCF's oneIoTa repository was discussed as one possibility, but it was reported that its terms of use at the time of the workshop prevented this. The OCF agreed to take this back and look at updating the terms of use to allow other organizations to use it, as the restriction was not the intent. <schema.org> was discussed as another possibility. In the meantime, the participants agreed to add links to their respective repositories from a common page in the IOTSI repository <xref target="IOTSIGIT" format="default" pageno="false"/>.
          • </t>
        • <t>
          • It was also agreed that the iotsi@iab.org mailing list would remain open and available for sharing information between all relevant organizations.
          • </t>
        • </section>
      • </middle>
    • <back>
      • <references title="Informative References">
        • <reference anchor="RFC3444" target="https://www.rfc-editor.org/info/rfc3444" {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml">
          • <front {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml">
            • <title {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml">
              • On the Difference between Information Models and Data Models
              • </title>
            • <author initials="A." surname="Pras" fullname="A. Pras" {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml">
              • <organization {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml"/>
              • </author>
            • <author initials="J." surname="Schoenwaelder" fullname="J. Schoenwaelder" {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml">
              • <organization {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml"/>
              • </author>
            • <date year="2003" month="January" {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml"/>
            • <abstract {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml">
              • <t {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml">
                • There has been ongoing confusion about the differences between Information Models and Data Models for defining managed objects in network management. This document explains the differences between these terms by analyzing how existing network management model specifications (from the IETF and other bodies such as the International Telecommunication Union (ITU) or the Distributed Management Task Force (DMTF)) fit into the universe of Information Models and Data Models. This memo documents the main results of the 8th workshop of the Network Management Research Group (NMRG) of the Internet Research Task Force (IRTF) hosted by the University of Texas at Austin. This memo provides information for the Internet community.
                • </t>
              • </abstract>
            • </front>
          • <seriesInfo name="RFC" value="3444" {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml"/>
          • <seriesInfo name="DOI" value="10.17487/RFC3444" {http://www.w3.org/XML/1998/namespace}base="/a/inc-work/refs/bibxml/reference.RFC.3444.xml"/>
          • </reference>
        • <reference anchor="AllSeen-Plugin" quote-title="true">
          • <front>
            • <title>
              • Using the AllJoyn Studio Extension
              • </title>
            • <author initials="B." surname="Rockwell" fullname="B. Rockwell">
              • <organization/>
              • </author>
            • <date year="2015" month="August" day="17"/>
            • </front>
          • </reference>
        • <reference anchor="HATEOAS" target="https://www.iab.org/wp-content/IAB-uploads/2016/03/2016-IAB-HATEOAS.pdf" quote-title="true">
          • <front>
            • <title>
              • Semantic Interoperability Requires Self-describing Interaction Models: HATEOAS for the Internet of Things
              • </title>
            • <author initials="M." surname="Kovatsch" fullname="M. Kovatsch">
              • <organization/>
              • </author>
            • <author initials="Y.N." surname="Hassan">
              • <organization/>
              • </author>
            • <author initials="K." surname="Hartke">
              • <organization/>
              • </author>
            • <date/>
            • </front>
          • <seriesInfo name="Proceedings of the IAB IoT Semantic Interoperability Workshop" value="2016"/>
          • </reference>
        • <reference anchor="AllSeen" target="https://www.iab.org/wp-content/IAB-uploads/2016/03/AllSeen-summary-IOTSI.pdf" quote-title="true">
          • <front>
            • <title>
              • Summary of AllSeen Alliance Work Relevant to Semantic Interoperability
              • </title>
            • <author initials="D." surname="Thaler" fullname="D. Thaler">
              • <organization/>
              • </author>
            • <date year="2016"/>
            • </front>
          • </reference>
        • <reference anchor="BridgeTaxonomy" target="https://www.iab.org/wp-content/IAB-uploads/2016/03/DThaler-IOTSI.pdf" quote-title="true">
          • <front>
            • <title>
              • IoT Bridge Taxonomy
              • </title>
            • <author initials="D." surname="Thaler" fullname="D. Thaler">
              • <organization/>
              • </author>
            • <date/>
            • </front>
          • <seriesInfo name="IAB IOTSI Workshop" value="2016"/>
          • </reference>
        • <reference anchor="IOTSIAG" target="https://www.iab.org/activities/workshops/iotsi/agenda/" quote-title="true">
          • <front>
            • <title>
              • IoT Semantic Interoperability Workshop Agenda
              • </title>
            • <author>
              • <organization>
                • IAB
                • </organization>
              • </author>
            • <date year="2016"/>
            • </front>
          • </reference>
        • <--[rfced] Please review our updates to the [IOTSIGIT] and [PYANG]
          reference entries in compliance with
          https://www.rfc-editor.org/styleguide/part2/ and let us know any
          objections. -->
        • <reference anchor="IOTSIGIT" target="https://github.com/iotsi/iotsi" quote-title="true">
          • <front>
            • <title>
              • Starting place for the IoT Semantic Interoperability Workshop (IOTSI) Information Resource
              • </title>
            • <author>
              • <organization/>
              • </author>
            • <date year="2018" month="July"/>
            • </front>
          • <seriesInfo name="commit" value="ff21f74"/>
          • </reference>
        • <reference anchor="IOTSIWS" target="https://www.iab.org/activities/workshops/iotsi/" quote-title="true">
          • <front>
            • <title>
              • IoT Semantic Interoperability Workshop 2016
              • </title>
            • <author>
              • <organization>
                • IAB
                • </organization>
              • </author>
            • <date year="2016"/>
            • </front>
          • </reference>
        • <reference anchor="LWM2M-Schema" quote-title="true">
          • <front>
            • <title>
              • LWM2M XML Schema - LWM2M Editor Schema
              • </title>
            • <author>
              • <organization>
                • OMA
                • </organization>
              • </author>
            • <date year="2018" month="July"/>
            • </front>
          • </reference>
        • <reference anchor="OMNA" quote-title="true">
          • <front>
            • <title>
              • OMA LightweightM2M (LwM2M) Object and Resource Registry
              • </title>
            • <author>
              • <organization>
                • OMA
                • </organization>
              • </author>
            • <date/>
            • </front>
          • </reference>
        • <reference anchor="SIG" target="https://www.bluetooth.com/specifications/gatt" quote-title="true">
          • <front>
            • <title>
              • GATT Specifications
              • </title>
            • <author>
              • <organization>
                • Bluetooth SIG
                • </organization>
              • </author>
            • <date/>
            • </front>
          • </reference>
        • <reference anchor="PYANG" target="https://github.com/mbj4668/pyang" quote-title="true">
          • <front>
            • <title>
              • An extensible YANG validator and converter in python
              • </title>
            • <author>
              • <organization/>
              • </author>
            • <date year="2018" month="September" day="13"/>
            • </front>
          • <seriesInfo name="commit" value="15c807f"/>
          • </reference>
        • <reference anchor="nRF-Sniffer" quote-title="true">
          • <front>
            • <title>
              • nRF Sniffer: Smart/Bluetooth low energy packet sniffer
              • </title>
            • <author>
              • <organization>
                • Nordic Semiconductor
                • </organization>
              • </author>
            • <date/>
            • </front>
          • </reference>
        • <reference anchor="AllJoynExplorer" quote-title="true">
          • <front>
            • <title>
              • AllJoyn
              • </title>
            • <author>
              • <organization>
                • Microsoft
                • </organization>
              • </author>
            • <date/>
            • </front>
          • </reference>
        • <reference anchor="OpenDOF" target="https://opendof.org" quote-title="true">
          • <front>
            • <title>
              • The OpenDOF Project
              • </title>
            • <author>
              • <organization>
                • OpenDOF
                • </organization>
              • </author>
            • <date/>
            • </front>
          • </reference>
        • </references>
      • <section title="Program Committee" numbered="true" toc="default">
        • <t>
          • This workshop was organized by the following individuals: Jari Arkko, Ralph Droms, Jaime Jimenez, Michael Koster, Dave Thaler, and Hannes Tschofenig.
