outlierMBC: Sequential Outlier Identification for Model-Based Clustering

Sequential outlier identification for Gaussian mixture models using the distribution of Mahalanobis distances. The optimal number of outliers is chosen based on the dissimilarity between the theoretical and observed distributions of the scaled squared sample Mahalanobis distances. Also includes an extension for Gaussian linear cluster-weighted models using the distribution of studentized residuals. Doherty, McNicholas, and White (2025) <doi:10.48550/arXiv.2505.11668>.

Version: 0.0.1
Depends: R (≥ 4.1.0)
Imports: ClusterR, dbscan, flexCWM, ggplot2, mixture, mvtnorm, spatstat.univar, stats
Published: 2025-05-28
DOI: 10.32614/CRAN.package.outlierMBC
Author: Ultán P. Doherty ORCID iD [aut, cre, cph], Paul D. McNicholas ORCID iD [aut], Arthur White ORCID iD [aut]
Maintainer: Ultán P. Doherty <dohertyu at tcd.ie>
License: MIT + file LICENSE
NeedsCompilation: no
Citation: outlierMBC citation info
Materials: README
CRAN checks: outlierMBC results

Documentation:

Reference manual: outlierMBC.pdf

Downloads:

Package source: outlierMBC_0.0.1.tar.gz
Windows binaries: r-devel: not available, r-release: outlierMBC_0.0.1.zip, r-oldrel: outlierMBC_0.0.1.zip
macOS binaries: r-release (arm64): outlierMBC_0.0.1.tgz, r-oldrel (arm64): outlierMBC_0.0.1.tgz, r-release (x86_64): outlierMBC_0.0.1.tgz, r-oldrel (x86_64): outlierMBC_0.0.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=outlierMBC to link to this page.

mirror server hosted at Truenetwork, Russian Federation.