Implementation for Kendall functional principal component analysis. Kendall functional principal component analysis is a robust functional principal component analysis technique for non-Gaussian functional/longitudinal data. The crucial function of this package is KFPCA() and KFPCA_reg(). Moreover, least square estimates of functional principal component scores are also provided. Refer to Rou Zhong, Shishi Liu, Haocheng Li, Jingxiao Zhang. (2021) <doi:10.48550/arXiv.2102.01286>. Rou Zhong, Shishi Liu, Haocheng Li, Jingxiao Zhang. (2021) <doi:10.1016/j.jmva.2021.104864>.
Version: | 2.0 |
Depends: | R (≥ 2.10) |
Imports: | kader, utils, pracma, fdapace, fda, stats, graphics |
Published: | 2022-02-04 |
DOI: | 10.32614/CRAN.package.KFPCA |
Author: | Rou Zhong [aut, cre], Jingxiao Zhang [aut] |
Maintainer: | Rou Zhong <zhong_rou at 163.com> |
License: | GPL (≥ 3) |
NeedsCompilation: | no |
CRAN checks: | KFPCA results |
Reference manual: | KFPCA.pdf |
Package source: | KFPCA_2.0.tar.gz |
Windows binaries: | r-devel: KFPCA_2.0.zip, r-release: KFPCA_2.0.zip, r-oldrel: KFPCA_2.0.zip |
macOS binaries: | r-devel (arm64): KFPCA_2.0.tgz, r-release (arm64): KFPCA_2.0.tgz, r-oldrel (arm64): KFPCA_2.0.tgz, r-devel (x86_64): KFPCA_2.0.tgz, r-release (x86_64): KFPCA_2.0.tgz, r-oldrel (x86_64): KFPCA_2.0.tgz |
Old sources: | KFPCA archive |
Please use the canonical form https://CRAN.R-project.org/package=KFPCA to link to this page.
mirror server hosted at Truenetwork, Russian Federation.