          • </t>
        • </section>
      • <section title="Accepted Position Papers" numbered="true" toc="default">
        • <--[rfced] FYI, we standardized the capitalization of the paper
          titles from the workshop. Please let us know if that creates any
          problems.  -->
        • <t>
          • <list style="symbols">
            • <t>
              • Jari Arkko, "Gadgets and Protocols Come and Go, Data Is Forever"
              • </t>
            • <t>
              • Carsten Bormann, "Noise in Specifications hurts"
              • </t>
            • <t>
              • Benoit Claise, "YANG as the Data Modelling Language in the IoT space"
              • </t>
            • <t>
              • Robert Cragie, "The ZigBee Cluster Library over IP"
              • </t>
            • <t>
              • Dee Denteneer, Michael Verschoor, and Teresa Zotti, "Fairhair: interoperable IoT services for major Building Automation and Lighting Control ecosystems"
              • </t>
            • <t>
              • Universal Devices, "Object Oriented Approach to IoT Interoperability"
              • </t>
            • <t>
              • Bryant Eastham, "Interoperability and the OpenDOF Project"
              • </t>
            • <t>
              • Stephen Farrell and Alissa Cooper, "It's Often True: Security's Ignored (IOTSI) - and Privacy too"
              • </t>
            • <t>
              • Christian Groves, Lui Yan, and Yang Weiwei, "Overview of IoT semantics landscape"
              • </t>
            • <t>
              • Ted Hardie, "Loci of Interoperability for the Internet of Things"
              • </t>
            • <t>
              • Russ Housley, "Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communications"
              • </t>
            • <t>
              • Jaime Jimenez, Michael Koster, and Hannes Tschofenig, "IPSO Smart Objects"
              • </t>
            • <t>
              • David Jones, "IOTDB - interoperability Through Semantic Metastandards"
              • </t>
            • <t>
              • Sebastian Kaebisch and Darko Anicic, "Thing Description as Enabler of Semantic Interoperability on the Web of Things"
              • </t>
            • <t>
              • Achilleas Kemos, "Alliance for Internet of Things Innovation Semantic Interoperability Release 2.0, AIOTI WG03 - IoT Standardisation"
              • </t>
            • <t>
              • Ari Keraenen and Cullen Jennings, "SenML: simple building block for IoT semantic interoperability"
              • </t>
            • <t>
              • Dongmyoung Kim, Yunchul Choi, and Yonggeun Hong, "Research on Unified Data Model and Framework to Support Interoperability between IoT Applications"
              • </t>
            • <t>
              • Michael Koster, "Model-Based Hypertext Language"
              • </t>
            • <t>
              • Matthias Kovatsch, Yassin N. Hassan, and Klaus Hartke, "Semantic Interoperability Requires Self-describing Interaction Models"
              • </t>
            • <t>
              • Kai Kreuzer, "A Pragmatic Approach to Interoperability in the Internet of Things"
              • </t>
            • <t>
              • Barry Leiba, "Position Paper"
              • </t>
            • <t>
              • Marcello Lioy, "AllJoyn"
              • </t>
            • <t>
              • Kerry Lynn and Laird Dornin, "Modeling RESTful APIs with JSON Hyper-Schema"
              • </t>
            • <t>
              • Erik Nordmark, "Thoughts on IoT Semantic Interoperability: Scope of security issues"
              • </t>
            • <t>
              • Open Geospatial Consortium, "OGC SensorThings API: Communicating "Where" in the Web of Things"
              • </t>
            • <t>
              • Jean Paoli and Taqi Jaffri, "IoT Information Model Interoperability: An Open, Crowd-Sourced Approach in Three Parallel Parti"
              • </t>
            • <t>
              • Joaquin Prado, "OMA Lightweight M2M Resource Model"
              • </t>
            • <t>
              • Dave Raggett and Soumya Kanti Datta, "Input paper for IAB Semantic Interoperability Workshop"
              • </t>
            • <t>
              • Pete Rai and Stephen Tallamy, "Semantic Overlays Over Immutable Data to Facilitate Time and Context Specific Interoperability"
              • </t>
            • <t>
              • Jasper Roes and Laura Daniele, "Towards semantic interoperability in the IoT using the Smart Appliances REFerence ontology (SAREF) and its extensions"
              • </t>
            • <t>
              • Max Senges, "Submission for IAB IoT Sematic Interoperability workshop"
              • </t>
            • <t>
              • Bill Silverajan, Mert Ocak and Jaime Jimenez, "Implementation Experiences of Semantic Interoperability for RESTful Gateway Management"
              • </t>
            • <t>
              • Ned Smith, Jeff Sedayao, and Claire Vishik, "Key Semantic Interoperability Gaps in the Internet-of-Things Meta-Models"
              • </t>
            • <t>
              • Robert Sparks and Ben Campbell, "Considerations for certain IoT-based services"
              • </t>
            • <t>
              • J. Clarke Stevens, "Open Connectivity Foundation oneIoTa Tool"
              • </t>
            • <t>
              • J. Clarke Stevens and Piper Merriam, "Derived Models for Interoperability Between IoT Ecosystems"
              • </t>
            • <t>
              • Ravi Subramaniam, "Semantic Interoperability in Open Connectivity Foundation (OCF) - formerly Open Interconnect Consortium (OIC)"
              • </t>
            • <t>
              • Andrew Sullivan, "Position paper for IOTSI workshop"
              • </t>
            • <t>
              • Darshak Thakore, "IoT Security in the context of Semantic Interoperability"
              • </t>
            • <t>
              • Dave Thaler, "IoT Bridge Taxonomy"
              • </t>
            • <t>
              • Dave Thaler, "Summary of AllSeen Alliance Work Relevant to Semantic Interoperability"
              • </t>
            • <t>
              • Mark Underwood, Michael Gruninger, Leo Obrst, Ken Baclawski, Mike Bennett, Gary Berg-Cross, Torsten Hahmann, and Ram Sriram, "Internet of Things: Toward Smart Networked Systems and Societies"
              • </t>
            • <t>
              • Peter van der Stok and Andy Bierman, "YANG-Based Constrained Management Interface (CoMI)"
              • </t>
            • </list>
          • </t>
        • </section>
      • <section title="List of Participants" numbered="true" toc="default">
        • <?rfc subcompact="yes"?>
        • <t>
          • <list>
            • <t>
              • Andy Bierman, YumaWorks
              • </t>
            • <t>
              • Carsten Bormann, Uni Bremen/TZI
              • </t>
            • <t>
              • Ben Campbell, Oracle
              • </t>
            • <t>
              • Benoit Claise, Cisco
              • </t>
            • <t>
              • Alissa Cooper, Cisco
              • </t>
            • <t>
              • Robert Cragie, ARM Limited
              • </t>
            • <t>
              • Laura Daniele, TNO
              • </t>
            • <t>
              • Bryant Eastham, OpenDOF
              • </t>
            • <t>
              • Christian Groves, Huawei
              • </t>
            • <t>
              • Ted Hardie, Google
              • </t>
            • <t>
              • Yonggeun Hong, ETRI
              • </t>
            • <t>
              • Russ Housley, Vigil Security
              • </t>
            • <t>
              • David Janes, IOTDB
              • </t>
            • <t>
              • Jaime Jimenez, Ericsson
              • </t>
            • <t>
              • Shailendra Karody, Catalina Labs
              • </t>
            • <t>
              • Ari Keraenen, Ericsson
              • </t>
            • <t>
              • Michael Koster, SmartThings
              • </t>
            • <t>
              • Matthias Kovatsch, Siemens
              • </t>
            • <t>
              • Kai Kreuzer, Deutsche Telekom
              • </t>
            • <t>
              • Barry Leiba, Huawei
              • </t>
            • <t>
              • Steve Liang, Uni Calgary
              • </t>
            • <t>
              • Marcello Lioy, Qualcomm
              • </t>
            • <t>
              • Kerry Lynn, Verizon
              • </t>
            • <t>
              • Mayan Mathen, Catalina Labs
              • </t>
            • <t>
              • Erik Nordmark, Arista
              • </t>
            • <t>
              • Jean Paoli, Microsoft
              • </t>
            • <t>
              • Joaquin Prado, OMA
              • </t>
            • <t>
              • Dave Raggett, W3C
              • </t>
            • <t>
              • Max Senges, Google
              • </t>
            • <t>
              • Ned Smith, Intel
              • </t>
            • <t>
              • Robert Sparks, Oracle
              • </t>
            • <t>
              • Ram Sriram, NIST
              • </t>
            • <t>
              • Clarke Stevens
              • </t>
            • <t>
              • Ram Subramanian, Intel
              • </t>
            • <t>
              • Andrew Sullivan, DIN
              • </t>
            • <t>
              • Darshak Thakore, CableLabs
              • </t>
            • <t>
              • Dave Thaler, Microsoft
              • </t>
            • <t>
              • Hannes Tschofenig, ARM Limited
              • </t>
            • <t>
              • Michael Verschoor, Philips Lighting
              • </t>
            • </list>
          • </t>
        • <?rfc subcompact="no"?>
        • </section>
      • <section title="IAB Members at the Time of Approval" numbered="no" toc="default">
        • <?rfc subcompact="yes"?>
        • <t>
          • <list>
            • <t>
              • Jari Arkko
              • </t>
            • <t>
              • Alissa Cooper
              • </t>
            • <t>
              • Ted Hardie
              • </t>
            • <t>
              • Christian Huitema
              • </t>
            • <t>
              • Gabriel Montenegro
              • </t>
            • <t>
              • Erik Nordmark
              • </t>
            • <t>
              • Mark Nottingham
              • </t>
            • <t>
              • Melinda Shore
              • </t>
            • <t>
              • Robert Sparks
              • </t>
            • <t>
              • Jeff Tantsura
              • </t>
            • <t>
              • Martin Thomson
              • </t>
            • <t>
              • Brian Trammell
              • </t>
            • <t>
              • Suzanne Woolf
              • </t>
            • </list>
          • </t>
        • <?rfc subcompact="no"?>
        • </section>
      • <section title="Acknowledgements" numbered="no" toc="default">
        • <t>
          • We would like to thank all paper authors and participants for their contributions and Ericsson for hosting the workshop.
          • </t>
        • </section>
      • </back>
    • </rfc>
1<?xml version="1.0" encoding="US-ASCII"?>
2  <?xml-stylesheet type="text/xsl" href="rfc2629.xslt" ?>
3
4<!DOCTYPE rfc SYSTEM "rfc2629.dtd" [
5]>
6
7<?rfc compact="yes"?>
8<?rfc text-list-symbols="o*+-"?>
9<?rfc subcompact="no"?>
10<?rfc sortrefs="yes"?>
11<?rfc symrefs="yes"?>
12<?rfc strict="yes"?>
13<?rfc toc="yes"?>
14
15<rfc category="info" submissionType="IAB" number="8477" consensus="yes" ipr="trust200902">
16
17  <front>
18    <title abbrev="IOTSI Workshop 2016">Report from the Internet of Things (IoT) Semantic&nbsp;Interoperability&nbsp;(IOTSI)&nbsp;Workshop&nbsp;2016</title>
19
20
21
22<!--[rfced] *RJS or Stream Manager - please review and approve the
23split of the boilerplate paragraph in the Intro.
24
25As it appears at https://www.rfc-editor.org/materials/iab-format.txt:
26
27  The following boilerplate paragraph SHOULD appear in the introduction: 
28
29      The Internet Architecture Board (IAB) holds occasional workshops 
30      designed to consider long-term issues and strategies for the 
31      Internet, and to suggest future directions for the Internet 
32      architecture.  This long-term planning function of the IAB is 
33      complementary to the ongoing engineering efforts performed by working 
34      groups of the Internet Engineering Task Force (IETF).
35
36How it appears in this document:
37
38
39   The Internet Architecture Board (IAB) holds occasional workshops
40   designed to consider long-term issues and strategies for the
41   Internet, and to suggest future directions for the Internet
42   architecture.  The investigated topics often require coordinated
43   efforts of many organizations and industry bodies to improve an
44   identified problem.  One of the targets of the workshops is to
45   establish communication between relevant organizations, especially
46   when the topics are out of the scope for the Internet Engineering
47   Task Force (IETF).  This long-term planning function of the IAB is
48   complementary to the ongoing engineering efforts performed by working
49   groups of the IETF.
50
51-->
52
53    <author initials="J." surname="Jimenez" fullname="Jaime Jimenez">
54      <organization></organization>
55      <address>
56        <email>jaime.jimenez@ericsson.com</email>
57      </address>
58    </author>
59    <author initials="H." surname="Tschofenig" fullname="Hannes Tschofenig">
60      <organization></organization>
61      <address>
62        <email>hannes.tschofenig@arm.com</email>
63      </address>
64    </author>
65    <author initials="D." surname="Thaler" fullname="Dave Thaler">
66      <organization></organization>
67      <address>
68        <email>dthaler@microsoft.com</email>
69      </address>
70    </author>
71
72    <date year="2018" month="September"/>
73
74<!-- [rfced] Please insert any keywords (beyond those that appear in 
75the title) for use on https://www.rfc-editor.org/search.
76-->
77
78<keyword>example</keyword>
79
80
81       <abstract>
82
83<t>This document provides a summary of the "Workshop on Internet of
84Things (IoT) Semantic Interoperability (IOTSI)",
85which took place in Santa Clara, California March 17-18, 2016.  The main
86goal of the workshop was to foster a discussion on the different
87approaches used by companies and Standards Developing Organizations (SDOs)
88to accomplish interoperability at the application layer.  This report
89summarizes the discussions and lists recommendations to the standards
90community.  The views and positions in this report are those of the
91workshop participants and do not necessarily reflect those of the
92authors or the Internet Architecture Board (IAB), which organized
93the workshop.
94<!--begin DNE text -->
95Note that this document is a report on the proceedings of the 
96      workshop.  The views and positions documented in this report are 
97      those of the workshop participants and do not necessarily reflect IAB 
98      views and positions.
99
100<!--end DNE text -->
101</t>
102
103    </abstract>
104
105
106  </front>
107
108  <middle>
109
110
111<section anchor="section-1" title="Introduction">
112
113<!--Begin DNE text -->
114<t>The Internet Architecture Board (IAB) holds occasional workshops
115designed to consider long-term issues and strategies for the
116Internet, and to suggest future directions for the Internet
117architecture.
118<!--End DNE text -->
119The investigated topics often require coordinated
120efforts from many organizations and industry bodies to improve an
121identified problem.  One of the targets of the workshops is to
122establish communication between relevant organizations, especially
123when the topics are out of the scope of the Internet Engineering
124Task Force (IETF).
125<!--Begin DNE text -->
126This long-term planning function of the IAB is
127complementary to the ongoing engineering efforts performed by working
128groups of the IETF.
129<!--End DNE text -->
130</t>
131
132<t>With the expansion of the Internet of Things (IoT), interoperability
133becomes more and more important. Standards Developing Organizations (SDOs)
134have done a tremendous amount of work to standardize new protocols
135and profile existing protocols.</t>
136
137<t>At the application layer and at the level of solution frameworks, 
138interoperability is not yet mature. Particularly, the
139work on data formats (in the form of data models and information
140models) has not seen the same level of consistency throughout
141SDOs.</t>
142
143<t>One common problem is the lack of an encoding-independent standardization
144of the information, the so-called information model. Another problem is
145the strong relationship between data formats and the underlying communication architecture, 
146such as a design in Remote Procedure Call (RPC) style or a RESTful design (where REST refers to Representational State Transfer). Furthermore, groups develop solutions that are very similar on the surface but differ slightly in their standardized outcome, leading to interoperability
147problems. Finally, some groups favor different encodings for use with
148various application-layer protocols.</t>
149
150<t>Thus, the IAB decided to organize a workshop to reach out to relevant
151stakeholders to explore the state of the art and identify
152commonality and gaps <xref target="IOTSIAG"/><xref target="IOTSIWS"/>. In particular, the IAB was
153interested to learn about the following aspects:</t>
154
155<t><list style="symbols">
156  <t>What is the state of the art in data and information models? What should
157an information model look like?</t>
158  <t>What is the role of formal languages, such as schema languages, in
159describing information and data models?</t>
160  <t>What is the role of metadata, which is attached to data to make it self-describing?</t>
161  <t>How can we achieve interoperability when different organizations, companies,
162and individuals develop extensions?</t>
163  <t>What is the experience with interworking various data models developed
164from different groups, or with data models that evolved over time?</t>
165  <t>What functionality should online repositories for sharing schemas have?</t>
166  <t>How can existing data models be mapped against each other to offer interworking?</t>
167  <t>Is there room for harmonization, or are the use cases of different groups
168and organizations so unique that there is no possibility for cooperation?</t>
169  <t>How can organizations better work together to increase awareness and information sharing?</t>
170</list></t>
171
172</section>
173<section anchor="section-2" title="Terminology">
174
175<t>The first roadblock to interoperability at the level of data models is the lack of a
176common vocabulary to start the discussion.
177<xref target="RFC3444"/> provides a starting point by separating conceptual models for designers,
178or "information models", from concrete detailed definitions for implementers, or
179"data models". There are concepts that are
180undefined in that RFC and elsewhere, such as the interaction with the
181resources of an endpoint, or "interaction model".  Therefore, the three
182"main" common models that were identified were:</t>
183
184<t><list style="hanging" hangIndent="3">
185  <t hangText='Information Model'><vspace blankLines='0'/>
186  An information model defines an environment at the highest level of abstraction and
187expresses the desired functionality.
188Information models can be defined informally (e.g., in prose) or more
189formally (e.g., Unified Modeling Language (UML), Entity-Relationship Diagrams, etc.).
190Implementation details are hidden.</t>
191</list></t>
192
193<t><list style="hanging" hangIndent="3">
194  <t hangText='Data Model'><vspace blankLines='0'/>
195  
196
197A data model defines concrete data representations at a lower level of
198abstraction, including implementation- and protocol-specific details.
199Some examples are SNMP Management Information Base (MIB) modules, World Wide
200Web Consortium (W3C) Thing Description (TD) Things, YANG modules, Lightweight Machine-to-Machine (LwM2M) Schemas, Open Connectivity Foundation (OCF) Schemas, and so on.</t>
201</list></t>
202
203<t><list style="hanging" hangIndent="3">
204  <t hangText='Interaction Model'><vspace blankLines='0'/>
205  An interaction model defines how data is accessed and retrieved from the endpoints,
206being, therefore, tied to the specific
207communication pattern that the system has (e.g., REST methods,
208Publish/Subscribe operations, or RPC calls).</t>
209</list></t>
210
211<t>Another identified terminology issue is the semantic meaning overload
212that some terms have.  The meaning can vary depending on the context in which the
213term is used.  Some examples of such terms are as follows: semantics, models,
214encoding, serialization format, media types, and encoding types.  Due
215to time constraints, no concrete terminology was agreed upon, but
216work will continue within each organization to create various
217terminology documents.  The participants agreed to set up a GitHub repository
218<xref target="IOTSIGIT"/> for sharing information.</t>
219
220</section>
221<section anchor="section-4" title="What Problems to Solve">
222
223<t>The participants agreed that there is not simply a single problem to be solved but
224rather a range of problems. During the workshop, the following problems were discussed:</t>
225
226<t><list style="symbols">
227  <t>Formal Languages for Documentation Purposes</t>
228</list></t>
229
230<t>To simplify review and publication, SDOs need
231formal descriptions of their data and interaction models.
232Several of them use a tabular representation found in the specification itself
233but use a formal language as an alternative way of describing objects and resources
234for formal purposes.  Some examples of formal language use are as follows.</t>
235
236<t>The Open Mobile Alliance (OMA), now OMA SpecWorks, used an XML Schema <xref
237target="LWM2M-Schema"/> to describe their object and resource definitions. The
238XML files of standardized objects are available for download at
239<xref target="OMNA"/>.</t>
240
241<t>The Bluetooth Special Interest Group (SIG) defined Generic Attribute Profile (GATT) services and characteristics for use with 
242Bluetooth Smart/Low Energy. The services and characteristics are shown in a tabular form on 
243the Bluetooth SIG website <xref target="SIG"/> and are defined as XML instance documents.</t>
244
245<t>The Open Connectivity Foundation (OCF) uses JSON Schemas to formally define
246data models and RESTful API Modeling Language (RAML) to define interaction models.  The standard files are
247available online at &lt;oneIoTa.org&gt;.</t>
248
249<t>The AllSeen Alliance uses AllJoyn Introspection XML to define data and interaction
250models in the same formal language, tailored for RPC-style interaction.  The standard
251files are available online on the AllSeen Alliance website, but both standard and
252vendor-defined model files can be obtained by directly querying a device for them at runtime.</t>
253
254<t>The World Wide Web Consortium (W3C) uses the Resource Description Framework (RDF)
255to define data and interaction models using a format tailored for the web.</t>
256
257<t>The Internet Engineering Task Force (IETF) uses YANG to define data and interaction models.
258Other SDOs may use various other formats.</t>
259
260<t><list style="symbols">
261  <t>Formal Languages for Code Generation</t>
262</list></t>
263
264<t>Code-generation tools that use formal data and information modeling languages
265are needed by developers. For example, the AllSeen Visual Studio
266Plugin <xref target="AllSeen-Plugin"/> offers a wizard to generate code based on
267the formal description of the data model.  Another example of a data
268modeling language that can be used for code generation is YANG.  A
269popular tool to help with code generation of YANG modules is pyang <xref target="PYANG"/>.
270An example of a tool that can generate code for multiple ecosystems is
271OpenDOF <xref target="OpenDOF"/>. Use cases discussed for code generation included easing
272development of server-side device functionality, clients, and compliance tests.</t>
273
274
275<t><list style="symbols">
276  <t>Debugging Support</t>
277</list></t>
278
279<t>Debugging tools are needed that implement generic object browsers, which
280use standard data models and/or retrieve formal language descriptions
281from the devices themselves. As one example, the
282nRF Bluetooth Smart sniffer from Nordic Semiconductor <xref target="nRF-Sniffer"/> can be
283used to display services and characteristics defined by the Bluetooth SIG.
284As another example, AllJoyn Explorer <xref target="AllJoynExplorer"/> can be used to browse
285and interact with any resource exposed by an AllJoyn device, including both
286standard and vendor-defined data models, by retrieving the formal descriptions
287from the device at runtime.</t>
288
289<t><list style="symbols">
290  <t>Translation</t>
291</list></t>
292
293<t>The working assumption is that devices need to have a common data model 
294with a priori knowledge of data types and actions. However, that would imply 
295that each consortium/organization will try to define their own data
296model. That would cause a major interoperability problem, possibly a completely
297intractable one  given the number of variations, extensions, compositions, or
298versioning changes that will happen for each data model.</t>
299
300
301<t>Another potential approach is to have a minimal amount of information on the
302device to allow for a runtime binding to a specific model, the objective being
303to require as little prior knowledge as possible.</t>
304
305<t>Moreover, gateways, bridges  and other similar devices need to dynamically
306translate (or map) one data model to another one. Complexity will increase 
307as there are also multiple protocols and schemas that make interoperability
308harder to achieve.</t>
309
310<t><list style="symbols">
311  <t>Runtime Discovery</t>
312</list></t>
313
314<t>Runtime discovery allows IoT devices to exchange metadata about the data, potentially along with the
315data exchanged itself. In some cases, the metadata not only describes data but also the interaction model as well. 
316An example of such an approach has been shown with Hypermedia as the Engine of
317Application State (HATEOAS) <xref target="HATEOAS"/>.
318Another example is that all AllJoyn devices support such runtime discovery
319using a protocol mechanism called "introspection", where the metadata is 
320queried from the device itself <xref target="AllSeen"/>.</t>
321
322<t>There are various models, whether deployed or possible, for such discovery.
323The metadata might be extracted from a specification, looked up on a 
324cloud repository (e.g., oneIoTa for OCF models), looked up via a vendor's
325site, or obtained from the device itself (such as in the AllJoyn case).  The 
326relevant metadata might be obtained from the same place or different
327pieces might be obtained from different places, such as separately obtaining (a) syntax information, (b) end-user descriptions in 
328a desired language, and (c) developer-specific comments for implementers.</t>
329
330</section>
331<section anchor="section-5" title="Translation">
332
333<t>In an ideal world where organizations and companies cooperate and agree on a
334single data model standard, there is no need for gateways that translate from one data model
335to another one. However, this is far from reality today, and there are many
336proprietary data models in addition to the already standardized ones. As a 
337consequence, gateways are needed to translate between data models. This leads to 
338(n^2)-n combinations, in the worst case.</t>
339
340<t>There are analogies with gateways back in the 1980s that were used to
341translate between network layer protocols.  Eventually, IP took over, providing
342the necessary end-to-end interoperability at the network layer. Unfortunately,
343the introduction of gateways leads to the loss of expressiveness
344due to the translation between data models. The functionality of IP was so 
345valuable in the market that advanced features of other networking 
346protocols became less attractive and were not used anymore.</t>
347
348<t>Participants discussed an alternative that they called a "red star", shown
349in <xref target="red-star"/>, where data models are translated to a common
350data model shown in the middle. This 
351reduces the number of translations that are needed down to 2n (in the best case). 
352The problem, of course, is that everyone wants their own data model to be the red star in the center.</t>
353
354<figure title="The &quot;Red Star&quot; in Data/Information Models" anchor="red-star"><artwork><![CDATA[
355   +-----+                                        +-----+
356   |     |                                        |     |
357   |     |  --                                 -- |     |
358   |     |    --                             --   |     |
359   +-----+      --                         --     +-----+
360                  --                    ---
361                    --                --
362                      --            --
363                        --        --
364     ---                  -- A  --                  ---
365    /   \                ___/ \___                 /   \
366   |     | ---------------',   .'---------------  |     |
367    \   /                 /. ^ .\                  \   /
368     ---                 /'     '\                  ---   
369                        --        --
370                      --            --
371                    --                --
372                  --                    --
373                --                        --
374       /\     --                            --     /\
375      /  \  --                                --  /  \
376     /    \                                      /    \
377    /      \                                    /      \
378   /--------\                                  /--------\
379]]></artwork></figure>
380
381<t>While the workshop itself was not a suitable forum to discuss the design of 
382such translation in detail, several questions were raised:</t>
383
384<t><list style="symbols">
385  <t>Do we need a "red star" that does everything, or could we design something that 
386offers a more restricted functionality?</t>
387  <t>How do we handle loss of data and functionality?</t>
388  <t>Should data be translated between data models, or should data models themselves be translated?</t>
389  <t>How can interaction models be translated? They need to be dealt with in addition 
390 to the data models.</t>
391  <t>Many (if not all) data and interaction models have some bizarre functionality 
392 that cannot be translated easily. How can those be handled?</t>
393  <t>What limitations are we going to accept in these translations?</t>
394</list></t>
395
396<!--[rfced] We recently received guidance from Benoit and the YANG
397Doctors that "YANG module" and "YANG data model" are preferred.
398We have updated the document accordingly.  Please review and let
399us know if further changes are necessary.
400
401-->
402<t>The participants also addressed the question of when translation should be done.
403Two use cases were discussed:
404<list style="format (%c)">
405<t>Design time: A translation between data model
406descriptions, such as translating a YANG module to a RAML/JSON model,
407can be performed once, during design time.
408A single information model might be mapped to a number of different data models.</t>
409
410<t>Run time: Runtime translation of values in two standard data models can only be
411algorithmically done when the data model on one side is algorithmically derived
412from the data model on the other side.  This was called a "derived model".
413It was discussed that the availability of runtime discovery can aid in
414semantic translation, such as when a vendor-specific data model on one
415side of a protocol bridge is resolved and the translator can algorithmically 
416derive the semantically equivalent vendor-specific data model on the other
417side. This situation is discussed in <xref target="BridgeTaxonomy"/>.</t>
418</list></t>
419<t>The participants agreed that algorithm translation will generally require
420custom code whenever one is translating to anything other than a derived model.</t>
421
422<t>Participants concluded that it is typically easier to translate data between systems that
423follow the same communication architecture.</t>
424
425</section>
426<section anchor="section-6" title="Dealing with Change">
427
428<t>A large part of the workshop was dedicated to the evolution of
429devices and server-side applications.
430Interactions between devices and services and how their relationship
431evolves over time is complicated by their respective interaction models.</t>
432
433<t>The workshop participants discussed various approaches to deal with change.  In the most basic case, a
434developer might use a description of an API and implement 
435the protocol steps.  Sometimes, the data or information model can be used to generate code stubs.  Subsequent changes to an API
436require changes on the clients to upgrade to the new version, which
437requires some development of new code to satisfy the needs of the new
438API.</t>
439
440<t>These interactions could be made machine understandable in the first place,
441enabling for changes to happen at runtime.
442In that scenario, a machine client could discover the possible interactions with a
443service, adapting to changes as they occur without specific code
444being developed to adapt to them.</t>
445
446<t>The challenge seems to be to code the human-readable specification into a machine-readable format.  Machine-readable languages require a shared vocabulary to
447give meaning to the tags.</t>
448
449<t>These types of interactions are often based on the REST architectural
450style. Its principle is that a device or endpoint only needs a
451single entry point, with a host providing descriptions of the API
452in-band by means of web links and forms.</t>
453
454<t>By defining IoT-specific relation types, it is possible to drive
455interactions through links instead of hard-coding URIs into a RESTful
456client, thus making the system flexible enough for later changes.
457The definition of the basic hypermedia formats for IoT is still a work
458in progress. However, some of the existing mechanisms can be reused,
459such as resource discovery, forms, or links.</t>
460
461</section>
462
463<!--[rfced] FYI - we have added an IANA Considerations to match the
464guidance in RFC 8126 stating that no IANA actions are necessary.
465Please let us know any objections.  -->
466
467<section title="IANA Considerations">
468  <t>This document has no IANA actions.</t>
469</section>
470
471<section anchor="section-7" title="Security Considerations">
472
473<t>There were two types of security considerations discussed: use of formal data
474models for security configuration and security of data and data models in general.</t>
475
476<t>It was observed that the security assumptions and configuration, or "security model", varies by ecosystem today,
477making the job of a translator difficult.  For example, there are different types of security
478principals (e.g., user vs. device vs. application), the use of Access Control Lists (ACLs) versus capabilities,
479and what types of policies can be expressed, all vary by ecosystem.  As a result,
480the security model architecture generally dictates where translation can be done.</t>
481
482<t>One approach discussed was whether two endpoints might be able to use some overlay
483security model across a translator between two ecosystems, which only works if
484the two endpoints agree on a common data model for their communication.  Another approach
485discussed was simply having a translator act as a trusted intermediary, which enables
486the translator to translate between different data models.</t>
487
488<t>One suggestion discussed was either adding metadata into the
489formal data model language or having it accompany the data values over the wire, tagging
490the data with privacy levels.  However, sometimes even the privacy level of information
491might itself be sensitive.  Still, it was observed that being able to dynamically
492learn security requirements might help provide better UIs and translators.</t>
493
494</section>
495<section anchor="section-8" title="Collaboration">
496
497<t>The participants discussed how best to share information among their various organizations.
498One discussion was around having joint meetings. One current challenge reported was that
499organizations were not aware of when and where each other's meetings were scheduled,
500and sharing such information could help organizations better collocate meetings.
501To facilitate this exchange, the participants agreed to add links to their respective
502meeting schedules from a common page in the IOTSI repository <xref target="IOTSIGIT"/>.</t>
503
504<t>Another challenge reported was that organizations did not know how to find each other's
505published data models, and sharing such information could better facilitate reuse of the
506same information model.  To facilitate this exchange, the participants discussed whether
507a common repository might be used by multiple organizations.  The OCF's oneIoTa repository
508was discussed as one possibility, but it was reported that its terms of use at the time
509of the workshop prevented this.  The OCF agreed to take this back and look at updating
510the terms of use to allow other organizations to use it, as the restriction was not
511the intent.  &lt;schema.org&gt; was discussed as another possibility.  In the meantime, the
512participants agreed to add links to their respective repositories from a common page in
513the IOTSI repository <xref target="IOTSIGIT"/>.</t>
514
515<t>It was also agreed that the iotsi@iab.org mailing list would remain open and available
516for sharing information between all relevant organizations.</t>
517
518</section>
519
520
521  </middle>
522
523  <back>
524
525
526    <references title='Informative References'>
527
528<?rfc include="reference.RFC.3444" ?>
529
530
531
532<reference anchor="AllSeen-Plugin">
533  <front>
534    <title>Using the AllJoyn Studio Extension</title>
535    <author initials="B." surname="Rockwell" fullname="B. Rockwell">
536      <organization></organization>
537    </author>
538    <date year="2015" month="August" day="17"/>
539  </front>
540</reference>
541
542<reference anchor="HATEOAS" target="https://www.iab.org/wp-content/IAB-uploads/2016/03/2016-IAB-HATEOAS.pdf">
543  <front>
544    <title>Semantic Interoperability Requires Self-describing Interaction Models: HATEOAS for the Internet of Things</title>
545    <author initials="M." surname="Kovatsch" fullname="M. Kovatsch">
546      <organization></organization>
547    </author>
548    <author initials="Y.N." surname="Hassan">
549      <organization></organization>
550    </author>
551    <author initials="K." surname="Hartke">
552      <organization></organization>
553    </author>
554    <date />
555  </front>
556  <seriesInfo name="Proceedings of the IAB IoT Semantic Interoperability Workshop" value="2016"/>
557</reference>
558
559<reference anchor="AllSeen" target="https://www.iab.org/wp-content/IAB-uploads/2016/03/AllSeen-summary-IOTSI.pdf">
560  <front>
561    <title>Summary of AllSeen Alliance Work Relevant to Semantic Interoperability</title>
562    <author initials="D." surname="Thaler" fullname="D. Thaler">
563      <organization></organization>
564    </author>
565    <date year="2016"/>
566  </front>
567</reference>
568
569<reference anchor="BridgeTaxonomy" target="https://www.iab.org/wp-content/IAB-uploads/2016/03/DThaler-IOTSI.pdf">
570  <front>
571    <title>IoT Bridge Taxonomy</title>
572    <author initials="D." surname="Thaler" fullname="D. Thaler">
573      <organization></organization>
574    </author>
575    <date />
576  </front>
577<seriesInfo name="IAB IOTSI Workshop" value="2016" />
578</reference>
579
580<reference anchor="IOTSIAG" target="https://www.iab.org/activities/workshops/iotsi/agenda/">
581  <front>
582    <title>IoT Semantic Interoperability Workshop Agenda</title>
583    <author >
584      <organization>IAB</organization>
585    </author>
586    <date year="2016"/>
587  </front>
588</reference>
589
590<!--[rfced] Please review our updates to the [IOTSIGIT] and [PYANG]
591reference entries in compliance with
592https://www.rfc-editor.org/styleguide/part2/ and let us know any
593objections. -->
594
595<reference anchor="IOTSIGIT" target="https://github.com/iotsi/iotsi">
596  <front>
597    <title>Starting place for the IoT Semantic Interoperability Workshop
598    (IOTSI) Information Resource</title>
599    <author >
600      <organization></organization>
601    </author>
602    <date year="2018" month="July"/>
603  </front>
604<seriesInfo name='commit' value="ff21f74"/>
605</reference>
606
607<reference anchor="IOTSIWS" target="https://www.iab.org/activities/workshops/iotsi/">
608  <front>
609    <title>IoT Semantic Interoperability Workshop 2016</title>
610    <author >
611      <organization>IAB</organization>
612    </author>
613    <date year="2016"/>
614  </front>
615</reference>
616
617<reference anchor="LWM2M-Schema" >
618  <front>
619    <title>LWM2M XML Schema - LWM2M Editor Schema</title>
620    <author >
621      <organization>OMA</organization>
622    </author>
623    <date year="2018" month="July"/>
624  </front>
625</reference>
626
627<reference anchor="OMNA">
628  <front>
629    <title>OMA LightweightM2M (LwM2M) Object and Resource Registry</title>
630    <author >
631      <organization>OMA</organization>
632    </author>
633    <date />
634  </front>
635</reference>
636
637<reference anchor="SIG" target="https://www.bluetooth.com/specifications/gatt">
638  <front>
639    <title>GATT Specifications</title>
640    <author >
641      <organization>Bluetooth SIG</organization>
642    </author>
643    <date />
644  </front>
645</reference>
646
647<reference anchor="PYANG" target="https://github.com/mbj4668/pyang">
648  <front>
649    <title>An extensible YANG validator and converter in python</title>
650    <author>
651      <organization></organization>
652    </author>
653    <date year="2018" month="September" day="13"/>
654  </front>
655<seriesInfo name="commit" value="15c807f" />
656</reference>
657
658<reference anchor="nRF-Sniffer">
659  <front>
660    <title>nRF Sniffer: Smart/Bluetooth low energy packet sniffer</title>
661    <author >
662      <organization>Nordic Semiconductor</organization>
663    </author>
664    <date />
665  </front>
666</reference>
667
668<reference anchor="AllJoynExplorer">
669  <front>
670    <title>AllJoyn</title>
671    <author >
672      <organization>Microsoft</organization>
673    </author>
674    <date />
675  </front>
676</reference>
677
678<reference anchor="OpenDOF" target="https://opendof.org">
679  <front>
680    <title>The OpenDOF Project</title>
681    <author >
682      <organization>OpenDOF</organization>
683    </author>
684    <date />
685  </front>
686</reference>
687
688
689</references>
690
691
692<section title="Program Committee" >
693
694<t>This workshop was organized by the following individuals: Jari Arkko,
695Ralph Droms, Jaime Jimenez, Michael Koster, Dave Thaler, and Hannes
696Tschofenig.</t>
697
698</section>
699<section title="Accepted Position Papers">
700
701<!--[rfced] FYI, we standardized the capitalization of the paper
702titles from the workshop. Please let us know if that creates any
703problems.  -->
704
705<t><list style="symbols">
706  <t>Jari Arkko, "Gadgets and Protocols Come and Go, Data Is Forever"</t>
707  <t>Carsten Bormann, "Noise in Specifications hurts"</t>
708  <t>Benoit Claise, "YANG as the Data Modelling Language in the IoT space"</t>
709  <t>Robert Cragie, "The ZigBee Cluster Library over IP"</t>
710  <t>Dee Denteneer, Michael Verschoor, and Teresa Zotti, "Fairhair: interoperable IoT services for major Building Automation and Lighting Control ecosystems"</t>
711  <t>Universal Devices, "Object Oriented Approach to IoT Interoperability"</t>
712  <t>Bryant Eastham, "Interoperability and the OpenDOF Project"</t>
713  <t>Stephen Farrell and Alissa Cooper, "It's Often True: Security's Ignored (IOTSI) - and Privacy too"</t>
714  <t>Christian Groves, Lui Yan, and Yang Weiwei, "Overview of IoT semantics landscape"</t>
715  <t>Ted Hardie, "Loci of Interoperability for the Internet of Things"</t>
716  <t>Russ Housley, "Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communications"</t>
717  <t>Jaime Jimenez, Michael Koster, and Hannes Tschofenig, "IPSO Smart Objects"</t>
718  <t>David Jones, "IOTDB - interoperability Through Semantic Metastandards"</t>
719  <t>Sebastian Kaebisch and Darko Anicic, "Thing Description as Enabler of Semantic Interoperability on the Web of Things"</t>
720  <t>Achilleas Kemos, "Alliance for Internet of Things Innovation Semantic Interoperability Release 2.0, AIOTI WG03 - IoT Standardisation"</t>
721  <t>Ari Keraenen and Cullen Jennings, "SenML: simple building block for IoT semantic interoperability"</t>
722  <t>Dongmyoung Kim, Yunchul Choi, and Yonggeun Hong, "Research on Unified Data Model and Framework to Support Interoperability between IoT Applications"</t>
723  <t>Michael Koster, "Model-Based Hypertext Language"</t>
724  <t>Matthias Kovatsch, Yassin N.  Hassan, and Klaus Hartke, "Semantic Interoperability Requires Self-describing Interaction Models"</t>
725  <t>Kai Kreuzer, "A Pragmatic Approach to Interoperability in the Internet of Things"</t>
726  <t>Barry Leiba, "Position Paper"</t>
727  <t>Marcello Lioy, "AllJoyn"</t>
728  <t>Kerry Lynn and Laird Dornin, "Modeling RESTful APIs with JSON Hyper-Schema"</t>
729  <t>Erik Nordmark, "Thoughts on IoT Semantic Interoperability: Scope of security issues"</t>
730  <t>Open Geospatial Consortium, "OGC SensorThings API: Communicating "Where" in the Web of Things"</t>
731  <t>Jean Paoli and Taqi Jaffri, "IoT Information Model Interoperability: An Open, Crowd-Sourced Approach in Three Parallel Parti"</t>
732  <t>Joaquin Prado, "OMA Lightweight M2M Resource Model"</t>
733  <t>Dave Raggett and Soumya Kanti Datta, "Input paper for IAB Semantic Interoperability Workshop"</t>
734  <t>Pete Rai and Stephen Tallamy, "Semantic Overlays Over Immutable Data to Facilitate Time and Context Specific Interoperability"</t>
735  <t>Jasper Roes and Laura Daniele, "Towards semantic interoperability in the IoT using the Smart Appliances REFerence ontology (SAREF) and its extensions"</t>
736  <t>Max Senges, "Submission for IAB IoT Sematic Interoperability workshop"</t>
737  <t>Bill Silverajan, Mert Ocak and Jaime Jimenez, "Implementation Experiences of Semantic Interoperability for RESTful Gateway Management"</t>
738  <t>Ned Smith, Jeff Sedayao, and Claire Vishik, "Key Semantic Interoperability Gaps in the Internet-of-Things Meta-Models"</t>
739  <t>Robert Sparks and Ben Campbell, "Considerations for certain IoT-based services"</t>
740  <t>J. Clarke Stevens, "Open Connectivity Foundation oneIoTa Tool"</t>
741  <t>J. Clarke Stevens and Piper Merriam, "Derived Models for Interoperability Between IoT Ecosystems"</t>
742  <t>Ravi Subramaniam, "Semantic Interoperability in Open Connectivity Foundation (OCF) - formerly Open Interconnect Consortium (OIC)"</t>
743  <t>Andrew Sullivan, "Position paper for IOTSI workshop"</t>
744  <t>Darshak Thakore, "IoT Security in the context of Semantic Interoperability"</t>
745  <t>Dave Thaler, "IoT Bridge Taxonomy"</t>
746  <t>Dave Thaler, "Summary of AllSeen Alliance Work Relevant to Semantic Interoperability"</t>
747  <t>Mark Underwood, Michael Gruninger, Leo Obrst, Ken Baclawski, Mike
748  Bennett, Gary Berg-Cross, Torsten Hahmann, and Ram Sriram, "Internet of Things: Toward Smart Networked Systems and Societies"</t>
749  <t>Peter van der Stok and Andy Bierman, "YANG-Based Constrained Management Interface (CoMI)"</t>
750</list></t>
751
752</section>
753
754<section title="List of Participants">
755<?rfc subcompact="yes"?>
756<t><list>
757  <t>Andy Bierman, YumaWorks</t>
758  <t>Carsten Bormann, Uni Bremen/TZI</t>
759  <t>Ben Campbell, Oracle</t>
760  <t>Benoit Claise, Cisco</t>
761  <t>Alissa Cooper, Cisco</t>
762  <t>Robert Cragie, ARM Limited</t>
763  <t>Laura Daniele, TNO</t>
764  <t>Bryant Eastham, OpenDOF</t>
765  <t>Christian Groves, Huawei</t>
766  <t>Ted Hardie, Google</t>
767  <t>Yonggeun Hong, ETRI</t>
768  <t>Russ Housley, Vigil Security</t>
769  <t>David Janes, IOTDB</t>
770  <t>Jaime Jimenez, Ericsson</t>
771  <t>Shailendra Karody, Catalina Labs</t>
772  <t>Ari Keraenen, Ericsson</t>
773  <t>Michael Koster, SmartThings</t>
774  <t>Matthias Kovatsch, Siemens</t>
775  <t>Kai Kreuzer, Deutsche Telekom</t>
776  <t>Barry Leiba, Huawei</t>
777  <t>Steve Liang, Uni Calgary</t>
778  <t>Marcello Lioy, Qualcomm</t>
779  <t>Kerry Lynn, Verizon</t>
780  <t>Mayan Mathen, Catalina Labs</t>
781  <t>Erik Nordmark, Arista</t>
782  <t>Jean Paoli, Microsoft</t>
783  <t>Joaquin Prado, OMA</t>
784  <t>Dave Raggett, W3C</t>
785  <t>Max Senges, Google</t>
786  <t>Ned Smith, Intel</t>
787  <t>Robert Sparks, Oracle</t>
788  <t>Ram Sriram, NIST</t>
789  <t>Clarke Stevens</t>
790  <t>Ram Subramanian, Intel</t>
791  <t>Andrew Sullivan, DIN</t>
792  <t>Darshak Thakore, CableLabs</t>
793  <t>Dave Thaler, Microsoft</t>
794  <t>Hannes Tschofenig, ARM Limited</t>
795  <t>Michael Verschoor, Philips Lighting</t>
796</list></t>
797<?rfc subcompact="no"?>
798
799</section>
800
801<section title="IAB Members at the Time of Approval" numbered="no">
802<?rfc subcompact="yes"?>
803  <t><list>
804  <t>Jari Arkko</t>
805  <t>Alissa Cooper</t>
806  <t>Ted Hardie</t>
807  <t>Christian Huitema</t>
808  <t>Gabriel Montenegro</t>
809  <t>Erik Nordmark</t>
810  <t>Mark Nottingham</t>
811  <t>Melinda Shore</t>
812  <t>Robert Sparks</t>
813  <t>Jeff Tantsura</t>
814  <t>Martin Thomson</t>
815  <t>Brian Trammell</t>
816  <t>Suzanne Woolf</t>
817  </list></t>
818<?rfc subcompact="no"?>
819  </section>
820
821<section title="Acknowledgements" numbered="no">
822
823<t>We would like to thank all paper authors and participants for their
824contributions and Ericsson for hosting the workshop.</t>
825
826</section>
827
828
829  </back>
830
831
832</rfc>
833
1<?xml version='1.0' encoding='UTF-8'?>
2
3<reference  anchor='RFC3444' target='https://www.rfc-editor.org/info/rfc3444'>
4<front>
5<title>On the Difference between Information Models and Data Models</title>
6<author initials='A.' surname='Pras' fullname='A. Pras'><organization /></author>
7<author initials='J.' surname='Schoenwaelder' fullname='J. Schoenwaelder'><organization /></author>
8<date year='2003' month='January' />
9<abstract><t>There has been ongoing confusion about the differences between Information Models and Data Models for defining managed objects in network management.  This document explains the differences between these terms by analyzing how existing network management model specifications (from the IETF and other bodies such as the International Telecommunication Union (ITU) or the Distributed Management Task Force (DMTF)) fit into the universe of Information Models and Data Models. This memo documents the main results of the 8th workshop of the Network Management Research Group (NMRG) of the Internet Research Task Force (IRTF) hosted by the University of Texas at Austin.  This memo provides information for the Internet community.</t></abstract>
10</front>
11<seriesInfo name='RFC' value='3444'/>
12<seriesInfo name='DOI' value='10.17487/RFC3444'/>
13</reference>

mirror server hosted at Truenetwork, Russian Federation.